Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Association between Vaccination Status and Non-Immunological Factors and Fecal Shedding of Rotavirus
3.2. Association between Immune Responses and Fecal Shedding of Rotavirus among P2-VP8-P[8] Recipients
3.3. Association between Immune Seroresponses and Fecal Shedding of Rotavirus among Placebo Recipients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D.; World Health Organization–Coordinated Global Rotavirus Surveillance Network. Global, Regional, and National Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000–2013. Infect. Dis. 2016, 62 (Suppl. S2), S96–S105. [Google Scholar] [CrossRef]
- VIEW-Hub by IVAC. Rotavirus Vaccine Global Introduction Status. Available online: https://view-hub.org/vaccine/rota (accessed on 13 July 2023).
- Burnett, E.; Parashar, U.D.; Tate, J.E. Global Impact of Rotavirus Vaccination on Diarrhea Hospitalizations and Deaths among Children <5 Years Old: 2006–2019. J. Infect. Dis. 2020, 222, 1731–1739. [Google Scholar] [PubMed]
- Yen, C.; Tate, J.E.; Hyde, T.B.; Cortese, M.M.; Lopman, B.A.; Jiang, B.; Glass, R.I.; Parashar, U.D. Rotavirus vaccines: Current status and future considerations. Hum. Vaccines Immunother. 2014, 10, 1436–1448. [Google Scholar] [CrossRef]
- Leshem, E.; Lopman, B.; Glass, R.; Gentsch, J.; Banyai, K.; Parashar, U.; Patel, M. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 847–856. [Google Scholar] [CrossRef]
- Angel, J.; Steele, A.D.; Franco, M.A. Correlates of protection for rotavirus vaccines: Possible alternative trial endpoints, opportunities, and challenges. Hum. Vaccines Immunother. 2014, 10, 3659–3671. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Glass, R.I.; Jiang, B.; Santosham, M.; Lopman, B.; Parashar, U. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J. Infect. Dis. 2013, 208, 284–294. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wu, F.T.; Hsiung, C.A.; Wu, H.S.; Chang, K.Y.; Huang, Y.C. Comparison of virus shedding after lived attenuated and pentavalent reassortant rotavirus vaccine. Vaccine 2014, 32, 1199–1204. [Google Scholar] [CrossRef]
- Yen, C.; Jakob, K.; Esona, M.D.; Peckham, X.; Rausch, J.; Hull, J.J.; Whittier, S.; Gentsch, J.R.; LaRussa, P. Detection of fecal shedding of rotavirus vaccine in infants following their first dose of pentavalent rotavirus vaccine. Vaccine 2011, 29, 4151–4155. [Google Scholar] [CrossRef]
- Ramani, S.; Sankaran, P.; Arumugam, R.; Sarkar, R.; Banerjee, I.; Mohanty, I.; Jana, A.K.; Kuruvilla, K.A.; Kang, G. Comparison of viral load and duration of virus shedding in symptomatic and asymptomatic neonatal rotavirus infections. J. Med. Virol. 2010, 82, 1803–1807. [Google Scholar] [CrossRef]
- Lee, B.; Kader, M.A.; Colgate, E.R.; Carmolli, M.; Dickson, D.M.; Diehl, S.A.; Alam, M.; Afreen, S.; Mychaleckyj, J.C.; Nayak, U.; et al. Oral rotavirus vaccine shedding as a marker of mucosal immunity. Sci. Rep. 2021, 11, 21760. [Google Scholar] [CrossRef]
- Groome, M.J.; Koen, A.; Fix, A.; Page, N.; Jose, L.; Madhi, S.A.; McNeal, M.; Dally, L.; Cho, I.; Power, M.; et al. Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2017, 17, 843–853. [Google Scholar] [CrossRef]
- Groome, M.J.; Fairlie, L.; Morrison, J.; Fix, A.; Koen, A.; Masenya, M.; Jose, L.; Madhi, S.A.; Page, N.; McNeal, M.; et al. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: A multisite, randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2020, 20, 851–863. [Google Scholar] [CrossRef]
- Ward, R.L.; Kapikian, A.Z.; Goldberg, K.M.; Knowlton, D.R.; Watson, M.W.; Rappaport, R. Serum rotavirus neutralizing-antibody titers compared by plaque reduction and enzyme-linked immunosorbent assay-based neutralization assays. J. Clin. Microbiol. 1996, 34, 983–985. [Google Scholar] [CrossRef]
- Holmgren, J.; Parashar, U.D.; Plotkin, S.; Louis, J.; Ng, S.P.; Desauziers, E.; Picot, V.; Saadatian-Elahi, M. Correlates of protection for enteric vaccines. Vaccine 2017, 35, 3355–3363. [Google Scholar] [CrossRef]
- Desselberger, U.; Huppertz, H.I. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J. Infect. Dis. 2011, 203, 188–195. [Google Scholar] [CrossRef]
- Clarke, E.; Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.K.; Bronowski, C.; Sindhu, K.N.C.; Babji, S.; Benny, B.; Carmona-Vicente, N.; Chasweka, N.; Chinyama, E.; Cunliffe, N.A.; Dube, Q.; et al. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat. Commun. 2021, 12, 7288. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, F.R.; Matson, D.O.; Guerrero, M.L.; Shults, J.; Calva, J.J.; Morrow, A.L.; Glass, R.I.; Pickering, L.K.; Ruiz-Palacios, G.M. Serum antibody as a marker of protection against natural rotavirus infection and disease. J. Infect. Dis. 2000, 182, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.D.; Ward, R.L.; Rao, M.R.; Sack, D.A.; Knowlton, D.R.; van Loon, F.P.; Huda, S.; McNeal, M.; Ahmed, F.; Schiff, G. Seroepidemiologic evaluation of antibodies to rotavirus as correlates of the risk of clinically significant rotavirus diarrhea in rural Bangladesh. J. Infect. Dis. 1992, 165, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.L.; Bernstein, D.I.; Shukla, R.; Young, E.C.; Sherwood, J.R.; McNeal, M.M.; Walker, M.C.; Schiff, G.M. Effects of antibody to rotavirus on protection of adults challenged with a human rotavirus. J. Infect. Dis. 1989, 159, 79–88. [Google Scholar] [CrossRef]
- Velasquez, D.E.; Parashar, U.; Jiang, B. Decreased performance of live attenuated, oral rotavirus vaccines in low-income settings: Causes and contributing factors. Expert Rev. Vaccines 2018, 17, 145–161. [Google Scholar] [CrossRef] [PubMed]
30 µg and 60 µg P2-VP8-P[8] Recipients a | ||||||
---|---|---|---|---|---|---|
Seroresponse | Day 84 (One Month Post-Dose 3) | Day 224 (Six Months Post-Dose 3) | ||||
Not Shedding b | Shedding c | p-Value | Not Shedding b | Shedding c | p-Value | |
Anti-P2-VP8-P[8] IgA | 52/75 (69.3) | 14/15 (93.3) | 0.062 d | 53/72 (73.6) | 13/14 (92.9) | 0.172 d |
Anti-RV IgA | 6/74 (8.1) | 0/14 (0) | 0.584 d | 53/71 (74.7) | 12/13 (92.3) | 0.280 d |
Anti-P2-VP8-P[8] IgG | 74/76 (97.4) | 15/15 (100) | 1.000 d | 58/73 (79.5) | 13/14 (92.9) | 0.451 d |
Anti-P2-VP8-P[8] IgG—adjusted e | 75/76 (98.7) | 15/15 (100) | 1.000 d | - | - | - |
NAb to RV strain Wa | 18/76 (23.7) | 5/15 (33.3) | 0.517 d | 12/73 (16.4) | 5/14 (35.7) | 0.137 d |
NAb to RV strain Wa—adjusted e | 63/76 (82.9) | 15/15 (100) | 0.116 d | - | - | - |
NAb to RV strain 89-12 | 29/76 (38.2) | 7/15 (46.7) | 0.538 | 14/73 (19.2) | 6/14 (42.9) | 0.054 |
NAb to RV strain 89-12—adjusted e | 63/76 (82.9) | 15/15 (100) | 0.116 d | - | - | - |
30 µg and 60 µg P2-VP8-P[8] Recipients a | |||
---|---|---|---|
Not Shedding b | Shedding c | p-Value e | |
Anti-P2-VP8-P[8] IgA (GMT (95% CI)) | |||
Day 0 | 5.8 (5.1–6.7) | 5.0 (4.0–6.1) | 0.325 |
Day 84 | 42.6 (32.2–56.2) | 63.1 (36.2–109.9) | 0.244 |
Day 224 | 61.9 (45.5–84.4) | 192.9 (78.2–475.9) | 0.005 |
Anti-RV IgA (GMT (95% CI)) | |||
Day 0 | 9.3 (8.2–10.6) | 7.5 (7.5–7.5) | 0.143 |
Day 84 | 11.1 (8.7–14.0) | 8.0 (7.0–9.1) | 0.228 |
Day 224 | 89.0 (65.0–121.7) | 179.0 (88.9–353.4) | 0.074 |
Anti-P2-VP8-P[8] IgG (GMT (95% CI)) | |||
Day 0 | 142.5 (104.4–194.5) | 101.3 (54.0–190.0) | 0.366 |
Day 84 | 9074.9 (7695.9–10,701.0) | 12,115.8 (9181.2–15,988.4) | 0.143 |
Day 84—adjusted d | 38671.9 (32,711.9–45,717.9) | 50,498.6 (38,443.6–66,333.8) | 0.1808 |
Day 224 | 1780.5 (1458.3–2174.0) | 2814.3 (1780.1–4449.5) | 0.067 |
NAb to RV strain Wa (GMT (95% CI)) | |||
Day 0 | 113.0 (89.2–143.0) | 64.3 (36.1–114.5) | 0.057 |
Day 84 | 198.5 (166.6–236.6) | 233.1 (182.9–297.1) | 0.436 |
Day 84—adjusted d | 1452.7 (1216.2–1735.2) | 1655.9 (1300.4–2108.4) | 0.530 |
Day 224 | 114.3 (87.2–150.0) | 234.1 (133.7–410.0) | 0.033 |
NAb to RV strain 89-12 (GMT (95% CI)) | |||
Day 0 | 147.5 (114.4–190.3) | 68.8 (37.2–127.5) | 0.018 |
Day 84 | 344.9 (283.6–419.5) | 431.9 (311.4–599.0) | 0.335 |
Day 84—adjusted d | 2209.4 (1812.2–2693.7) | 2691.1 (1968.8–2678.4) | 0.401 |
Day 224 | 165.9 (129.7–212.2) | 355.6 (198.0–638.7) | 0.015 |
Placebo Recipients a | ||||||
---|---|---|---|---|---|---|
Seroresponse | Day 84 | Day 224 | ||||
Not Shedding b | Shedding c | p-Value | Not Shedding b | Shedding c | p-Value | |
Anti-P2-VP8-P[8] IgA | 8/27 (29.6) | 1/17 (5.9) | 0.121 d | 19/27 (70.4) | 14/17 (82.4) | 0.486 d |
Anti-RV IgA | 2/27 (7.4) | 0/16 (0) | 0.522 d | 13/27 (48.2) | 14/16 (87.5) | 0.021 d |
Anti-P2-VP8-P[8] IgG | 1/27 (3.7) | 0/17 (0) | 1.000 d | 8/27 (29.6) | 9/17 (52.9) | 0.122 |
Anti-P2-VP8-P[8] IgG—adjusted e | 3/27 (11.1) | 1/17 (5.9) | 1.000 d | - | - | - |
NAb to RV strain Wa | 0/27 (0) | 0/17 (0) | - | 3/27 (11.1) | 7/17 (41.2) | 0.030 d |
NAb to RV strain Wa -adjusted e | 3/27 (11.1) | 0/17 (0) | 0.272 d | - | - | - |
NAb to RV strain 89-12 | 1/27 (3.7) | 0 /17 (0) | 1.000 d | 5/27 (18.5) | 7/17 (41.2) | 0.164 d |
NAb to RV strain 89-12—adjusted e | 4/27 (14.8) | 0/17 (0) | 0.147 d | - | - | - |
Placebo Recipients a | |||
---|---|---|---|
Not Shedding b | Shedding c | p-Value e | |
Anti-P2-VP8-P[8] IgA (GMT (95% CI)) | |||
Day 0 | 5.6 (4.5–7.0) | 8.3 (5.0–14.0) | 0.098 |
Day 84 | 13.5 (7.9–23.0) | 10.0 (5.9–17.2) | 0.453 |
Day 224 | 44.6 (24.5–81.1) | 289.0 (103.9–804.1) | 0.001 |
Anti-RV IgA (GMT (95% CI)) | |||
Day 0 | 10.5 (7.0–15.9) | 9.4 (6.9–13.0) | 0.701 |
Day 84 | 13.3 (7.6–23.2) | 7.7 (7.4–7.9) | 0.118 |
Day 224 | 64.5 (34.1–122.0) | 283.2 (129.8–617.6) | 0.004 |
Anti-P2-VP8-P[8] IgG (GMT (95% CI)) | |||
Day 0 | 109.3 (57.1–209.2) | 76.4 (35.9–162.6) | 0.468 |
Day 84 | 39.2 (22.6–68.0) | 21.9 (12.6–38.0) | 0.150 |
Day 84—adjusted d | 162.6 (92.8–284.9) | 93.4 (53.9–161.9) | 0.175 |
Day 224 | 99.1 (53.5–183.6) | 491.4 (217.3–1111.2) | 0.002 |
NAb to RV strain Wa (GMT (95% CI)) | |||
Day 0 | 78.8 (47.4–131.0) | 74.5 (42.3–131.3) | 0.882 |
Day 84 | 15.6 (9.5–25.5) | 9.8 (5.7–16.8) | 0.208 |
Day 84—adjusted d | 104.5 (61.8–176.9) | 71.7 (41.7–123.3) | 0.329 |
Day 224 | 35.0 (20.3–60.5) | 193.5 (90.5–413.6) | <0.001 |
NAb to RV strain 89-12 (GMT (95% CI)) | |||
Day 0 | 96.1 (56.9–162.1) | 96.9 (47.0–199.6) | 0.984 |
Day 84 | 25.5 (14.7–44.0) | 13.8 (7.9–24.4) | 0.132 |
Day 84—adjusted d | 150.7 (86.4–263.0) | 89.1 (50.7–156.4) | 0.197 |
Day 224 | 60.5 (33.1–110.8) | 310.1 (144.3–666.6) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fellows, T.; Page, N.; Fix, A.; Flores, J.; Cryz, S.; McNeal, M.; Iturriza-Gomara, M.; Groome, M.J. Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial. Viruses 2023, 15, 1809. https://doi.org/10.3390/v15091809
Fellows T, Page N, Fix A, Flores J, Cryz S, McNeal M, Iturriza-Gomara M, Groome MJ. Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial. Viruses. 2023; 15(9):1809. https://doi.org/10.3390/v15091809
Chicago/Turabian StyleFellows, Tamika, Nicola Page, Alan Fix, Jorge Flores, Stanley Cryz, Monica McNeal, Miren Iturriza-Gomara, and Michelle J. Groome. 2023. "Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial" Viruses 15, no. 9: 1809. https://doi.org/10.3390/v15091809
APA StyleFellows, T., Page, N., Fix, A., Flores, J., Cryz, S., McNeal, M., Iturriza-Gomara, M., & Groome, M. J. (2023). Association between Immunogenicity of a Monovalent Parenteral P2-VP8 Subunit Rotavirus Vaccine and Fecal Shedding of Rotavirus following Rotarix Challenge during a Randomized, Double-Blind, Placebo-Controlled Trial. Viruses, 15(9), 1809. https://doi.org/10.3390/v15091809