Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation Specimens
2.2. Amplification and Sequencing
2.3. Sensitivity
2.4. Specificity
2.5. Reproducibility
2.6. Bioinformatics Pipeline
3. Results
3.1. Sensitivity
3.2. Specificity
3.3. Reproducibility
3.4. Evaluation Sample Results
3.5. Sanger vs. MiSeq Subset
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Department of Health and Human Services Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Available online: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/AdultandAdolescentGL.pdf (accessed on 19 May 2023).
- European AIDS Clinical Society. Guidelines Version 11.0 October 2021. Available online: https://www.eacsociety.org/media/final2021eacsguidelinesv11.0_oct2021.pdf (accessed on 19 May 2023).
- Chun, T.-W.; Stuyver, L.; Mizell, S.B.; Ehler, L.A.; Mican, J.A.M.; Baseler, M.; Lloyd, A.L.; Nowak, M.A.; Fauci, A.S. Presence of an Inducible HIV-1 Latent Reservoir during Highly Active Antiretroviral Therapy. Proc. Natl. Acad. Sci. USA 1997, 94, 13193–13197. [Google Scholar] [CrossRef]
- Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; et al. Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science 1997, 278, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Ding, M.; Craigo, J.K.; Tarwater, P.; Chatterjee, R.; Roy, P.; Guha, S.K.; Saha, B.; Modak, D.; Neogi, D.; et al. Genetic Characterization of HIV-1 from Semen and Blood from Clade C-Infected Subjects from India and Effect of Therapy in These Body Compartments. Virology 2010, 401, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.P.; Peters, P.J.; Caron, C.; Gonzalez-Perez, M.P.; Stones, L.; Ankghuambom, C.; Pondei, K.; McClure, C.P.; Alemnji, G.; Taylor, S.; et al. Intercompartmental Recombination of HIV-1 Contributes to Env Intrahost Diversity and Modulates Viral Tropism and Sensitivity to Entry Inhibitors. J. Virol. 2011, 85, 6024–6037. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Q.; Lichterfeld, M. Diversity of HIV-1 Reservoirs in CD4+ T-Cell Subpopulations. Curr. Opin. HIV AIDS 2016, 11, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Paquet, A.C.; Baxter, J.; Weidler, J.; Lie, Y.; Lawrence, J.; Kim, R.; Bates, M.; Coakley, E.; Chappey, C. Differences in Reversion of Resistance Mutations to Wild-Type under Structured Treatment Interruption and Related Increase in Replication Capacity. PLoS ONE 2011, 6, e14638. [Google Scholar] [CrossRef]
- Liu, T.F.; Shafer, R.W. Web Resources for HIV Type 1 Genotypic-Resistance Test Interpretation. Clin. Infect. Dis. 2006, 42, 1608–1618. [Google Scholar] [CrossRef]
- Parikh, U.M.; McCormick, K.; van Zyl, G.; Mellors, J.W. Future Technologies for Monitoring HIV Drug Resistance and Cure. Curr. Opin. HIV AIDS 2017, 12, 182–189. [Google Scholar] [CrossRef]
- Casadellà, M.; Paredes, R. Deep Sequencing for HIV-1 Clinical Management. Virus Res. 2017, 239, 69–81. [Google Scholar] [CrossRef]
- Li, J.Z.; Paredes, R.; Ribaudo, H.J.; Svarovskaia, E.S.; Metzner, K.J.; Kozal, M.J.; Hullsiek, K.H.; Balduin, M.; Jakobsen, M.R.; Geretti, A.M.; et al. Low-Frequency HIV-1 Drug Resistance Mutations and Risk of NNRTI-Based Antiretroviral Treatment Failure: A Systematic Review and Pooled Analysis. JAMA 2011, 305, 1327–1335. [Google Scholar] [CrossRef]
- Raymond, S.; Nicot, F.; Abravanel, F.; Minier, L.; Carcenac, R.; Lefebvre, C.; Harter, A.; Martin-Blondel, G.; Delobel, P.; Izopet, J. Performance Evaluation of the Vela Dx Sentosa Next-Generation Sequencing System for HIV-1 DNA Genotypic Resistance. J. Clin. Virol. 2020, 122, 104229. [Google Scholar] [CrossRef] [PubMed]
- Alidjinou, E.K.; Coulon, P.; Hallaert, C.; Robineau, O.; Meybeck, A.; Huleux, T.; Ajana, F.; Hober, D.; Bocket, L. Routine Drug Resistance Testing in HIV-1 Proviral DNA, Using an Automated next- Generation Sequencing Assay. J. Clin. Virol. 2019, 121, 104207. [Google Scholar] [CrossRef] [PubMed]
- Beck, I.A.; Drennan, K.D.; Melvin, A.J.; Mohan, K.M.; Herz, A.M.; Alarcón, J.; Piscoya, J.; Velázquez, C.; Frenkel, L.M. Simple, Sensitive, and Specific Detection of Human Immunodeficiency Virus Type 1 Subtype B DNA in Dried Blood Samples for Diagnosis in Infants in the Field. J. Clin. Microbiol. 2001, 39, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Mbunkah, H.A.; Marzel, A.; Schmutz, S.; Kok, Y.L.; Zagordi, O.; Shilaih, M.; Nsanwe, N.N.; Mbu, E.T.; Besong, L.M.; Sama, B.A.; et al. Low Prevalence of Transmitted HIV-1 Drug Resistance Detected by a Dried Blood Spot (DBS)-Based next-Generation Sequencing (NGS) Method in Newly Diagnosed Individuals in Cameroon in the Years 2015–16. J. Antimicrob. Chemother. 2018, 73, 1917–1929. [Google Scholar] [CrossRef]
- Parkin, N.T.; Avila-Rios, S.; Bibby, D.F.; Brumme, C.J.; Eshleman, S.H.; Harrigan, P.R.; Howison, M.; Hunt, G.; Ji, H.; Kantor, R.; et al. Multi-Laboratory Comparison of Next-Generation to Sanger-Based Sequencing for HIV-1 Drug Resistance Genotyping. Viruses 2020, 12, 694. [Google Scholar] [CrossRef]
- Arias, A.; López, P.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Sanger and Next Generation Sequencing Approaches to Evaluate HIV-1 Virus in Blood Compartments. Int. J. Environ. Res. Public. Health 2018, 15, 1697. [Google Scholar] [CrossRef]
- Geretti, A.M.; Blanco, J.L.; Marcelin, A.G.; Perno, C.F.; Stellbrink, H.J.; Turner, D.; Zengin, T. HIV DNA Sequencing to Detect Archived Antiretroviral Drug Resistance. Infect. Dis. Ther. 2022, 11, 1793–1803. [Google Scholar] [CrossRef]
- Andreatta, K.; Willkom, M.; Martin, R.; Chang, S.; Wei, L.; Liu, H.; Liu, Y.-P.; Graham, H.; Quirk, E.; Martin, H.; et al. Switching to Bictegravir/Emtricitabine/Tenofovir Alafenamide Maintained HIV-1 RNA Suppression in Participants with Archived Antiretroviral Resistance Including M184V/I. J. Antimicrob. Chemother. 2019, 74, 3555–3564. [Google Scholar] [CrossRef]
- Halvas, E.K.; Joseph, K.W.; Brandt, L.D.; Guo, S.; Sobolewski, M.D.; Jacobs, J.L.; Tumiotto, C.; Bui, J.K.; Cyktor, J.C.; Keele, B.F.; et al. HIV-1 Viremia Not Suppressible by Antiretroviral Therapy Can Originate from Large T Cell Clones Producing Infectious Virus. J. Clin. Investig. 2020, 130, 5847–5857. [Google Scholar] [CrossRef]
- Mortier, V.; Demecheleer, E.; Staelens, D.; Schauvliege, M.; Dauwe, K.; Dinakis, S.; Hebberecht, L.; Vancoillie, L.; Verhofstede, C. Quantification of Total HIV-1 DNA in Buffy Coat Cells, Feasibility and Potential Added Value for Clinical Follow-up of HIV-1 Infected Patients on ART. J. Clin. Virol. 2018, 106, 58–63. [Google Scholar] [CrossRef]
- Busby, E.; Whale, A.S.; Ferns, R.B.; Grant, P.R.; Morley, G.; Campbell, J.; Foy, C.A.; Nastouli, E.; Huggett, J.F.; Garson, J.A. Instability of 8E5 Calibration Standard Revealed by Digital PCR Risks Inaccurate Quantification of HIV DNA in Clinical Samples by QPCR. Sci. Rep. 2017, 7, 1209. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An Amplicon-Based Sequencing Framework for Accurately Measuring Intrahost Virus Diversity Using PrimalSeq and IVar. Genome Biol. 2019, 20, 8. [Google Scholar] [CrossRef]
- Rose, P.P.; Korber, B.T. Detecting Hypermutations in Viral Sequences with an Emphasis on G → A Hypermutation. Bioinformatics 2000, 16, 400–401. [Google Scholar] [CrossRef]
- Taylor, T.; Lee, E.R.; Nykoluk, M.; Enns, E.; Liang, B.; Capina, R.; Gauthier, M.-K.; Van Domselaar, G.; Sandstrom, P.; Brooks, J.; et al. A MiSeq-HyDRA Platform for Enhanced HIV Drug Resistance Genotyping and Surveillance. Sci. Rep. 2019, 9, 8970. [Google Scholar] [CrossRef]
- Vicenti, I.; Dragoni, F.; Giannini, A.; Casabianca, A.; Lombardi, F.; Di Sante, L.; Turriziani, O.; Racca, S.; Paolucci, S.; Lai, A.; et al. External Quality Assessment of HIV-1 DNA Quantification Assays Used in the Clinical Setting in Italy. Sci. Rep. 2022, 12, 3291. [Google Scholar] [CrossRef]
- Christopherson, C.; Kidane, Y.; Conway, B.; Krowka, J.; Sheppard, H.; Kwok, S. PCR-Based Assay To Quantify Human Immunodeficiency Virus Type 1 DNA in Peripheral Blood Mononuclear Cells. J. Clin. Microbiol. 2000, 38, 630–634. [Google Scholar] [CrossRef]
- Gibson, R.M.; Meyer, A.M.; Winner, D.; Archer, J.; Feyertag, F.; Ruiz-Mateos, E.; Leal, M.; Robertson, D.L.; Schmotzer, C.L.; Quiñones-Mateu, M.E. Sensitive Deep-Sequencing-Based HIV-1 Genotyping Assay To Simultaneously Determine Susceptibility to Protease, Reverse Transcriptase, Integrase, and Maturation Inhibitors, as Well as HIV-1 Coreceptor Tropism. Antimicrob. Agents Chemother. 2014, 58, 2167–2185. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Submitting Next Generation Sequencing Data to the Division of Antiviral Products Guidance for Industry Technical Specifications Document. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submitting-next-generation-sequencing-data-division-antiviral-products-guidance-industry-technical (accessed on 19 May 2023).
Characteristic | 30 Adult Samples Subset | All Adult Samples | Paediatric Samples |
---|---|---|---|
Female | 12 | 65 | 4 |
Male | 18 | 83 | 14 |
Age range (median), years | 23–78 (50.5) | 17–78 (49) | 2–17 (14.5) |
HIV-1 (<50 c/mL) | 14 | 89 | 16 |
HIV-1 (50–1000 c/mL) | 3 | 17 | 2 (<150 c/mL) |
HIV-1 (1000–10 000 c/mL) | 2 | 11 | None |
HIV-1 ≥10 000 c/mL | 11 | 31 | None |
Total samples | 30 | 148 | 18 |
Sample | Copies/µL | Copies/Reaction | PrRT Positive Reactions | INT Positive Reactions |
---|---|---|---|---|
8E5 cell line DNA | 515.8 | 5157.6 | 3 | 3 |
103.2 | 1031.5 | 3 | 3 | |
51.6 | 515.8 | 3 | 3 | |
25.8 | 257.9 | 3 | 3 | |
12.9 | 128.9 | 3 | 3 | |
6.4 | 64.5 | 3 | 3 | |
3.2 | 32.2 | 3 | 3 | |
1.6 | 16.1 | 2 * | 2 * | |
0.8 | 8.1 | 3 | 3 | |
Study sample | 12.7 | 127.0 | 3 | 3 |
6.35 | 63.5 | 2 * | 3 | |
3.18 | 31.8 | 3 | 3 | |
1.59 | 15.9 | 3 | 3 | |
0.79 | 7.9 | 3 | 3 | |
0.4 | 4.0 | 3 | 3 | |
0.2 | 2.0 | 0 | 1 |
Sample Type | Sample ID | Copies/µL | Targeted HIV-1 PCR Positive | ||
---|---|---|---|---|---|
Human DNA | HIV-1 DNA | PrRT | INT | ||
Adults | ID_37 | 24,112.4 | 0.46 | Positive | Positive |
ID_32 | 202,714.3 | 0.65 | Positive | Positive | |
ID_33 | 165,062.9 | 2.01 | Positive | Positive | |
ID_36 | 163,217.1 | 2.27 | Positive | Positive | |
ID_30 | 297,115.4 | 4.16 | Positive | Positive | |
ID_34 | 117,258.8 | 6.72 | Positive | Positive | |
ID_35 | 162,380.1 | 8.05 | Positive | Positive | |
ID_38 | 320,693.1 | 10.42 | Positive | Positive | |
ID_29 | 172,073.2 | 12.7 | Positive | Positive | |
Children | ID_C_16 | 10,561.8 | <0.1 * | Negative | Positive |
ID_C_25 | 18,334.3 | <0.1 * | Positive | Positive | |
ID_C_40 | 31,856.5 | <0.1 * | Positive | Positive | |
ID_C_32 | 23,190.2 | 0.1 | Positive | Positive | |
ID_C_28 | 19,819.5 | 0.2 | Positive | Positive | |
ID_C_4 | 26,576.4 | 0.2 | Positive | Positive | |
ID_C_29 | 20,857.2 | 0.3 | Negative | Positive | |
ID_C_2 | 20,314.4 | 0.5 | Positive | Positive | |
ID_C_31 | 12,519.1 | 0.7 | Positive | Positive | |
ID_C_17 | 9308.4 | 0.8 | Positive | Positive | |
ID_C_38 | 16,371.8 | 1.1 | Positive | Positive | |
ID_C_24 | 12,138.6 | 1.6 | Positive | Positive | |
ID_C_33 | 20,367.2 | 1.7 | Negative | Positive | |
ID_C_15 | 22,215 | 1.9 | Positive | Positive | |
ID_C_9 | 17,076.1 | 12 | Negative | Negative |
Target Sample | Tested | False Positive | |
---|---|---|---|
PrRT | INT | ||
HBV | 15 | 0 | 0 |
HIV-2 | 7 | 1 | 0 |
HCV | 2 | 0 | 0 |
Total | 24 | 1 | 0 |
Region | Mutations Compared to 8E5 (MK115468.1) | Frequency of 8E5-1 | Frequency of 8E5-2 |
---|---|---|---|
PrRT | V3I | 0.99 | 0.99 |
L214F | 0.99 | 0.99 | |
M357T | 0.99 | 0.99 | |
K388R | 0.99 | 0.99 | |
INT | N232D | 0.99 | 0.99 |
R127K | 0.99 | 0.99 | |
G123S | 0.99 | 0.99 | |
A265V | 0.99 | 0.99 | |
A124T | 0.99 | 0.99 |
Sample | Run 1 Only | Both Runs | Run 2 Only |
---|---|---|---|
1 | 13.5 | 86.5 | 0 |
2 | 0 | 98.2 | 1.8 |
3 | 0 | 100 | 0 |
4 | 0 | 100 | 0 |
5 | 5.3 | 92.1 | 2.6 |
6 | 0 | 100 | 0 |
7 | 0 | 100 | 0 |
8 | 0 | 96 | 4.1 |
9 | 0 | 100 | 0 |
10 | 0 | 100 | 0 |
11 | 0 | 100 | 0 |
12 | 2.4 | 97.6 | 0 |
Average | 1.8 | 97.5 | 0.7 |
Sample | Run 1 Only | Both Runs | Run 2 Only |
---|---|---|---|
13 | 0 | 97.4 | 2.9 |
14 | 0 | 94 | 6 |
15 | 0 | 100 | 0 |
16 | 11.1 | 83.3 | 5.6 |
17 | 0 | 100 | 0 |
Average | 2.2 | 94.9 | 2.9 |
Dilution | PrRT | Pr | RT | * RT < 244 | * PrRT < 244 | INT |
---|---|---|---|---|---|---|
2% | 0.9825 | 0.9997 | 0.9791 | 0.9998 | 0.9992 | 0.9987 |
5% | 0.9424 | 0.9995 | 0.9262 | 0.9992 | 0.9993 | 0.9961 |
10% | 0.8802 | 0.9984 | 0.839 | 0.9978 | 0.9979 | 0.9833 |
15% | 0.8108 | 0.9974 | 0.7354 | 0.9949 | 0.9956 | 0.9628 |
20% | 0.7491 | 0.997 | 0.6436 | 0.989 | 0.9921 | 0.9528 |
PI Major | PI Accessory | NRTI | NNRTI | INSTI Major | INSTI Accessory |
---|---|---|---|---|---|
D30N | L10FV | M41L | A98G | T66AIKMV | H51Y |
M46IL | L33F | A62V | L100EI | E92AGKR | L74F |
I47V | K43T | K65R | K103ENRS | G118RS | L74IMT |
I50L | I47M | D67AGHN | V106I | E138AK | T97A |
I54L | G48ER | S68NGR | V108I | G140EKRS | A128T |
V82AIT | Q58E | K70EINRS | E138AGKQ | Y143CHR | G140E |
N88S | G73DRS | V75I | V179DE | Q146R | P145L |
L90M | T74P | M184IV | Y181CS | S147GN | S153A |
N83D | L210W | Y188CFHL | Q148R | E157Q | |
L89MV | T215ADN | G190EKRS | N155DH | E157KQ | |
T215CFSY | H221Y | R263K | G163AEKRTS | ||
T215NSY | F227L | D232N | |||
K219EHKNQR | M230I | ||||
K238T | |||||
Y318F | |||||
N348I |
MiSeq Only | Both | Sanger Only | |
---|---|---|---|
Number | 409 | 2717 | 101 |
Percentage | 12.7% | 84.2% | 3.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botha, J.C.; Byott, M.; Spyer, M.J.; Grant, P.R.; Gärtner, K.; Chen, W.X.; Burton, J.; Bamford, A.; Waters, L.J.; Giaquinto, C.; et al. Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance. Viruses 2023, 15, 1811. https://doi.org/10.3390/v15091811
Botha JC, Byott M, Spyer MJ, Grant PR, Gärtner K, Chen WX, Burton J, Bamford A, Waters LJ, Giaquinto C, et al. Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance. Viruses. 2023; 15(9):1811. https://doi.org/10.3390/v15091811
Chicago/Turabian StyleBotha, Johannes C., Matthew Byott, Moira J. Spyer, Paul R. Grant, Kathleen Gärtner, Wilson X. Chen, James Burton, Alasdair Bamford, Laura J. Waters, Carlo Giaquinto, and et al. 2023. "Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance" Viruses 15, no. 9: 1811. https://doi.org/10.3390/v15091811
APA StyleBotha, J. C., Byott, M., Spyer, M. J., Grant, P. R., Gärtner, K., Chen, W. X., Burton, J., Bamford, A., Waters, L. J., Giaquinto, C., Turkova, A., Vavro, C. L., & Nastouli, E. (2023). Sensitive HIV-1 DNA Pol Next-Generation Sequencing for the Characterisation of Archived Antiretroviral Drug Resistance. Viruses, 15(9), 1811. https://doi.org/10.3390/v15091811