Efficiency of CIN2+ Detection by Thyrotropin-Releasing Hormone (TRH) Site-Specific Methylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioinformatics
2.2. Clinical Specimens
2.3. hr-HPV Detection by Cobas® 4800 HPV-DNA Assay
2.4. DNA Bisulfite Modification
2.5. Detection of TRH Methylation by Real-Time Polymerase Chain Reaction (PCR)
2.6. Statistical Analysis
3. Results
3.1. TRH Methylation Cut-Off Determination
3.2. Diagnostic Performance of hr-HPV and TRH Methylation in Detecting for CIN2+ Lesions
3.3. Detection of hr-HPVs and TRH Methylation for Diagnosing CIN2+ Lesions in the ASC-US/LSIL Group
3.4. Detection of hr-HPVs and TRH Methylation for Diagnosing CIN2+ Lesions in Self-Collected and Clinician-Collected Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ploysawang, P.; Rojanamatin, J.; Prapakorn, S.; Jamsri, P.; Pangmuang, P.; Seeda, K.; Sangrajrang, S. National Cervical Cancer Screening in Thailand. Asian Pac. J. Cancer Prev. 2021, 22, 25–30. [Google Scholar] [CrossRef]
- Vink, M.A.; Bogaards, J.A.; van Kemenade, F.J.; de Melker, H.E.; Meijer, C.J.; Berkhof, J. Clinical progression of high-grade cervical intraepithelial neoplasia: Estimating the time to preclinical cervical cancer from doubly censored national registry data. Am. J. Epidemiol. 2013, 178, 1161–1169. [Google Scholar] [CrossRef]
- Mashburn, J.; Scharbo-DeHaan, M. A clinician’s guide to Pap smear interpretation. Nurse Pract. 1997, 22, 115–118, 124–127, 130 passim. [Google Scholar]
- Alrajjal, A.; Pansare, V.; Choudhury, M.S.R.; Khan, M.Y.A.; Shidham, V.B. Squamous intraepithelial lesions (SIL: LSIL, HSIL, ASCUS, ASC-H, LSIL-H) of Uterine Cervix and Bethesda System. Cytojournal 2021, 18, 16. [Google Scholar] [CrossRef]
- Solomon, D.; Davey, D.; Kurman, R.; Moriarty, A.; O’Connor, D.; Prey, M.; Raab, S.; Sherman, M.; Wilbur, D.; Wright, T., Jr.; et al. The 2001 Bethesda System: Terminology for reporting results of cervical cytology. JAMA 2002, 287, 2114–2119. [Google Scholar] [CrossRef]
- Chittithaworn, S.; Charakorn, C.; Kongsawatvorakul, C. Cervical cancer screening guidelines: An updated review. Thai J. Obstet. Gynaecol. 2021, 29, 186–190. [Google Scholar]
- Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Nyaga, V.N.; Santesso, N.; Bryant, A.; Martin-Hirsch, P.P.; Mustafa, R.A.; Schünemann, H.; Paraskevaidis, E.; Arbyn, M. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst. Rev. 2017, 8, Cd008587. [Google Scholar] [CrossRef]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Munoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Clifford, G.M.; Smith, J.S.; Plummer, M.; Munoz, N.; Franceschi, S. Human papillomavirus types in invasive cervical cancer worldwide: A meta-analysis. Br. J. Cancer 2003, 88, 63–73. [Google Scholar] [CrossRef]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef]
- Huh, W.K.; Ault, K.A.; Chelmow, D.; Davey, D.D.; Goulart, R.A.; Garcia, F.A.; Kinney, W.K.; Massad, L.S.; Mayeaux, E.J.; Saslow, D.; et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: Interim clinical guidance. Gynecol. Oncol. 2015, 136, 178–182. [Google Scholar] [CrossRef]
- Sawaya, G.F.; Sanstead, E.; Alarid-Escudero, F.; Smith-McCune, K.; Gregorich, S.E.; Silverberg, M.J.; Leyden, W.; Huchko, M.J.; Kuppermann, M.; Kulasingam, S. Estimated Quality of Life and Economic Outcomes Associated With 12 Cervical Cancer Screening Strategies: A Cost-effectiveness Analysis. JAMA Intern. Med. 2019, 179, 867–878. [Google Scholar] [CrossRef]
- Saslow, D.; Solomon, D.; Lawson, H.W.; Killackey, M.; Kulasingam, S.L.; Cain, J.M.; Garcia, F.A.; Moriarty, A.T.; Waxman, A.G.; Wilbur, D.C.; et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J. Low Genit. Tract. Dis. 2012, 16, 175–204. [Google Scholar] [CrossRef]
- Schiffman, M.; Wentzensen, N.; Wacholder, S.; Kinney, W.; Gage, J.C.; Castle, P.E. Human papillomavirus testing in the prevention of cervical cancer. J. Natl. Cancer Inst. 2011, 103, 368–383. [Google Scholar] [CrossRef]
- Doorbar, J. The papillomavirus life cycle. J. Clin. Virol. 2005, 32 (Suppl. 1), S7–S15. [Google Scholar] [CrossRef]
- Peto, J.; Gilham, C.; Deacon, J.; Taylor, C.; Evans, C.; Binns, W.; Haywood, M.; Elanko, N.; Coleman, D.; Yule, R.; et al. Cervical HPV infection and neoplasia in a large population-based prospective study: The Manchester cohort. Br. J. Cancer 2004, 91, 942–953. [Google Scholar] [CrossRef]
- Dalstein, V.; Riethmuller, D.; Prétet, J.L.; Le Bail Carval, K.; Sautière, J.L.; Carbillet, J.P.; Kantelip, B.; Schaal, J.P.; Mougin, C. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: A longitudinal French cohort study. Int. J. Cancer 2003, 106, 396–403. [Google Scholar] [CrossRef]
- Solomon, D.; Schiffman, M.; Tarone, R. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: Baseline results from a randomized trial. J. Natl. Cancer Inst. 2001, 93, 293–299. [Google Scholar] [CrossRef]
- Muntean, M.; Simionescu, C.; Taslîcă, R.; Gruia, C.; Comanescu, A.; Pătrană, N.; Fota, G. Cytological and histopathological aspects concerning preinvasive squamous cervical lesions. Curr. Health Sci. J. 2010, 36, 26–32. [Google Scholar] [PubMed]
- Suntornlimsiri, W. Women in a region with high incidence of cervical cancer warrant immediate colposcopy for atypical squamous cells of undetermined significance on cervical cytology. J. Med. Assoc. Thai 2010, 93, 676–681. [Google Scholar] [PubMed]
- Song, F.; Du, H.; Xiao, A.; Wang, C.; Huang, X.; Liu, Z.; Zhao, M.; Men, H.; Wu, R. Evaluating the performance of three different cervical cancer screening modalities in a large prospective population-based cohort. J. Infect. Public Health 2020, 13, 1780–1786. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Wang, Y.; Chen, F.; Deng, H.; Lu, Y. The Efficiency of Type-Specific High-Risk Human Papillomavirus Models in the Triage of Women with Atypical Squamous Cells of Undetermined Significance. Cancer Manag. Res. 2020, 12, 5265–5275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, Y.; Wang, H.; Chen, J.; Zheng, Y.; Cui, B.; Yang, X. Distribution of cervical lesions in high-risk HPV (hr-HPV) positive women with ASC-US: A retrospective single-center study in China. Virol. J. 2020, 17, 185. [Google Scholar] [CrossRef]
- Sundström, K.; Lu, D.; Elfström, K.M.; Wang, J.; Andrae, B.; Dillner, J.; Sparén, P. Follow-up of women with cervical cytological abnormalities showing atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion: A nationwide cohort study. Am. J. Obstet. Gynecol. 2017, 216, 48.e1–48.e15. [Google Scholar] [CrossRef]
- Tokmak, A.; Guzel, A.I.; Ozgu, E.; Oz, M.; Akbay, S.; Erkaya, S.; Gungor, T. Clinical significance of atypical squamous cells of undetermined significance in detecting preinvasive cervical lesions in post- menopausal Turkish women. Asian Pac. J. Cancer Prev. 2014, 15, 6639–6641. [Google Scholar] [CrossRef]
- Valasoulis, G.; Tsoumpou, I.; Founta, C.; Kyrgiou, M.; Dalkalitsis, N.; Nasioutziki, M.; Kassanos, D.; Paraskevaidis, E.; Karakitsos, P. The role of p16(INK4a) immunostaining in the risk assessment of women with LSIL cytology: A prospective pragmatic study. Eur. J. Gynaecol. Oncol. 2011, 32, 150–152. [Google Scholar]
- Vrdoljak-Mozetic, D.; Krasevic, M.; Versa Ostojic, D.; Stemberger-Papic, S.; Rubesa-Mihaljevic, R.; Bubonja-Sonje, M. HPV16 genotype, p16/Ki-67 dual staining and koilocytic morphology as potential predictors of the clinical outcome for cervical low-grade squamous intraepithelial lesions. Cytopathology 2015, 26, 10–18. [Google Scholar] [CrossRef]
- White, C.; Bakhiet, S.; Bates, M.; Keegan, H.; Pilkington, L.; Ruttle, C.; Sharp, L.; O’Toole, S.; Fitzpatrick, M.; Flannelly, G.; et al. Triage of LSIL/ASC-US with p16/Ki-67 dual staining and human papillomavirus testing: A 2-year prospective study. Cytopathology 2016, 27, 269–276. [Google Scholar] [CrossRef]
- Marti, C.; Marimon, L.; Glickman, A.; Henere, C.; Saco, A.; Rakislova, N.; Torne, A.; Ordi, J.; Del Pino, M. Usefulness of E7 mRNA in HPV16-Positive Women to Predict the Risk of Progression to HSIL/CIN2. Diagnostics 2021, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, N.; Basica, B.; Mandic, A.; Surla, N.; Gusman, V.; Medic, D.; Petrovic, T.; Strbac, M.; Petrovic, V. E6/E7 mRNA Expression of the Most Prevalent High-Risk HPV Genotypes in Cervical Samples from Serbian Women. Diagnostics 2023, 13, 917. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, M.; Eichelkraut, K.; Schmidt, D.; Zeiser, I.; Hilal, Z.; Tettenborn, Z.; Hansel, A.; Ikenberg, H. Performance of a DNA methylation marker panel using liquid-based cervical scrapes to detect cervical cancer and its precancerous stages. BMC Cancer 2018, 18, 1197. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Y.; Zhou, G.N.; Wang, Q.; Ding, J.X.; Hua, K.Q. Evaluation of a methylation classifier for predicting pre-cancer lesion among women with abnormal results between HPV16/18 and cytology. Clin. Epigenet. 2020, 12, 57. [Google Scholar] [CrossRef]
- Garcia, D.A.; Abba, M.; Briceño, I.; Aristizabal, F.A.; Arregui, A. DNA methylation pattern in high-grade cervical intraepithelial neoplasia and cancer revealed by genome-wide methylation analysis of cervical DNA. Integr. Mol. Med. 2017, 4. [Google Scholar] [CrossRef]
- Guenin, S.; Mouallif, M.; Deplus, R.; Lampe, X.; Krusy, N.; Calonne, E.; Delbecque, K.; Kridelka, F.; Fuks, F.; Ennaji, M.M.; et al. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS ONE 2012, 7, e42704. [Google Scholar] [CrossRef]
- Zhuang, J.; Jones, A.; Lee, S.H.; Ng, E.; Fiegl, H.; Zikan, M.; Cibula, D.; Sargent, A.; Salvesen, H.B.; Jacobs, I.J.; et al. The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women’s cancer. PLoS Genet. 2012, 8, e1002517. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Jones, A.; Fiegl, H.; Sargent, A.; Zhuang, J.J.; Kitchener, H.C.; Widschwendter, M. Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation. Genome Med. 2012, 4, 24. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Jones, A.; Widschwendter, M. Stochastic epigenetic outliers can define field defects in cancer. BMC Bioinform. 2016, 17, 178. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Widschwendter, M. Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions. Bioinformatics 2012, 28, 1487–1494. [Google Scholar] [CrossRef]
- Chakravarthy, A.; Reddin, I.; Henderson, S.; Dong, C.; Kirkwood, N.; Jeyakumar, M.; Rodriguez, D.R.; Martinez, N.G.; McDermott, J.; Su, X.; et al. Integrated analysis of cervical squamous cell carcinoma cohorts from three continents reveals conserved subtypes of prognostic significance. Nat. Commun. 2022, 13, 5818. [Google Scholar] [CrossRef] [PubMed]
- Oranratanaphan, S.; Kobwitaya, K.; Termrungruanglert, W.; Triratanachat, S.; Kitkumthorn, N.; Mutirangura, A. Value of CCNA1 promoter methylation in triaging ASC-US cytology. Asian Pac. J. Cancer Prev. 2020, 21, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Oranratanaphan, S.; Kengsakul, M.; Triratanachat, S.; Kitkumthorn, N.; Mutirangura, A.; Termrungruanglert, W. CyclinA1 Promoter Methylation in Self-Sampling Test. Asian Pac. J. Cancer Prev. 2020, 21, 2913–2917. [Google Scholar] [CrossRef] [PubMed]
- Puttipanyalears, C.; Arayataweegool, A.; Chalertpet, K.; Rattanachayoto, P.; Mahattanasakul, P.; Tangjaturonsasme, N.; Kerekhanjanarong, V.; Mutirangura, A.; Kitkumthorn, N. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. BMC Cancer 2018, 18, 786. [Google Scholar] [CrossRef]
- Katyal, S.; Mehrotra, R. Complementary procedures in cervical cancer screening in low resource settings. J. Obstet. Gynaecol. India 2011, 61, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, L.V.; Andersen, S.J.; Hariri, J. HPV-testing versus HPV-cytology co-testing to predict the outcome after conization. Acta Obstet. Gynecol. Scand. 2018, 97, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Benevolo, M.; Vocaturo, A.; Caraceni, D.; French, D.; Rosini, S.; Zappacosta, R.; Terrenato, I.; Ciccocioppo, L.; Frega, A.; Giorgi Rossi, P. Sensitivity, specificity, and clinical value of human papillomavirus (HPV) E6/E7 mRNA assay as a triage test for cervical cytology and HPV DNA test. J. Clin. Microbiol. 2011, 49, 2643–2650. [Google Scholar] [CrossRef]
- Shimizu, H.; Horii, A.; Sunamura, M.; Motoi, F.; Egawa, S.; Unno, M.; Fukushige, S. Identification of epigenetically silenced genes in human pancreatic cancer by a novel method “microarray coupled with methyl-CpG targeted transcriptional activation” (MeTA-array). Biochem. Biophys. Res. Commun. 2011, 411, 162–167. [Google Scholar] [CrossRef]
- Arai, E.; Chiku, S.; Mori, T.; Gotoh, M.; Nakagawa, T.; Fujimoto, H.; Kanai, Y. Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Carcinogenesis 2012, 33, 1487–1493. [Google Scholar] [CrossRef]
- Tian, Y.; Arai, E.; Gotoh, M.; Komiyama, M.; Fujimoto, H.; Kanai, Y. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes. BMC Cancer 2014, 14, 772. [Google Scholar] [CrossRef]
- Del Pino, M.; Sierra, A.; Marimon, L.; Martí Delgado, C.; Rodriguez-Trujillo, A.; Barnadas, E.; Saco, A.; Torné, A.; Ordi, J. CADM1, MAL, and miR124 Promoter Methylation as Biomarkers of Transforming Cervical Intrapithelial Lesions. Int. J. Mol. Sci. 2019, 20, 2262. [Google Scholar] [CrossRef]
- Lai, H.C.; Ou, Y.C.; Chen, T.C.; Huang, H.J.; Cheng, Y.M.; Chen, C.H.; Chu, T.Y.; Hsu, S.T.; Liu, C.B.; Hung, Y.C.; et al. PAX1/SOX1 DNA methylation and cervical neoplasia detection: A Taiwanese Gynecologic Oncology Group (TGOG) study. Cancer Med. 2014, 3, 1062–1074. [Google Scholar] [CrossRef]
- Kitkumthorn, N.; Yanatatsanajit, P.; Kiatpongsan, S.; Phokaew, C.; Triratanachat, S.; Trivijitsilp, P.; Termrungruanglert, W.; Tresukosol, D.; Niruthisard, S.; Mutirangura, A. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer 2006, 6, 55. [Google Scholar] [CrossRef]
- Chaiwongkot, A.; Niruthisard, S.; Kitkumthorn, N.; Bhattarakosol, P. Quantitative methylation analysis of human papillomavirus 16L1 gene reveals potential biomarker for cervical cancer progression. Diagn. Microbiol. Infect. Dis. 2017, 89, 265–270. [Google Scholar] [CrossRef]
- Chujan, S.; Kitkumthorn, N.; Siriangkul, S.; Mutirangura, A. CCNA1 promoter methylation: A potential marker for grading Papanicolaou smear cervical squamous intraepithelial lesions. Asian Pac. J. Cancer Prev. 2014, 15, 7971–7975. [Google Scholar] [CrossRef]
- Bergeron, C.; Ikenberg, H.; Sideri, M.; Denton, K.; Bogers, J.; Schmidt, D.; Alameda, F.; Keller, T.; Rehm, S.; Ridder, R.; et al. Prospective evaluation of p16/Ki-67 dual-stained cytology for managing women with abnormal Papanicolaou cytology: PALMS study results. Cancer Cytopathol. 2015, 123, 373–381. [Google Scholar] [CrossRef]
- Zhang, R.; Ge, X.; You, K.; Guo, Y.; Guo, H.; Wang, Y.; Geng, L. p16/Ki67 dual staining improves the detection specificity of high-grade cervical lesions. J. Obstet. Gynaecol. Res. 2018, 44, 2077–2084. [Google Scholar] [CrossRef]
- Mangold, B.R. Self-Collected Samples in Cervical Cancer Screening: Results of HPV and Pap Self-Collected Samples Compared to Physician-Obtained Specimens. Acta Cytol. 2019, 63, 379–384. [Google Scholar] [CrossRef]
- Daimon, C.M.; Chirdon, P.; Maudsley, S.; Martin, B. The role of Thyrotropin Releasing Hormone in aging and neurodegenerative diseases. Am. J. Alzheimers Dis. Columbia 2013, 1. [Google Scholar] [CrossRef]
- Mebis, L.; van den Berghe, G. The hypothalamus-pituitary-thyroid axis in critical illness. Neth. J. Med. 2009, 67, 332–340. [Google Scholar]
- Ortiga-Carvalho, T.M.; Chiamolera, M.I.; Pazos-Moura, C.C.; Wondisford, F.E. Hypothalamus-Pituitary-Thyroid Axis. Compr. Physiol. 2016, 6, 1387–1428. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, J.F.; Mao, J.Y.; Jiang, L.; Li, X.P. Identification of the Thyrotropin-Releasing Hormone (TRH) as a Novel Biomarker in the Prognosis for Acute Myeloid Leukemia. Biomolecules 2022, 12, 1359. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Y.; Lu, D.C.; Kim, W.; Lee, J.H.; Maynard, J.; Deisseroth, A. Endothelin-3 growth factor levels decreased in cervical cancer compared with normal cervical epithelial cells. Hum. Pathol. 2007, 38, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Kamath, J.; Feinn, R.; Winokur, A. Thyrotropin-releasing hormone as a treatment for cancer-related fatigue: A randomized controlled study. Support Care Cancer 2012, 20, 1745–1753. [Google Scholar] [CrossRef]
- Kamath, J. Cancer-related fatigue, inflammation and thyrotropin-releasing hormone. Curr. Aging Sci. 2012, 5, 195–202. [Google Scholar] [CrossRef] [PubMed]
Column | GSE * | Detail from Corresponding GSE | No. |
---|---|---|---|
1 | 41384 | Normal cervical sample | 3 |
2 | 36637 | Genomic DNA from frozen normal ectocervix | 4 |
3 | 30760 | Cells from a normal uterine cervix | 15 |
4 | 37020 | HPV +ve/cyto −ve liquid-based cytology cervical smear samples | 24 |
5 | 41384 | Cervical intraepithelial neoplasia (CIN)1 | 3 |
6 | 30760 | Normal cells of the uterine cervix CIN2- | 75 |
7 | 30760 | Normal cells of the uterine cervix CIN2+ | 77 |
8 | 41384 | Cervical intraepithelial neoplasia (CIN)2 | 4 |
9 | 211668 | Normal cervix | 18 |
10 | 37020 | HPV +ve/cyto +ve liquid-based cytology cervical smear samples | 24 |
11 | 41384 | Cervical carcinoma in situ | 6 |
12 | 211668 | Cervical cancer | 63 |
13 | 41384 | Invasive cervical carcinoma | 3 |
14 | 36637 | Genomic DNA from frozen squamous carcinoma | 5 |
15 | 30760 | Cells from a uterine cervix cancer | 48 |
Positive If Ct Is Lower than or Equal to | Sensitivity (%) | Specificity (%) | Positive If Ct is Lower than or Equal to | Sensitivity (%) | Specificity (%) | Positive If Ct Is Lower than or Equal to | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|---|
32.10 | 81.01 | 100.00 | 34.48 | 93.67 | 94.50 | 36.51 | 94.94 | 84.40 |
32.17 | 82.28 | 100.00 | 34.53 | 93.67 | 94.04 | 36.69 | 94.94 | 83.94 |
32.22 | 83.54 | 100.00 | 34.60 | 93.67 | 93.58 | 36.79 | 94.94 | 83.49 |
32.23 | 84.81 | 100.00 | 34.67 | 93.67 | 93.12 | 36.87 | 94.94 | 83.03 |
32.27 | 86.08 | 100.00 | 34.72 | 93.67 | 92.66 | 36.96 | 94.94 | 82.57 |
32.35 | 87.34 | 100.00 | 34.75 | 93.67 | 92.20 | 37.08 | 94.94 | 82.11 |
32.43 | 88.61 | 100.00 | 34.86 | 93.67 | 91.74 | 37.19 | 94.94 | 81.65 |
32.48 | 89.87 | 100.00 | 34.96 | 93.67 | 91.28 | 37.23 | 94.94 | 81.19 |
32.57 | 89.87 | 99.54 | 35.20 | 93.67 | 90.83 | 37.28 | 94.94 | 80.73 |
32.72 | 91.14 | 99.54 | 35.51 | 93.67 | 90.37 | 37.38 | 94.94 | 80.28 |
32.82 | 92.41 | 99.54 | 35.62 | 93.67 | 89.91 | 37.47 | 96.20 | 80.28 |
32.88 | 92.41 | 99.08 | 35.71 | 93.67 | 89.45 | 37.51 | 96.20 | 79.82 |
32.93 | 92.41 | 98.62 | 35.82 | 93.67 | 88.99 | 37.54 | 96.20 | 79.36 |
33.07 | 93.67 | 98.62 | 35.94 | 93.67 | 88.53 | 37.57 | 96.20 | 78.90 |
33.23 | 93.67 | 98.17 | 36.07 | 93.67 | 88.07 | 37.59 | 96.20 | 78.44 |
33.40 | 93.67 | 97.71 | 36.15 | 93.67 | 87.61 | 37.63 | 96.20 | 77.98 |
33.56 | 93.67 | 97.25 | 36.18 | 93.67 | 86.70 | 37.69 | 96.20 | 77.52 |
33.61 | 93.67 | 96.79 | 36.21 | 93.67 | 86.24 | 37.76 | 96.20 | 77.06 |
33.65 | 93.67 | 96.33 | 36.24 | 93.67 | 85.78 | 37.88 | 96.20 | 76.61 |
33.68 | 93.67 | 95.87 | 36.26 | 93.67 | 85.32 | 37.99 | 96.20 | 76.15 |
33.92 | 93.67 | 95.41 | 36.27 | 93.67 | 84.86 | 38.11 | 96.20 | 75.69 |
34.30 | 93.67 | 94.95 | 36.33 | 93.67 | 84.40 | 38.23 | 96.20 | 75.23 |
CIN2- | CIN2+ | |||||
---|---|---|---|---|---|---|
hr-HPVs | TRH Met | hr-HPV /TRH Met | hr-HPVs | TRH Met | hr-Hpv /TRH Met | |
Cohort 1: discovering | 32.5% | 1.4% | 0.9% | 55.7% | 93.7% | 53.2% |
(71/218) | (3/218) | (2/218) | (44/79) | (74/79) | (42/79) | |
Cohort 2: ASC-US/LSIL | 82.2% | 1.1% | 0.5% | 90.0% | 95.0% | 90.0% |
(163/189) | (2/189) | (1/189) | (18/20) | (19/20) | (18/20) | |
Cohort 3: self-collected | 61.1% | 0.0% | 0.0% | 74.6% | 49.2% | 38.9% |
(132/216) | (0/216) | (0/216) | (44/59) | (29/59) | (23/59) | |
Cohort 4: clinician-collected | 57.6% | 0.0% | 0.0% | 76.5% | 76.5% | 64.7% |
(53/92) | (0/92) | (0/92) | (26/34) | (26/34) | (22/34) |
hr-HPVs | TRH Met | TRH Met and hr-HPVs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sen (%) | Spec (%) | PPV (%) | NPV (%) | Sen (%) | Spec (%) | PPV (%) | NPV (%) | Sen (%) | Spec (%) | PPV (%) | NPV (%) | |
Cohort 1: discovering | 55.70 | 67.43 | 38.26 | 80.77 | 93.67 | 98.62 | 96.10. | 97.73 | 53.16 | 99.08 | 95.45 | 85.38 |
Cohort 2: ASC-US/LSIL | 90.00 | 13.76 | 9.94 | 92.86 | 95.00 | 98.94 | 90.48 | 99.47 | 90.00 | 99.47 | 94.74 | 98.95 |
Cohort 3: self-collected | 74.58 | 38.89 | 25.00 | 84.85 | 49.15 | 100.00 | 100.00 | 87.80 | 38.98 | 100.00 | 100.00 | 85.71 |
Cohort 4: clinician-collected | 76.47 | 42.39 | 32.91 | 82.98 | 77.78 | 100.00 | 100.00 | 92.00 | 64.71 | 100.00 | 100.00 | 88.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiwongkot, A.; Buranapraditkun, S.; Oranratanaphan, S.; Chuen-Im, T.; Kitkumthorn, N. Efficiency of CIN2+ Detection by Thyrotropin-Releasing Hormone (TRH) Site-Specific Methylation. Viruses 2023, 15, 1802. https://doi.org/10.3390/v15091802
Chaiwongkot A, Buranapraditkun S, Oranratanaphan S, Chuen-Im T, Kitkumthorn N. Efficiency of CIN2+ Detection by Thyrotropin-Releasing Hormone (TRH) Site-Specific Methylation. Viruses. 2023; 15(9):1802. https://doi.org/10.3390/v15091802
Chicago/Turabian StyleChaiwongkot, Arkom, Supranee Buranapraditkun, Shina Oranratanaphan, Thanaporn Chuen-Im, and Nakarin Kitkumthorn. 2023. "Efficiency of CIN2+ Detection by Thyrotropin-Releasing Hormone (TRH) Site-Specific Methylation" Viruses 15, no. 9: 1802. https://doi.org/10.3390/v15091802
APA StyleChaiwongkot, A., Buranapraditkun, S., Oranratanaphan, S., Chuen-Im, T., & Kitkumthorn, N. (2023). Efficiency of CIN2+ Detection by Thyrotropin-Releasing Hormone (TRH) Site-Specific Methylation. Viruses, 15(9), 1802. https://doi.org/10.3390/v15091802