Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation
Abstract
:1. Introduction
2. Materials and Method
2.1. Participants
2.2. General Examination
2.3. Echocardiography
2.4. Blood Sampling
2.5. Blood Tests
2.6. Detection of IgG Antibodies against SARS-CoV-2 S1 RBD
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Zamora, S.; Picco, J.M.; Lepori, A.J.; Galello, M.I.; Saad, A.K.; Ayón, M.; Monga-Aguilar, N.; Shehadeh, I.; Manganiello, C.F.; Izaguirre, C.; et al. Abnormal echocardiographic findings after COVID-19 infection: A multicenter registry. Int. J. Cardiovasc. Imaging 2022, 39, 77–85. [Google Scholar] [CrossRef]
- Chung, M.K.; Zidar, D.A.; Bristow, M.R.; Cameron, S.J.; Chan, T.; Harding, C.V.; Kwon, D.H.; Singh, T.; Tilton, J.C.; Tsai, E.J.; et al. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ. Res. 2021, 128, 1214–1236. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Dezio, V.; Santonocito, C.; Astuto, M.; Morelli, A.; Huang, S.; Vieillard-Baron, A.; Sanfilippo, F. Full and simplified assessment of left ventricular diastolic function in COVID-19 patients admitted to ICU: Feasibility, incidence, and association with mortality. Echocardiography 2022, 39, 1391–1400. [Google Scholar] [CrossRef]
- Huang, S.; Vignon, P.; Mekontso-Dessap, A.; Tran, S.; Prat, G.; Chew, M.; Balik, M.; Sanfilippo, F.; Banauch, G.; Clau-Terre, F.; et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: A multi-national observational study (the ECHO-COVID study). Intensiv. Care Med. 2022, 48, 667–678. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Zlobina, P.D.; Bogdanova, N.L.; Brutyan, H.A.; Kalemberg, E.N.; Metelskaya, V.A.; Davtyan, K.V.; Drapkina, O.M. Associations of adenovirus-reactive immunoglobulins with atrial fibrillation and body mass index. Front. Cardiovasc. Med. 2023, 10, 1190051. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, P.J.; Phan, A.V.; Taylor, J.D.; James, C.C.; Padget, R.L.; Zeitz, M.J.; Smyth, J.W. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J. 2020, 34, 9694–9712. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Gorshkov, A.U.; Bogdanova, N.L.; Korolev, A.I.; Drapkina, O.M. Detection of Anti-SARS-CoV-2-S1 RBD-Specific Antibodies Prior to and during the Pandemic in 2011–2021 and COVID-19 Observational Study in 2019–2021. Vaccines 2022, 10, 581. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2018, 32, 1–64. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.; Marino, P.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Eur. J. Echocardiogr. 2009, 10, 165–193. [Google Scholar] [CrossRef] [Green Version]
- Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith, D.M.; Phillips, E.; et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, 370, 89–94. [Google Scholar] [CrossRef]
- Mizukoshi, K.; Takeuchi, M.; Nagata, Y.; Addetia, K.; Lang, R.M.; Akashi, Y.J.; Otsuji, Y. Normal Values of Left Ventricular Mass Index Assessed by Transthoracic Three-Dimensional Echocardiography. J. Am. Soc. Echocardiogr. 2016, 29, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Bella, J.N.; Palmieri, V.; Roman, M.J.; Liu, J.E.; Welty, T.K.; Lee, E.T.; Fabsitz, R.R.; Howard, B.V.; Devereux, R.B. Mitral Ratio of Peak Early to Late Diastolic Filling Velocity as a Predictor of Mortality in Middle-Aged and Elderly Adults: The Strong Heart Study. Circulation 2002, 105, 1928–1933. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.K.; Devereux, R.B.; Cohen, B.E.; Whooley, M.A.; Schiller, N.B. Prediction of Heart Failure and Adverse Cardiovascular Events in Outpatients with Coronary Artery Disease Using Mitral E/A Ratio in Conjunction with E-Wave Deceleration Time: The Heart and Soul Study. J. Am. Soc. Echocardiogr. 2011, 24, 1134–1140. [Google Scholar] [CrossRef]
- Ramsook, A.H.; Dominelli, P.B.; Angus, S.A.; Senefeld, J.W.; Wiggins, C.C.; Joyner, M.J. The oxygen transport cascade and exercise: Lessons from comparative physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2023, 282, 111442. [Google Scholar] [CrossRef]
- Vera-Pineda, R.; Carrizales-Sepúlveda, E.F.; Morales-Rendón, E.J.; Ordaz-Farías, A.; Solís, J.G.; Benavides-González, M.A.; Flores-Ramírez, R. Echocardiographic manifestations during the first 3 months after an episode of COVID-19 and their relationship with disease severity and persistence of symptoms. Am. J. Med. Sci. 2023, 366, 32–37. [Google Scholar] [CrossRef]
- Prado, A.; Cotella, J.I.; Hasbani, J.; Hasbani, E. Abnormal longitudinal strain reduction of basal left ventricular segments in patients recovered of COVID-19. J. Cardiovasc. Echogr. 2022, 32, 107–111. [Google Scholar] [CrossRef]
- Kaolawanich, Y.; Boonyasirinant, T. Usefulness of apical area index to predict left ventricular thrombus in patients with systolic dysfunction: A novel index from cardiac magnetic resonance. BMC Cardiovasc. Disord. 2019, 19, 15. [Google Scholar] [CrossRef] [Green Version]
- Appleton, C.P.; Hatle, L.K.; Popp, R.L. Relation of transmitral flow velocity patterns to left ventricular diastolic function: New insights from a combined hemodynamic and Doppler echocardiographic study. J. Am. Coll. Cardiol. 1988, 12, 426–440. [Google Scholar] [CrossRef] [Green Version]
- Rakowski, H.; Appleton, C.; Chan, K.L.; Dumesni, J.G.; Honos, G.; Jue, J.; Koilpillai, C.; Lepage, S.; Martin, R.P.; Tomlinson, C.; et al. Canadian consensus recommendations for measurement and reporting of diastolic dysfunction by echocardiography: From the investigators of Consensus on Diastolic Dysfunction by Echocardiography. J. Am. Soc. Echocardiogr. 1996, 9, 736–760. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, B.; Lee, J.Y.; Kim, J.S.; Han, B.-G.; Choi, S.O.; Yang, J.W. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J. Intern. Med. 2013, 28, 35–44. [Google Scholar] [CrossRef]
- Sciaudone, A.; Corkrey, H.; Humphries, F.; Koupenova, M. Platelets and SARS-CoV-2 During COVID-19: Immunity, Thrombosis, and Beyond. Circ. Res. 2023, 132, 1272–1289. [Google Scholar] [CrossRef]
- Xuereb, R.-A.; Borg, M.; Vella, K.; Gatt, A.; Xuereb, R.G.; Barbara, C.; Fava, S.; Magri, C.J. Long COVID Syndrome: A Case-Control Study. Am. J. Med. 2023; in press. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, S.; Ahmed, R.; Majumder, M.; Sarkar, B.; Himu, E.R.; Kawser, M.; Hossain, A.; Mia, M.J.; Parag, R.R.; et al. Reduced IFN-γ levels along with changes in hematologic and immunologic parameters are key to COVID-19 severity in Bangladeshi patients. Exp. Hematol. 2023, 118, 53–64.e1. [Google Scholar] [CrossRef]
- Crooks, C.J.; West, J.; Morling, J.R.; Simmonds, M.; Juurlink, I.; Briggs, S.; Cruickshank, S.; Hammond-Pears, S.; Shaw, D.; Card, T.R.; et al. Anaemia of acute inflammation: A higher acute systemic inflammatory response is associated with a larger decrease in blood haemoglobin levels in patients with COVID-19 infection. Clin. Med. 2023, 23, 201–205. [Google Scholar] [CrossRef]
Parameters | Mean | S.D. |
---|---|---|
Age (years) | 44.8 | 8.6 |
Height (cm) | 175.2 | 8.4 |
BMI | 27.2 | 4.3 |
SBP in office (mm Hg) | 125.4 | 14.9 |
DBP in office (mm Hg) | 82.3 | 9.9 |
SBP in 24-h monitoring (mm Hg) | 123.4 | 12.9 |
DBP in 24-h monitoring (mm Hg) | 80.5 | 9.1 |
SCORE (%) | 1.85 | 2.3 |
Echocardiography (normal range) | ||
AoSV (2.9–4.5 cm) | 3.3 | 0.4 |
LA (2.7–4.0 cm) | 3.6 | 0.4 |
LA volume (37–94 mL) | 51.4 | 13.9 |
LAVI (15–34 mL/m2) | 25.6 | 5.7 |
LVIDd (3.5–5.6 cm) | 4.9 | 0.5 |
LVIDs (2.0–4.0 cm) | 2.7 | 0.4 |
LVEDV (90–150 mL) | 105.1 | 26.5 |
LVESV (14–61 mL) | 36.6 | 12.7 |
SV (50–100 mL) | 69.0 | 16.2 |
CO (5–8 L) | 4.7 | 1.1 |
LVEF (52–72%) | 65.2 | 4.6 |
IVSd (0.6–1.0 cm) | 1.0 | 0.2 |
LVPWd (0.6–1.0 cm) | 0.9 | 0.1 |
LVM (67–224 g) | 163.4 | 44.0 |
LVMI (43–115 g/m2) | 80.9 | 16.9 |
Aortic valve opening amplitude (>1.5 cm) | 2.1 | 0.2 |
RA volume (24–81 mL) | 44.2 | 13.1 |
RVOT (<36 mm) | 2.8 | 0.3 |
PA (15–25 mm) | 2.0 | 0.3 |
sPAP (<36 mmHg) | 22.3 | 4.6 |
IVC (0.97–2.26 cm) | 1.8 | 0.2 |
E/A (0.8–2.0) | 1.2 | 0.3 |
DT (<220 msec) | 181.9 | 26.8 |
E/e′ (>6) | 6.6 | 1.9 |
Epicardial fat thickness (0.9–13.5 mm) | 4.8 | 4.2 |
Aortic valve regurgitation; degree 0, 1, 2 (%) | 75.3; 23.4; 0.1 | NA |
Mitral valve regurgitation; degree 0, 1, 2 (%) | 4.2; 94.5; 0.65 | NA |
Tricuspid valve regurgitation; degree 0, 1, 2 (%) | 3.6; 95.4; 0.3 | NA |
Pulmonary aortic valve regurgitation; degree 0, 1, 2 (%) | 2.9; 97.1; 0 | NA |
Routine biochemical markers (normal range) | ||
ESR (0–29 mm/h) | 7.28 | 4.95 |
Erythrocytes (3.8–5.9 × 1012/L) | 4.95 | 0.81 |
Hemoglobin (116–166 g/L) | 149.88 | 18.48 |
Leukocytes (4–11 × 109/L) | 6.49 | 1.77 |
Platelets (150–450 × 109/L) | 223.24 | 47.95 |
Total cholesterol (<5.2 mmol/L) | 5.54 | 1.05 |
HDL-cholesterol (>1 mmol/L) | 1.41 | 0.42 |
LDL-cholesterol (<3.4 mmol/L) | 3.49 | 0.93 |
Triglycerides (<1.7 mmol/L) | 1.47 | 1.05 |
Glucose (3.9–5.6 mmol/L) | 5.85 | 1.79 |
C-reactive protein (<3 mg/L) | 2.23 | 5.32 |
Uric acid (2.7–8.5 mg/dL) | 5.90 | 1.44 |
Creatinine (44–106 µmol/L) | 80.57 | 14.68 |
Alanine aminotransferase (4–36 U/L) | 26.18 | 17.81 |
Aspartate aminotransferase (8–33 U/L) | 22.7 | 15.02 |
IgG-SARS-Negative (N = 237) | IgG-SARS-Positive (N = 70) | Difference | p | |||
---|---|---|---|---|---|---|
Parameters | Mean1 | S.D. | Mean2 | S.D. | Mean1 − Mean2 | |
Age (years) | 44.8 | 8.6 | 45.4 | 9.0 | −0.6 | 0.67 |
Height (cm) | 176.2 | 7.7 | 175.2 | 10.0 | 1.0 | 0.71 |
BMI (kg/m2) | 27.4 | 4.2 | 26.8 | 4.7 | 0.7 | 0.12 |
SBP in office (mm Hg) | 125.9 | 14.4 | 124.4 | 16.7 | 1.4 | 0.43 |
DBP in office (mm Hg) | 82.9 | 9.4 | 80.5 | 11.6 | 2.4 | 0.05 |
SBP in 24-h monitoring (mm Hg) | 124.9 | 12.8 | 118.8 | 12.2 | 6.1 * | 0.001 |
DBP in 24-h monitoring (mm Hg) | 81.2 | 9.0 | 78.4 | 9.3 | 2.8 * | 0.02 |
SCORE (%) | 1.9 | 2.5 | 1.6 | 1.7 | 0.3 | |
Echocardiography (normal range) | ||||||
AoSV (2.9–4.5 cm) | 3.3 | 0.4 | 3.3 | 0.4 | 0.1 * | 0.03 |
LA (2.7–4.0 cm) | 3.6 | 0.4 | 3.5 | 0.3 | 0.1 * | 0.02 |
LA volume (37–94 mL) | 52.1 | 13.9 | 48.8 | 13.4 | 3.3 * | 0.03 |
LAVI (15–34 mL/m2) | 25.8 | 5.8 | 25.2 | 5.2 | 0.6 | 0.7 |
LVIDd (3.5–5.6 cm) | 4.9 | 0.5 | 4.7 | 0.5 | 0.2 * | 0.0001 |
LVIDs (2.0–4.0 cm) | 2.7 | 0.4 | 2.8 | 0.4 | −0.1 | 0.36 |
LVEDV (90–150 mL) | 107.2 | 25.6 | 100.6 | 28.1 | 6.7 * | 0.005 |
LVESV (14–61 mL) | 37.4 | 10.3 | 35.1 | 16.5 | 2.2 * | 0.008 |
SV (50–100 mL) | 70.9 | 16.8 | 65.0 | 14.2 | 6.0 * | 0.01 |
CO (5–8 L) | 4.8 | 1.2 | 4.5 | 0.9 | 0.3 | 0.25 |
LVEF (52–72%) | 65.1 | 4.1 | 65.3 | 6.0 | −0.2 | 0.52 |
IVSd (0.6–1.0 cm) | 1.0 | 0.2 | 1.0 | 0.2 | 0.0 | 0.34 |
LVPWd (0.6–1.0 cm) | 0.9 | 0.1 | 0.9 | 0.1 | 0.1 | 0.20 |
LVM (67–224 g) | 168.3 | 43.1 | 146.2 | 43.0 | 22.1 * | 0.0001 |
LVMI (43–115 g/m2) | 82.9 | 17.0 | 73.9 | 14.8 | 9.1 * | 0.0001 |
Aortic valve opening amplitude (>1.5 cm) | 2.2 | 0.3 | 2.1 | 0.2 | 0.1 * | 0.0002 |
RA volume (24–81 mL) | 45.3 | 12.7 | 40.5 | 14.0 | 4.8 * | 0.01 |
RVOT (<36 mm) | 2.7 | 0.3 | 22.3 | 5.0 | −19.5 | 0.05 |
PA (15–25 mm) | 2.0 | 0.3 | 2.8 | 0.3 | −0.8 | 0.05 |
sPAP (<36 mm Hg) | 22.6 | 4.2 | 21.4 | 5.7 | 1.2 * | 0.01 |
IVC | 1.8 | 0.2 | 1.8 | 0.3 | 0.0 | 0.1 |
E/A (0.75–1.5) | 1.2 | 0.3 | 1.1 | 0.3 | 0.1 * | 0.03 |
DT (<220 msec) | 184.1 | 27.1 | 174.3 | 24.5 | 9.7 * | 0.003 |
E/e′ (>6) | 6.8 | 1.9 | 6.1 | 1.7 | 0.7 * | 0.03 |
Epicardial fat thickness (0.9–13.5 mm) | 4.8 | 4.6 | 4.7 | 2.5 | 0.1 | 0.9 |
Aortic valve regurgitation; degree 0, 1, 2 (%) | 82.7; 27.2; 1.2 | NA | 90; 10; 0 | NA | Table 3 | |
Mitral valve regurgitation; degree 0, 1, 2 (%) | 5.5; 93.6; 0.8 | NA | 0; 100; 0 | NA | NS | |
Tricuspid valve regurgitation; degree 0, 1, 2 (%) | 4.7; 95.7; 0.4 | NA | 0; 100; 0 | NA | NS | |
Pulmonary aortic valve regurgitation; degree 0, 1, 2 (%) | 3.8; 96.2; 0 | NA | 0; 100; 0 | NA | NS | |
Routine biochemical markers (normal range) | ||||||
ESR (0–29 mm/h) | 6.71 | 4.32 | 9.13 | 6.29 | −2.42 * | 0.005 |
Erythrocytes (3.8–5.9 × 1012/L) | 4.97 | 0.47 | 4.88 | 1.47 | 0.09 * | 0.00001 |
Hemoglobin (116–166 g/L) | 152.27 | 17.97 | 141.86 | 18.01 | 10.41 * | 0.00001 |
Leukocytes (4–11 × 109/L) | 6.46 | 1.55 | 6.58 | 2.37 | −0.12 | 0.74 |
Platelets count (150–450 × 109/L) | 218.20 | 44.11 | 240.13 | 56.14 | −21.93 * | 0.018 |
Total cholesterol (<5.2 mmol/L) | 5.57 | 0.97 | 5.42 | 1.29 | 0.15 | 0.13 |
HDL-cholesterol (>1 mmol/L) | 1.40 | 0.43 | 1.46 | 0.37 | −0.07 | 0.055 |
LDL- cholesterol (<3.4 mmol/L) | 3.53 | 0.87 | 3.37 | 1.11 | 0.16 | 0.204 |
Triglycerides (<1.7 mmol/L) | 1.50 | 1.07 | 1.39 | 0.99 | 0.10 | 0.1 |
Glucose (3.9–5.6 mmol/L) | 5.84 | 0.75 | 5.86 | 3.54 | −0.02 * | 0.00001 |
C-reactive protein (<3 mg/L) | 2.00 | 3.17 | 3.02 | 9.47 | −1.02 | 0.9 |
Uric acid (2.7–8.5 mg/dL) | 6.01 | 1.30 | 5.53 | 1.80 | 0.48 * | 0.002 |
Creatinine (44–106 µmol/L) | 82.02 | 13.18 | 75.78 | 18.09 | 6.24 * | 0.002 |
Alanine aminotransferase (4–36 U/L) | 26.99 | 17.38 | 23.51 | 19.04 | 3.48 * | 0.002 |
Aspartate aminotransferase (8–33 U/L) | 23.55 | 16.34 | 19.86 | 8.92 | 2.69 * | 0.004 |
Aortic Valve Regurgitation | IgG-SARS-Negative (N = 237) | IgG-SARS-Positive (N = 70) | Odds Ratio; 95% CI | p |
---|---|---|---|---|
Degree 0, N | 169 | 63 | 3.6; 1.5–8.3 | 0.0024 |
Degrees 1 and 2, N | 68 | 7 |
Parameters in the Model | B | S.E. | Wald | p | Exp(B) | 95% CI for EXP(B) | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
SBP in 24-h monitoring | −0.06 | 0.03 | 3.79 | 0.05 | 0.94 | 0.89 | 1.00 |
DBP in 24-h monitoring | 0.03 | 0.04 | 0.58 | 0.45 | 1.03 | 0.95 | 1.11 |
AoSV | 0.55 | 0.69 | 0.64 | 0.43 | 1.73 | 0.45 | 6.67 |
LA | 1.68 | 0.78 | 4.71 | 0.11 | 5.37 | 1.18 | 24.49 |
LA volume | 0.01 | 0.02 | 0.24 | 0.63 | 1.01 | 0.97 | 1.05 |
LVIDd | −0.13 | 0.65 | 0.04 | 0.84 | 0.88 | 0.25 | 3.15 |
LVEDV | −0.02 | 0.04 | 0.16 | 0.69 | 0.99 | 0.91 | 1.06 |
LVESV | −0.01 | 0.05 | 0.01 | 0.92 | 1.00 | 0.91 | 1.09 |
SV | −0.01 | 0.04 | 0.02 | 0.88 | 0.99 | 0.92 | 1.08 |
LVM | 0.01 | 0.01 | 0.54 | 0.46 | 1.01 | 0.98 | 1.04 |
LVMI | −0.07 | 0.03 | 4.47 | 0.03 | 0.93 | 0.88 | 1.00 |
Aortic valve opening amplitude | 0.38 | 1.12 | 0.11 | 0.74 | 1.46 | 0.16 | 13.21 |
RA volume | −0.01 | 0.02 | 0.15 | 0.70 | 0.99 | 0.96 | 1.03 |
sPAP | −0.01 | 0.04 | 0.11 | 0.74 | 0.99 | 0.92 | 1.06 |
E/A | −1.60 | 0.75 | 4.54 | 0.03 | 0.20 | −1.60 | 0.75 |
DT | −0.02 | 0.01 | 5.13 | 0.02 | 0.97 | −0.02 | 0.01 |
E/e′ | 0.03 | 0.12 | 0.05 | 0.82 | 1.03 | 0.82 | 1.29 |
Parameters in the Model | Model-Fitting Criteria; −2 Log Likelihood of Reduced Model | Likelihood Ratio Tests | |
---|---|---|---|
Chi-Squared | p | ||
ESR | 279.81 | 4.23 | 0.04 |
Erythrocytes | 275.74 | 0.16 | 0.68 |
Hemoglobin | 280.79 | 5.21 | 0.02 |
Platelets | 280.69 | 5.11 | 0.02 |
Glucose | 275.80 | 0.22 | 0.63 |
Uric acid | 275.58 | 0.003 | 0.95 |
Creatinine | 276.63 | 1.06 | 0.30 |
Alanine aminotransferase | 277.55 | 1.97 | 0.16 |
Aspartate aminotransferase | 278.56 | 2.98 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumanova, N.G.; Gorshkov, A.U.; Bogdanova, N.L.; Korolev, A.I. Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses 2023, 15, 1623. https://doi.org/10.3390/v15081623
Gumanova NG, Gorshkov AU, Bogdanova NL, Korolev AI. Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses. 2023; 15(8):1623. https://doi.org/10.3390/v15081623
Chicago/Turabian StyleGumanova, Nadezhda G., Alexander U. Gorshkov, Natalya L. Bogdanova, and Andrei I. Korolev. 2023. "Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation" Viruses 15, no. 8: 1623. https://doi.org/10.3390/v15081623
APA StyleGumanova, N. G., Gorshkov, A. U., Bogdanova, N. L., & Korolev, A. I. (2023). Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses, 15(8), 1623. https://doi.org/10.3390/v15081623