Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation
Abstract
1. Introduction
2. Materials and Method
2.1. Participants
2.2. General Examination
2.3. Echocardiography
2.4. Blood Sampling
2.5. Blood Tests
2.6. Detection of IgG Antibodies against SARS-CoV-2 S1 RBD
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Zamora, S.; Picco, J.M.; Lepori, A.J.; Galello, M.I.; Saad, A.K.; Ayón, M.; Monga-Aguilar, N.; Shehadeh, I.; Manganiello, C.F.; Izaguirre, C.; et al. Abnormal echocardiographic findings after COVID-19 infection: A multicenter registry. Int. J. Cardiovasc. Imaging 2022, 39, 77–85. [Google Scholar] [CrossRef]
- Chung, M.K.; Zidar, D.A.; Bristow, M.R.; Cameron, S.J.; Chan, T.; Harding, C.V.; Kwon, D.H.; Singh, T.; Tilton, J.C.; Tsai, E.J.; et al. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ. Res. 2021, 128, 1214–1236. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Dezio, V.; Santonocito, C.; Astuto, M.; Morelli, A.; Huang, S.; Vieillard-Baron, A.; Sanfilippo, F. Full and simplified assessment of left ventricular diastolic function in COVID-19 patients admitted to ICU: Feasibility, incidence, and association with mortality. Echocardiography 2022, 39, 1391–1400. [Google Scholar] [CrossRef]
- Huang, S.; Vignon, P.; Mekontso-Dessap, A.; Tran, S.; Prat, G.; Chew, M.; Balik, M.; Sanfilippo, F.; Banauch, G.; Clau-Terre, F.; et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: A multi-national observational study (the ECHO-COVID study). Intensiv. Care Med. 2022, 48, 667–678. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Zlobina, P.D.; Bogdanova, N.L.; Brutyan, H.A.; Kalemberg, E.N.; Metelskaya, V.A.; Davtyan, K.V.; Drapkina, O.M. Associations of adenovirus-reactive immunoglobulins with atrial fibrillation and body mass index. Front. Cardiovasc. Med. 2023, 10, 1190051. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, P.J.; Phan, A.V.; Taylor, J.D.; James, C.C.; Padget, R.L.; Zeitz, M.J.; Smyth, J.W. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J. 2020, 34, 9694–9712. [Google Scholar] [CrossRef]
- Gumanova, N.G.; Gorshkov, A.U.; Bogdanova, N.L.; Korolev, A.I.; Drapkina, O.M. Detection of Anti-SARS-CoV-2-S1 RBD-Specific Antibodies Prior to and during the Pandemic in 2011–2021 and COVID-19 Observational Study in 2019–2021. Vaccines 2022, 10, 581. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2018, 32, 1–64. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.; Marino, P.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelisa, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Eur. J. Echocardiogr. 2009, 10, 165–193. [Google Scholar] [CrossRef]
- Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith, D.M.; Phillips, E.; et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, 370, 89–94. [Google Scholar] [CrossRef]
- Mizukoshi, K.; Takeuchi, M.; Nagata, Y.; Addetia, K.; Lang, R.M.; Akashi, Y.J.; Otsuji, Y. Normal Values of Left Ventricular Mass Index Assessed by Transthoracic Three-Dimensional Echocardiography. J. Am. Soc. Echocardiogr. 2016, 29, 51–61. [Google Scholar] [CrossRef]
- Bella, J.N.; Palmieri, V.; Roman, M.J.; Liu, J.E.; Welty, T.K.; Lee, E.T.; Fabsitz, R.R.; Howard, B.V.; Devereux, R.B. Mitral Ratio of Peak Early to Late Diastolic Filling Velocity as a Predictor of Mortality in Middle-Aged and Elderly Adults: The Strong Heart Study. Circulation 2002, 105, 1928–1933. [Google Scholar] [CrossRef]
- Mishra, R.K.; Devereux, R.B.; Cohen, B.E.; Whooley, M.A.; Schiller, N.B. Prediction of Heart Failure and Adverse Cardiovascular Events in Outpatients with Coronary Artery Disease Using Mitral E/A Ratio in Conjunction with E-Wave Deceleration Time: The Heart and Soul Study. J. Am. Soc. Echocardiogr. 2011, 24, 1134–1140. [Google Scholar] [CrossRef]
- Ramsook, A.H.; Dominelli, P.B.; Angus, S.A.; Senefeld, J.W.; Wiggins, C.C.; Joyner, M.J. The oxygen transport cascade and exercise: Lessons from comparative physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2023, 282, 111442. [Google Scholar] [CrossRef]
- Vera-Pineda, R.; Carrizales-Sepúlveda, E.F.; Morales-Rendón, E.J.; Ordaz-Farías, A.; Solís, J.G.; Benavides-González, M.A.; Flores-Ramírez, R. Echocardiographic manifestations during the first 3 months after an episode of COVID-19 and their relationship with disease severity and persistence of symptoms. Am. J. Med. Sci. 2023, 366, 32–37. [Google Scholar] [CrossRef]
- Prado, A.; Cotella, J.I.; Hasbani, J.; Hasbani, E. Abnormal longitudinal strain reduction of basal left ventricular segments in patients recovered of COVID-19. J. Cardiovasc. Echogr. 2022, 32, 107–111. [Google Scholar] [CrossRef]
- Kaolawanich, Y.; Boonyasirinant, T. Usefulness of apical area index to predict left ventricular thrombus in patients with systolic dysfunction: A novel index from cardiac magnetic resonance. BMC Cardiovasc. Disord. 2019, 19, 15. [Google Scholar] [CrossRef]
- Appleton, C.P.; Hatle, L.K.; Popp, R.L. Relation of transmitral flow velocity patterns to left ventricular diastolic function: New insights from a combined hemodynamic and Doppler echocardiographic study. J. Am. Coll. Cardiol. 1988, 12, 426–440. [Google Scholar] [CrossRef]
- Rakowski, H.; Appleton, C.; Chan, K.L.; Dumesni, J.G.; Honos, G.; Jue, J.; Koilpillai, C.; Lepage, S.; Martin, R.P.; Tomlinson, C.; et al. Canadian consensus recommendations for measurement and reporting of diastolic dysfunction by echocardiography: From the investigators of Consensus on Diastolic Dysfunction by Echocardiography. J. Am. Soc. Echocardiogr. 1996, 9, 736–760. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, B.; Lee, J.Y.; Kim, J.S.; Han, B.-G.; Choi, S.O.; Yang, J.W. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J. Intern. Med. 2013, 28, 35–44. [Google Scholar] [CrossRef]
- Sciaudone, A.; Corkrey, H.; Humphries, F.; Koupenova, M. Platelets and SARS-CoV-2 During COVID-19: Immunity, Thrombosis, and Beyond. Circ. Res. 2023, 132, 1272–1289. [Google Scholar] [CrossRef]
- Xuereb, R.-A.; Borg, M.; Vella, K.; Gatt, A.; Xuereb, R.G.; Barbara, C.; Fava, S.; Magri, C.J. Long COVID Syndrome: A Case-Control Study. Am. J. Med. 2023; in press. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, S.; Ahmed, R.; Majumder, M.; Sarkar, B.; Himu, E.R.; Kawser, M.; Hossain, A.; Mia, M.J.; Parag, R.R.; et al. Reduced IFN-γ levels along with changes in hematologic and immunologic parameters are key to COVID-19 severity in Bangladeshi patients. Exp. Hematol. 2023, 118, 53–64.e1. [Google Scholar] [CrossRef]
- Crooks, C.J.; West, J.; Morling, J.R.; Simmonds, M.; Juurlink, I.; Briggs, S.; Cruickshank, S.; Hammond-Pears, S.; Shaw, D.; Card, T.R.; et al. Anaemia of acute inflammation: A higher acute systemic inflammatory response is associated with a larger decrease in blood haemoglobin levels in patients with COVID-19 infection. Clin. Med. 2023, 23, 201–205. [Google Scholar] [CrossRef]
Parameters | Mean | S.D. |
---|---|---|
Age (years) | 44.8 | 8.6 |
Height (cm) | 175.2 | 8.4 |
BMI | 27.2 | 4.3 |
SBP in office (mm Hg) | 125.4 | 14.9 |
DBP in office (mm Hg) | 82.3 | 9.9 |
SBP in 24-h monitoring (mm Hg) | 123.4 | 12.9 |
DBP in 24-h monitoring (mm Hg) | 80.5 | 9.1 |
SCORE (%) | 1.85 | 2.3 |
Echocardiography (normal range) | ||
AoSV (2.9–4.5 cm) | 3.3 | 0.4 |
LA (2.7–4.0 cm) | 3.6 | 0.4 |
LA volume (37–94 mL) | 51.4 | 13.9 |
LAVI (15–34 mL/m2) | 25.6 | 5.7 |
LVIDd (3.5–5.6 cm) | 4.9 | 0.5 |
LVIDs (2.0–4.0 cm) | 2.7 | 0.4 |
LVEDV (90–150 mL) | 105.1 | 26.5 |
LVESV (14–61 mL) | 36.6 | 12.7 |
SV (50–100 mL) | 69.0 | 16.2 |
CO (5–8 L) | 4.7 | 1.1 |
LVEF (52–72%) | 65.2 | 4.6 |
IVSd (0.6–1.0 cm) | 1.0 | 0.2 |
LVPWd (0.6–1.0 cm) | 0.9 | 0.1 |
LVM (67–224 g) | 163.4 | 44.0 |
LVMI (43–115 g/m2) | 80.9 | 16.9 |
Aortic valve opening amplitude (>1.5 cm) | 2.1 | 0.2 |
RA volume (24–81 mL) | 44.2 | 13.1 |
RVOT (<36 mm) | 2.8 | 0.3 |
PA (15–25 mm) | 2.0 | 0.3 |
sPAP (<36 mmHg) | 22.3 | 4.6 |
IVC (0.97–2.26 cm) | 1.8 | 0.2 |
E/A (0.8–2.0) | 1.2 | 0.3 |
DT (<220 msec) | 181.9 | 26.8 |
E/e′ (>6) | 6.6 | 1.9 |
Epicardial fat thickness (0.9–13.5 mm) | 4.8 | 4.2 |
Aortic valve regurgitation; degree 0, 1, 2 (%) | 75.3; 23.4; 0.1 | NA |
Mitral valve regurgitation; degree 0, 1, 2 (%) | 4.2; 94.5; 0.65 | NA |
Tricuspid valve regurgitation; degree 0, 1, 2 (%) | 3.6; 95.4; 0.3 | NA |
Pulmonary aortic valve regurgitation; degree 0, 1, 2 (%) | 2.9; 97.1; 0 | NA |
Routine biochemical markers (normal range) | ||
ESR (0–29 mm/h) | 7.28 | 4.95 |
Erythrocytes (3.8–5.9 × 1012/L) | 4.95 | 0.81 |
Hemoglobin (116–166 g/L) | 149.88 | 18.48 |
Leukocytes (4–11 × 109/L) | 6.49 | 1.77 |
Platelets (150–450 × 109/L) | 223.24 | 47.95 |
Total cholesterol (<5.2 mmol/L) | 5.54 | 1.05 |
HDL-cholesterol (>1 mmol/L) | 1.41 | 0.42 |
LDL-cholesterol (<3.4 mmol/L) | 3.49 | 0.93 |
Triglycerides (<1.7 mmol/L) | 1.47 | 1.05 |
Glucose (3.9–5.6 mmol/L) | 5.85 | 1.79 |
C-reactive protein (<3 mg/L) | 2.23 | 5.32 |
Uric acid (2.7–8.5 mg/dL) | 5.90 | 1.44 |
Creatinine (44–106 µmol/L) | 80.57 | 14.68 |
Alanine aminotransferase (4–36 U/L) | 26.18 | 17.81 |
Aspartate aminotransferase (8–33 U/L) | 22.7 | 15.02 |
IgG-SARS-Negative (N = 237) | IgG-SARS-Positive (N = 70) | Difference | p | |||
---|---|---|---|---|---|---|
Parameters | Mean1 | S.D. | Mean2 | S.D. | Mean1 − Mean2 | |
Age (years) | 44.8 | 8.6 | 45.4 | 9.0 | −0.6 | 0.67 |
Height (cm) | 176.2 | 7.7 | 175.2 | 10.0 | 1.0 | 0.71 |
BMI (kg/m2) | 27.4 | 4.2 | 26.8 | 4.7 | 0.7 | 0.12 |
SBP in office (mm Hg) | 125.9 | 14.4 | 124.4 | 16.7 | 1.4 | 0.43 |
DBP in office (mm Hg) | 82.9 | 9.4 | 80.5 | 11.6 | 2.4 | 0.05 |
SBP in 24-h monitoring (mm Hg) | 124.9 | 12.8 | 118.8 | 12.2 | 6.1 * | 0.001 |
DBP in 24-h monitoring (mm Hg) | 81.2 | 9.0 | 78.4 | 9.3 | 2.8 * | 0.02 |
SCORE (%) | 1.9 | 2.5 | 1.6 | 1.7 | 0.3 | |
Echocardiography (normal range) | ||||||
AoSV (2.9–4.5 cm) | 3.3 | 0.4 | 3.3 | 0.4 | 0.1 * | 0.03 |
LA (2.7–4.0 cm) | 3.6 | 0.4 | 3.5 | 0.3 | 0.1 * | 0.02 |
LA volume (37–94 mL) | 52.1 | 13.9 | 48.8 | 13.4 | 3.3 * | 0.03 |
LAVI (15–34 mL/m2) | 25.8 | 5.8 | 25.2 | 5.2 | 0.6 | 0.7 |
LVIDd (3.5–5.6 cm) | 4.9 | 0.5 | 4.7 | 0.5 | 0.2 * | 0.0001 |
LVIDs (2.0–4.0 cm) | 2.7 | 0.4 | 2.8 | 0.4 | −0.1 | 0.36 |
LVEDV (90–150 mL) | 107.2 | 25.6 | 100.6 | 28.1 | 6.7 * | 0.005 |
LVESV (14–61 mL) | 37.4 | 10.3 | 35.1 | 16.5 | 2.2 * | 0.008 |
SV (50–100 mL) | 70.9 | 16.8 | 65.0 | 14.2 | 6.0 * | 0.01 |
CO (5–8 L) | 4.8 | 1.2 | 4.5 | 0.9 | 0.3 | 0.25 |
LVEF (52–72%) | 65.1 | 4.1 | 65.3 | 6.0 | −0.2 | 0.52 |
IVSd (0.6–1.0 cm) | 1.0 | 0.2 | 1.0 | 0.2 | 0.0 | 0.34 |
LVPWd (0.6–1.0 cm) | 0.9 | 0.1 | 0.9 | 0.1 | 0.1 | 0.20 |
LVM (67–224 g) | 168.3 | 43.1 | 146.2 | 43.0 | 22.1 * | 0.0001 |
LVMI (43–115 g/m2) | 82.9 | 17.0 | 73.9 | 14.8 | 9.1 * | 0.0001 |
Aortic valve opening amplitude (>1.5 cm) | 2.2 | 0.3 | 2.1 | 0.2 | 0.1 * | 0.0002 |
RA volume (24–81 mL) | 45.3 | 12.7 | 40.5 | 14.0 | 4.8 * | 0.01 |
RVOT (<36 mm) | 2.7 | 0.3 | 22.3 | 5.0 | −19.5 | 0.05 |
PA (15–25 mm) | 2.0 | 0.3 | 2.8 | 0.3 | −0.8 | 0.05 |
sPAP (<36 mm Hg) | 22.6 | 4.2 | 21.4 | 5.7 | 1.2 * | 0.01 |
IVC | 1.8 | 0.2 | 1.8 | 0.3 | 0.0 | 0.1 |
E/A (0.75–1.5) | 1.2 | 0.3 | 1.1 | 0.3 | 0.1 * | 0.03 |
DT (<220 msec) | 184.1 | 27.1 | 174.3 | 24.5 | 9.7 * | 0.003 |
E/e′ (>6) | 6.8 | 1.9 | 6.1 | 1.7 | 0.7 * | 0.03 |
Epicardial fat thickness (0.9–13.5 mm) | 4.8 | 4.6 | 4.7 | 2.5 | 0.1 | 0.9 |
Aortic valve regurgitation; degree 0, 1, 2 (%) | 82.7; 27.2; 1.2 | NA | 90; 10; 0 | NA | Table 3 | |
Mitral valve regurgitation; degree 0, 1, 2 (%) | 5.5; 93.6; 0.8 | NA | 0; 100; 0 | NA | NS | |
Tricuspid valve regurgitation; degree 0, 1, 2 (%) | 4.7; 95.7; 0.4 | NA | 0; 100; 0 | NA | NS | |
Pulmonary aortic valve regurgitation; degree 0, 1, 2 (%) | 3.8; 96.2; 0 | NA | 0; 100; 0 | NA | NS | |
Routine biochemical markers (normal range) | ||||||
ESR (0–29 mm/h) | 6.71 | 4.32 | 9.13 | 6.29 | −2.42 * | 0.005 |
Erythrocytes (3.8–5.9 × 1012/L) | 4.97 | 0.47 | 4.88 | 1.47 | 0.09 * | 0.00001 |
Hemoglobin (116–166 g/L) | 152.27 | 17.97 | 141.86 | 18.01 | 10.41 * | 0.00001 |
Leukocytes (4–11 × 109/L) | 6.46 | 1.55 | 6.58 | 2.37 | −0.12 | 0.74 |
Platelets count (150–450 × 109/L) | 218.20 | 44.11 | 240.13 | 56.14 | −21.93 * | 0.018 |
Total cholesterol (<5.2 mmol/L) | 5.57 | 0.97 | 5.42 | 1.29 | 0.15 | 0.13 |
HDL-cholesterol (>1 mmol/L) | 1.40 | 0.43 | 1.46 | 0.37 | −0.07 | 0.055 |
LDL- cholesterol (<3.4 mmol/L) | 3.53 | 0.87 | 3.37 | 1.11 | 0.16 | 0.204 |
Triglycerides (<1.7 mmol/L) | 1.50 | 1.07 | 1.39 | 0.99 | 0.10 | 0.1 |
Glucose (3.9–5.6 mmol/L) | 5.84 | 0.75 | 5.86 | 3.54 | −0.02 * | 0.00001 |
C-reactive protein (<3 mg/L) | 2.00 | 3.17 | 3.02 | 9.47 | −1.02 | 0.9 |
Uric acid (2.7–8.5 mg/dL) | 6.01 | 1.30 | 5.53 | 1.80 | 0.48 * | 0.002 |
Creatinine (44–106 µmol/L) | 82.02 | 13.18 | 75.78 | 18.09 | 6.24 * | 0.002 |
Alanine aminotransferase (4–36 U/L) | 26.99 | 17.38 | 23.51 | 19.04 | 3.48 * | 0.002 |
Aspartate aminotransferase (8–33 U/L) | 23.55 | 16.34 | 19.86 | 8.92 | 2.69 * | 0.004 |
Aortic Valve Regurgitation | IgG-SARS-Negative (N = 237) | IgG-SARS-Positive (N = 70) | Odds Ratio; 95% CI | p |
---|---|---|---|---|
Degree 0, N | 169 | 63 | 3.6; 1.5–8.3 | 0.0024 |
Degrees 1 and 2, N | 68 | 7 |
Parameters in the Model | B | S.E. | Wald | p | Exp(B) | 95% CI for EXP(B) | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
SBP in 24-h monitoring | −0.06 | 0.03 | 3.79 | 0.05 | 0.94 | 0.89 | 1.00 |
DBP in 24-h monitoring | 0.03 | 0.04 | 0.58 | 0.45 | 1.03 | 0.95 | 1.11 |
AoSV | 0.55 | 0.69 | 0.64 | 0.43 | 1.73 | 0.45 | 6.67 |
LA | 1.68 | 0.78 | 4.71 | 0.11 | 5.37 | 1.18 | 24.49 |
LA volume | 0.01 | 0.02 | 0.24 | 0.63 | 1.01 | 0.97 | 1.05 |
LVIDd | −0.13 | 0.65 | 0.04 | 0.84 | 0.88 | 0.25 | 3.15 |
LVEDV | −0.02 | 0.04 | 0.16 | 0.69 | 0.99 | 0.91 | 1.06 |
LVESV | −0.01 | 0.05 | 0.01 | 0.92 | 1.00 | 0.91 | 1.09 |
SV | −0.01 | 0.04 | 0.02 | 0.88 | 0.99 | 0.92 | 1.08 |
LVM | 0.01 | 0.01 | 0.54 | 0.46 | 1.01 | 0.98 | 1.04 |
LVMI | −0.07 | 0.03 | 4.47 | 0.03 | 0.93 | 0.88 | 1.00 |
Aortic valve opening amplitude | 0.38 | 1.12 | 0.11 | 0.74 | 1.46 | 0.16 | 13.21 |
RA volume | −0.01 | 0.02 | 0.15 | 0.70 | 0.99 | 0.96 | 1.03 |
sPAP | −0.01 | 0.04 | 0.11 | 0.74 | 0.99 | 0.92 | 1.06 |
E/A | −1.60 | 0.75 | 4.54 | 0.03 | 0.20 | −1.60 | 0.75 |
DT | −0.02 | 0.01 | 5.13 | 0.02 | 0.97 | −0.02 | 0.01 |
E/e′ | 0.03 | 0.12 | 0.05 | 0.82 | 1.03 | 0.82 | 1.29 |
Parameters in the Model | Model-Fitting Criteria; −2 Log Likelihood of Reduced Model | Likelihood Ratio Tests | |
---|---|---|---|
Chi-Squared | p | ||
ESR | 279.81 | 4.23 | 0.04 |
Erythrocytes | 275.74 | 0.16 | 0.68 |
Hemoglobin | 280.79 | 5.21 | 0.02 |
Platelets | 280.69 | 5.11 | 0.02 |
Glucose | 275.80 | 0.22 | 0.63 |
Uric acid | 275.58 | 0.003 | 0.95 |
Creatinine | 276.63 | 1.06 | 0.30 |
Alanine aminotransferase | 277.55 | 1.97 | 0.16 |
Aspartate aminotransferase | 278.56 | 2.98 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumanova, N.G.; Gorshkov, A.U.; Bogdanova, N.L.; Korolev, A.I. Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses 2023, 15, 1623. https://doi.org/10.3390/v15081623
Gumanova NG, Gorshkov AU, Bogdanova NL, Korolev AI. Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses. 2023; 15(8):1623. https://doi.org/10.3390/v15081623
Chicago/Turabian StyleGumanova, Nadezhda G., Alexander U. Gorshkov, Natalya L. Bogdanova, and Andrei I. Korolev. 2023. "Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation" Viruses 15, no. 8: 1623. https://doi.org/10.3390/v15081623
APA StyleGumanova, N. G., Gorshkov, A. U., Bogdanova, N. L., & Korolev, A. I. (2023). Effects of COVID-19 Infection in Healthy Subjects on Cardiac Function and Biomarkers of Oxygen Transport, Blood Coagulation and Inflammation. Viruses, 15(8), 1623. https://doi.org/10.3390/v15081623