Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development
Abstract
:1. Introduction
2. Live Attenuated Virus Vaccines
2.1. DENV
2.2. ZIKV
2.3. WNV
2.4. JEV
2.5. YFV
3. Inactivated Virus Vaccines
3.1. DENV
3.2. ZIKV
3.3. WNV
3.4. JEV
4. Nucleic Acid Vaccines
4.1. DENV
4.2. ZIKV
4.3. WNV
5. Other Types of Vaccines
5.1. DENV
5.2. ZIKV
5.3. WNV
5.4. YFV
6. Discussion
Funding
Conflicts of Interest
References
- Lobigs, M.; Diamond, M.S. Feasibility of cross-protective vaccination against flaviviruses of the Japanese encephalitis serocomplex. Expert Rev. Vaccines 2012, 11, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Arenas, M. Protein Evolution in the Flaviviruses. J. Mol. Evol. 2020, 88, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Selisko, B.; Wang, C.; Harris, E.; Canard, B. Regulation of Flavivirus RNA synthesis and replication. Curr. Opin. Virol. 2014, 9, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Y.; Qin, C.F. Structure and function of cis-acting RNA elements of flavivirus. Rev. Med. Virol. 2020, 30, e2092. [Google Scholar] [CrossRef]
- Sharma, K.K.; Marzinek, J.K.; Tantirimudalige, S.N.; Bond, P.J.; Wohland, T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. Prog. Biophys. Mol. Biol. 2019, 143, 38–51. [Google Scholar] [CrossRef]
- Chang, G.J.; Kuno, G.; Purdy, D.E.; Davis, B.S. Recent advancement in flavivirus vaccine development. Expert Rev. Vaccines 2004, 3, 199–220. [Google Scholar] [CrossRef]
- Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 1990, 44, 649–688. [Google Scholar] [CrossRef]
- Brandriss, M.W.; Schlesinger, J.J.; Walsh, E.E.; Briselli, M. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J. Gen. Virol. 1986, 67 Pt 2, 229–234. [Google Scholar] [CrossRef]
- Cecilia, D.; Gadkari, D.A.; Kedarnath, N.; Ghosh, S.N. Epitope mapping of Japanese encephalitis virus envelope protein using monoclonal antibodies against an Indian strain. J. Gen. Virol. 1988, 69 Pt 11, 2741–2747. [Google Scholar] [CrossRef]
- Zhang, M.J.; Wang, M.J.; Jiang, S.Z.; Ma, W.Y. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. J. Med. Virol. 1989, 29, 133–138. [Google Scholar] [CrossRef]
- Kreil, T.R.; Maier, E.; Fraiss, S.; Eibl, M.M. Neutralizing antibodies protect against lethal flavivirus challenge but allow for the development of active humoral immunity to a nonstructural virus protein. J. Virol. 1998, 72, 3076–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.; Qi, Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022, 14, 1226. [Google Scholar] [CrossRef] [PubMed]
- Heinz, F.X.; Stiasny, K. Flaviviruses and flavivirus vaccines. Vaccine 2012, 30, 4301–4306. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.H.; Metz, S.W. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin. Ther. 2017, 39, 1519–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widman, D.G.; Frolov, I.; Mason, P.W. Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses. Adv. Virus Res. 2008, 72, 77–126. [Google Scholar] [PubMed]
- Lazo, L.; Valdes, I.; Guillén, G.; Hermida, L.; Gil, L. Aiming at the heart: The capsid protein of dengue virus as a vaccine candidate. Expert Rev. Vaccines 2019, 18, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Galula, J.U.; Salem, G.M.; Chang, G.J.; Chao, D.Y. Does structurally-mature dengue virion matter in vaccine preparation in post-Dengvaxia era? Hum. Vaccin. Immunother. 2019, 15, 2328–2336. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.; Reche, P.; Flower, D.R. Selection-based design of in silico dengue epitope ensemble vaccines. Chem. Biol. Drug. Des. 2019, 93, 21–28. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Blaney, J.E., Jr.; Matro, J.M.; Murphy, B.R.; Whitehead, S.S. Recombinant, live-attenuated tetravalent dengue virus vaccine formulations induce a balanced, broad, and protective neutralizing antibody response against each of the four serotypes in rhesus monkeys. J. Virol. 2005, 79, 5516–5528. [Google Scholar] [CrossRef] [Green Version]
- Fongwen, N.; Delrieu, I.; Ham, L.H.; Gubler, D.J.; Durbin, A.; Ooi, E.E.; Peeling, R.W.; Flasche, S.; Hartigan-Go, K.; Clifford, S.; et al. Implementation strategies for the first licensed dengue vaccine: A meeting report. Vaccine 2021, 39, 4759–4765. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, C.; Nelis, L.; Huang, C. Modeling Zika Vaccination Combined With Vector Interventions in DoD Populations. Mil. Med. 2021, 186, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.M.; Souza, M.O.; Castilho, L.R. Purification of flavivirus VLPs by a two-step chomatographic process. Vaccine 2019, 37, 7061–7069. [Google Scholar] [CrossRef]
- Kudchodkar, S.B.; Choi, H.; Reuschel, E.L.; Esquivel, R.; Jin-Ah Kwon, J.; Jeong, M.; Maslow, J.N.; Reed, C.C.; White, S.; Kim, J.J.; et al. Rapid response to an emerging infectious disease—Lessons learned from development of a synthetic DNA vaccine targeting Zika virus. Microbes Infect. 2018, 20, 676–684. [Google Scholar] [CrossRef]
- Whitehead, S.S.; Subbarao, K. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? The Risks of Incomplete Immunity to Dengue Virus Revealed by Vaccination. Cold Spring Harb. Perspect Biol. 2018, 10, a028811. [Google Scholar] [CrossRef] [Green Version]
- Cimica, V.; Galarza, J.M.; Rashid, S.; Stedman, T.T. Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Rev. Vaccines 2021, 20, 1483–1498. [Google Scholar] [CrossRef]
- Messina, J.P.; Kraemer, M.U.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchai, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for Zika virus. eLife 2016, 5, e15272. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Thomas, S.J.; Barrett, A. Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Hum. Vaccin. Immunother. 2020, 16, 2524–2536. [Google Scholar] [CrossRef]
- Vress, D. Future vaccines in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 76, 96–106. [Google Scholar] [CrossRef] [PubMed]
- In, H.J.; Lee, Y.H.; Jang, S.; Lim, H.J.; Kim, M.Y.; Kim, J.A.; Yoo, J.S.; Chung, G.T.; Kim, Y.J. Enhanced effect of modified Zika virus E antigen on the immunogenicity of DNA vaccine. Virology 2020, 549, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Brasil, P.; Pereira, J.P., Jr.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Guy, B.; Guirakhoo, F.; Barban, V.; Higgs, S.; Monath, T.P.; Lang, J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2010, 28, 632–649. [Google Scholar] [CrossRef]
- Minke, J.M.; Siger, L.; Cupillard, L.; Powers, B.; Bakonyi, T.; Boyum, S.; Nowotny, N.; Bowen, R. Protection provided by a recombinant ALVAC(®)-WNV vaccine expressing the prM/E genes of a lineage 1 strain of WNV against a virulent challenge with a lineage 2 strain. Vaccine 2011, 29, 4608–4612. [Google Scholar] [CrossRef]
- Long, M.T.; Gibbs, E.P.; Mellencamp, M.W.; Bowen, R.A.; Seino, K.K.; Zhang, S.; Beachboard, S.E.; Humphrey, P.P. Efficacy, duration, and onset of immunogenicity of a West Nile virus vaccine, live Flavivirus chimera, in horses with a clinical disease challenge model. Equine Vet. J. 2007, 39, 491–497. [Google Scholar] [CrossRef]
- Martínez, C.A.; Giulietti, A.M.; Talou, J.R. Research advances in plant-made flavivirus antigens. Biotechnol. Adv. 2012, 30, 1493–1505. [Google Scholar] [CrossRef]
- Ulbert, S.; Magnusson, S.E. Technologies for the development of West Nile virus vaccines. Future Microbiol. 2014, 9, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Widman, D.G.; Ishikawa, T.; Fayzulin, R.; Bourne, N.; Mason, P.W. Construction and characterization of a second-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system. Vaccine 2008, 26, 2762–2771. [Google Scholar] [CrossRef]
- Hayes, E.B.; Sejvar, J.J.; Zaki, S.R.; Lanciotti, R.S.; Bode, A.V.; Campbell, G.L. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1174–1179. [Google Scholar] [CrossRef]
- Papa, A. West Nile virus infections in humans–focus on Greece. J. Clin. Virol. 2013, 58, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Intrauterine West Nile virus infection–New York, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 1135–1136.
- Possible West Nile virus transmission to an infant through breast-feeding--Michigan, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 877–878.
- Hayes, E.B.; O’Leary, D.R. West Nile virus infection: A pediatric perspective. Pediatrics 2004, 113, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Investigations of West Nile virus infections in recipients of blood transfusions. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 973–974.
- Detection of West Nile virus in blood donations--United States, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 769–772.
- Iyer, A.V.; Kousoulas, K.G. A review of vaccine approaches for West Nile virus. Int. J. Environ. Res. Public Health 2013, 10, 4200–4223. [Google Scholar] [CrossRef]
- Chanthavanich, P.; Limkittikul, K.; Sirivichayakul, C.; Chokejindachai, W.; Hattasingh, W.; Pengsaa, K.; Surangsrirat, S.; Srisuwannaporn, T.; Kaewma, B.; Yoksan, S.; et al. Immunogenicity and safety of inactivated chromatographically purified Vero cell-derived Japanese encephalitis vaccine in Thai children. Hum. Vaccin. Immunother. 2018, 14, 900–905. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, D.; Jia, L.; Xu, H.; Na, R.; Ge, Y.; Liu, S.; Yu, Y.; Li, Y. Genetic and neuroattenuation phenotypic characteristics and their stabilities of SA14-14-2 vaccine seed virus. Vaccine 2018, 36, 4650–4656. [Google Scholar] [CrossRef]
- Endy, T.P.; Nisalak, A. Japanese encephalitis virus: Ecology and epidemiology. Curr. Top. Microbiol. Immunol. 2002, 267, 11–48. [Google Scholar]
- Mackenzie, J.S.; Gubler, D.J.; Petersen, L.R. Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat. Med. 2004, 10, S98–S109. [Google Scholar] [CrossRef] [PubMed]
- Pugachev, K.V.; Guirakhoo, F.; Monath, T.P. New developments in flavivirus vaccines with special attention to yellow fever. Curr. Opin. Infect. Dis. 2005, 18, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wu, B.; Tang, H.; Luo, Z.; Xu, Z.; Ouyang, S.; Li, X.; Xie, J.; Yi, Z.; Leng, Q.; et al. Rifapentine is an entry and replication inhibitor against yellow fever virus both in vitro and in vivo. Emerg. Microbes Infect. 2022, 11, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Fauci, A.S. Yellow Fever—Once Again on the Radar Screen in the Americas. N. Engl. J. Med. 2017, 376, 1397–1399. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral. Res. 2009, 82, 95–102. [Google Scholar] [CrossRef]
- de Freitas, C.S.; Higa, L.M.; Sacramento, C.Q.; Ferreira, A.C.; Reis, P.A.; Delvecchio, R.; Monteiro, F.L.; Barbosa-Lima, G.; James Westgarth, H.; Vieira, Y.R.; et al. Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo. PLoS Negl. Trop. Dis. 2019, 13, e0007072. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, N.L.; Wang, J.; Shi, P.Y.; Wang, T.; Miller, M.A.; Li, K. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J. Virol. 2014, 88, 13821–13835. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, N.L.; Wei, D.; Liu, B.; Guo, F.; Elbahesh, H.; Zhang, Y.; Zhou, Z.; Chen, G.Y.; Li, K. The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function. PLoS Negl. Trop. Dis. 2019, 13, e0007537. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Shi, P.Y. Recent advances in flavivirus antiviral drug discovery and vaccine development. Recent Pat. AntiInfect. Drug Discov. 2006, 1, 45–55. [Google Scholar] [CrossRef]
- Pugachev, K.V.; Guirakhoo, F.; Trent, D.W.; Monath, T.P. Traditional and novel approaches to flavivirus vaccines. Int. J. Parasitol. 2003, 33, 567–582. [Google Scholar] [CrossRef]
- Kofler, R.M.; Aberle, J.H.; Aberle, S.W.; Allison, S.L.; Heinz, F.X.; Mandl, C.W. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc. Natl. Acad. Sci. USA 2004, 101, 1951–1956. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Deen, J.L. Dengue vaccines for travelers. Expert Rev. Vaccines 2008, 7, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Kanesa-Thasan, N.; Guirakhoo, F.; Pugachev, K.; Almond, J.; Lang, J.; Quentin-Millet, M.J.; Barrett, A.D.; Brinton, M.A.; Cetron, M.S.; et al. Recombination and flavivirus vaccines: A commentary. Vaccine 2005, 23, 2956–2958. [Google Scholar] [CrossRef] [PubMed]
- Rumyantsev, A.A.; Giel-Moloney, M.; Liu, Y.; Gao, Q.S.; Zhang, Z.X.; Catalan, J.; Frolov, I.; Almond, J.; Kleanthous, H.; Pugachev, K.V. Characterization of the RepliVax platform for replication-defective flavivirus vaccines. Vaccine 2011, 29, 5184–5194. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Widman, D.G.; Bourne, N.; Konishi, E.; Mason, P.W. Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis. Vaccine 2008, 26, 2772–2781. [Google Scholar] [CrossRef]
- Widman, D.G.; Ishikawa, T.; Giavedoni, L.D.; Hodara, V.L.; Garza Mde, L.; Montalbo, J.A.; Travassos Da Rosa, A.P.; Tesh, R.B.; Patterson, J.L.; Carrion, R., Jr.; et al. Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a non-human primate model of West Nile virus infection. Am. J. Trop. Med. Hyg. 2010, 82, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Mandl, C.W. Flavivirus immunization with capsid-deletion mutants: Basics, benefits, and barriers. Viral. Immunol. 2004, 17, 461–472. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Hombach, J.; Ferguson, N.; Selgelid, M.; O’Brien, K.; Vannice, K.; Barrett, A.; Ferdinand, E.; Flasche, S.; Guzman, M.; et al. Deliberations of the Strategic Advisory Group of Experts on Immunization on the use of CYD-TDV dengue vaccine. Lancet Infect. Dis. 2019, 19, e31–e38. [Google Scholar] [CrossRef]
- Pinheiro-Michelsen, J.R.; Souza, R.; Santana, I.V.R.; da Silva, P.S.; Mendez, E.C.; Luiz, W.B.; Amorim, J.H. Anti-dengue Vaccines: From Development to Clinical Trials. Front. Immunol. 2020, 11, 1252. [Google Scholar] [CrossRef]
- Michlmayr, D.; Andrade, P.; Nascimento, E.J.M.; Parker, A.; Narvekar, P.; Dean, H.J.; Harris, E. Characterization of the Type-Specific and Cross-Reactive B-Cell Responses Elicited by a Live-Attenuated Tetravalent Dengue Vaccine. J. Infect. Dis. 2021, 223, 247–257. [Google Scholar] [CrossRef]
- Redoni, M.; Yacoub, S.; Rivino, L.; Giacobbe, D.R.; Luzzati, R.; Di Bella, S. Dengue: Status of current and under-development vaccines. Rev. Med. Virol. 2020, 30, e2101. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.L.; Durbin, A.P. Dengue vaccines: Implications for dengue control. Curr. Opin. Infect. Dis. 2017, 30, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Ooi, E.E.; Horstick, O.; Wills, B. Dengue. Lancet 2019, 393, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Guirakhoo, F.; Pugachev, K.; Zhang, Z.; Myers, G.; Levenbook, I.; Draper, K.; Lang, J.; Ocran, S.; Mitchell, F.; Parsons, M.; et al. Safety and efficacy of chimeric yellow Fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J. Virol. 2004, 78, 4761–4775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, A.P.; Whitehead, S.S. Dengue vaccine candidates in development. Curr. Top. Microbiol. Immunol. 2010, 338, 129–143. [Google Scholar] [PubMed]
- Mantel, N.; Girerd, Y.; Geny, C.; Bernard, I.; Pontvianne, J.; Lang, J.; Barban, V. Genetic stability of a dengue vaccine based on chimeric yellow fever/dengue viruses. Vaccine 2011, 29, 6629–6635. [Google Scholar] [CrossRef]
- Poo, J.; Galan, F.; Forrat, R.; Zambrano, B.; Lang, J.; Dayan, G. Live-attenuated Tetravalent Dengue Vaccine in Dengue-naïve Children, Adolescents, and Adults in Mexico City: Randomized Controlled Phase 1 Trial of Safety and Immunogenicity. Pediatr. Infect. Dis. J. 2011, 30, e9–e17. [Google Scholar] [CrossRef]
- López-Medina, E.; Biswal, S.; Saez-Llorens, X.; Borja-Tabora, C.; Bravo, L.; Sirivichayakul, C.; Vargas, L.M.; Alera, M.T.; Velásquez, H.; Reynales, H.; et al. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022, 225, 1521–1532. [Google Scholar] [CrossRef]
- Chu, H.; George, S.L.; Stinchcomb, D.T.; Osorio, J.E.; Partidos, C.D. CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J. Infect. Dis. 2015, 212, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Bhamarapravati, N.; Yoksan, S.; Chayaniyayothin, T.; Angsubphakorn, S.; Bunyaratvej, A. Immunization with a live attenuated dengue-2-virus candidate vaccine (16681-PDK 53): Clinical, immunological and biological responses in adult volunteers. Bull. World Health Organ. 1987, 65, 189–195. [Google Scholar]
- Kanesa-thasan, N.; Sun, W.; Kim-Ahn, G.; Van Albert, S.; Putnak, J.R.; King, A.; Raengsakulsrach, B.; Christ-Schmidt, H.; Gilson, K.; Zahradnik, J.M.; et al. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. Vaccine 2001, 19, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, D.W.; Hoke, C.H., Jr.; Yoksan, S.; LaChance, R.; Innis, B.L.; Rice, R.M.; Bhamarapravati, N. Testing of a dengue 2 live-attenuated vaccine (strain 16681 PDK 53) in ten American volunteers. Vaccine 1996, 14, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Wiggan, O.; Livengood, J.A.; Silengo, S.J.; Kinney, R.M.; Osorio, J.E.; Huang, C.Y.; Stinchcomb, D.T. Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines. Vaccine 2011, 29, 7456–7462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharakul, T.; Kurane, I.; Bhamarapravati, N.; Yoksan, S.; Vaughn, D.W.; Hoke, C.H.; Ennis, F.A. Dengue virus-specific memory T cell responses in human volunteers receiving a live attenuated dengue virus type 2 candidate vaccine. J. Infect. Dis. 1994, 170, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L.; Kanesa-thasan, N.; West, K.; Janus, J.; Saluzzo, J.F.; Ennis, F.A. Induction of T lymphocyte responses to dengue virus by a candidate tetravalent live attenuated dengue virus vaccine. Vaccine 2001, 19, 4694–4699. [Google Scholar] [CrossRef]
- Hombach, J.; Barrett, A.D.; Cardosa, M.J.; Deubel, V.; Guzman, M.; Kurane, I.; Roehrig, J.T.; Sabchareon, A.; Kieny, M.P. Review on flavivirus vaccine development. Proceedings of a meeting jointly organised by the World Health Organization and the Thai Ministry of Public Health, 26-27 April 2004, Bangkok, Thailand. Vaccine 2005, 23, 2689–2695. [Google Scholar] [CrossRef]
- Sáez-Llorens, X.; Tricou, V.; Yu, D.; Rivera, L.; Tuboi, S.; Garbes, P.; Borkowski, A.; Wallace, D. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: Interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 2017, 17, 615–625. [Google Scholar] [CrossRef]
- Osorio, J.E.; Velez, I.D.; Thomson, C.; Lopez, L.; Jimenez, A.; Haller, A.A.; Silengo, S.; Scott, J.; Boroughs, K.L.; Stovall, J.L.; et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: A randomised, placebo-controlled, phase 1 study. Lancet Infect. Dis. 2014, 14, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.G.T.; Magnani, D.M.; Costa, P.R.; Avelino-Silva, V.I.; Ricciardi, M.J.; Timenetsky, M.; Goulart, R.; Correia, C.A.; Marmorato, M.P.; Ferrari, L.; et al. Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naïve and DENV-Exposed Individuals in a Brazilian Cohort. Front. Immunol. 2022, 13, 908398. [Google Scholar] [CrossRef]
- George, S.L.; Wong, M.A.; Dube, T.J.; Boroughs, K.L.; Stovall, J.L.; Luy, B.E.; Haller, A.A.; Osorio, J.E.; Eggemeyer, L.M.; Irby-Moore, S.; et al. Safety and Immunogenicity of a Live Attenuated Tetravalent Dengue Vaccine Candidate in Flavivirus-Naive Adults: A Randomized, Double-Blinded Phase 1 Clinical Trial. J. Infect. Dis. 2015, 212, 1032–1041. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.A.; Rupp, R.; Papadimitriou, A.; Wallace, D.; Raanan, M.; Moss, K.J. A phase 1 study of safety and immunogenicity following intradermal administration of a tetravalent dengue vaccine candidate. Vaccine 2018, 36, 3976–3983. [Google Scholar] [CrossRef]
- Sirivichayakul, C.; Barranco-Santana, E.A.; Esquilin-Rivera, I.; Oh, H.M.; Raanan, M.; Sariol, C.A.; Shek, L.P.; Simasathien, S.; Smith, M.K.; Velez, I.D.; et al. Safety and Immunogenicity of a Tetravalent Dengue Vaccine Candidate in Healthy Children and Adults in Dengue-Endemic Regions: A Randomized, Placebo-Controlled Phase 2 Study. J. Infect. Dis. 2016, 213, 1562–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.; Papadimitriou, A.; Winkle, P.; Segall, N.; Levin, M.; Doust, M.; Johnson, C.; Lucksinger, G.; Fierro, C.; Pickrell, P.; et al. Immunogenicity and safety of lyophilized and liquid dengue tetravalent vaccine candidate formulations in healthy adults: A randomized, phase 2 clinical trial. Hum. Vaccin. Immunother. 2020, 16, 2456–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswal, S.; Borja-Tabora, C.; Martinez Vargas, L.; Velásquez, H.; Theresa Alera, M.; Sierra, V.; Johana Rodriguez-Arenales, E.; Yu, D.; Wickramasinghe, V.P.; Duarte Moreira, E., Jr.; et al. Efficacy of a tetravalent dengue vaccine in healthy children aged 4-16 years: A randomised, placebo-controlled, phase 3 trial. Lancet 2020, 395, 1423–1433. [Google Scholar] [CrossRef]
- Li, X.F.; Dong, H.L.; Wang, H.J.; Huang, X.Y.; Qiu, Y.F.; Ji, X.; Ye, Q.; Li, C.; Liu, Y.; Deng, Y.Q.; et al. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat. Commun. 2018, 9, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Recent Advances in Zika Virus Vaccines. Viruses 2018, 10, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.F.; Zhao, W.; Lin, F.; Ye, Q.; Wang, H.J.; Yang, D.; Li, S.H.; Zhao, H.; Xu, Y.P.; Ma, J.; et al. Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2. J. Gen. Virol. 2013, 94, 2700–2709. [Google Scholar] [CrossRef] [Green Version]
- Durbin, A.P.; Wright, P.F.; Cox, A.; Kagucia, W.; Elwood, D.; Henderson, S.; Wanionek, K.; Speicher, J.; Whitehead, S.S.; Pletnev, A.G. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers. Vaccine 2013, 31, 5772–5777. [Google Scholar] [CrossRef] [Green Version]
- Pletnev, A.G.; Swayne, D.E.; Speicher, J.; Rumyantsev, A.A.; Murphy, B.R. Chimeric West Nile/dengue virus vaccine candidate: Preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 2006, 24, 6392–6404. [Google Scholar] [CrossRef]
- Monath, T.P.; Liu, J.; Kanesa-Thasan, N.; Myers, G.A.; Nichols, R.; Deary, A.; McCarthy, K.; Johnson, C.; Ermak, T.; Shin, S.; et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sci. USA 2006, 103, 6694–6699. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile virus live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedenbender, R.; Bevilacqua, J.; Gregg, A.M.; Watson, M.; Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 2011, 203, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widman, D.G.; Ishikawa, T.; Winkelmann, E.R.; Infante, E.; Bourne, N.; Mason, P.W. RepliVAX WN, a single-cycle flavivirus vaccine to prevent West Nile disease, elicits durable protective immunity in hamsters. Vaccine 2009, 27, 5550–5553. [Google Scholar] [CrossRef]
- Schuller, E.; Klade, C.S.; Wölfl, G.; Kaltenböck, A.; Dewasthaly, S.; Tauber, E. Comparison of a single, high-dose vaccination regimen to the standard regimen for the investigational Japanese encephalitis vaccine, IC51: A randomized, observer-blind, controlled Phase 3 study. Vaccine 2009, 27, 2188–2193. [Google Scholar] [CrossRef]
- Barrett, A.D. Current status of flavivirus vaccines. Ann. N. Y. Acad. Sci. 2001, 951, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.I.; Lee, Y.M. Japanese encephalitis: The virus and vaccines. Hum. Vaccin. Immunother. 2014, 10, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Myers, G.A.; Beck, R.A.; Knauber, M.; Scappaticci, K.; Pullano, T.; Archambault, W.T.; Catalan, J.; Miller, C.; Zhang, Z.X.; et al. Safety testing for neurovirulence of novel live, attenuated flavivirus vaccines: Infant mice provide an accurate surrogate for the test in monkeys. Biologicals 2005, 33, 131–144. [Google Scholar] [CrossRef]
- Arroyo, J.; Guirakhoo, F.; Fenner, S.; Zhang, Z.X.; Monath, T.P.; Chambers, T.J. Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J. Virol. 2001, 75, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Levenbook, I.; Soike, K.; Zhang, Z.X.; Ratterree, M.; Draper, K.; Barrett, A.D.; Nichols, R.; Weltzin, R.; Arroyo, J.; et al. Chimeric yellow fever virus 17D-Japanese encephalitis virus vaccine: Dose-response effectiveness and extended safety testing in rhesus monkeys. J. Virol. 2000, 74, 1742–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torresi, J.; McCarthy, K.; Feroldi, E.; Méric, C. Immunogenicity, safety and tolerability in adults of a new single-dose, live-attenuated vaccine against Japanese encephalitis: Randomised controlled phase 3 trials. Vaccine 2010, 28, 7993–8000. [Google Scholar] [CrossRef]
- Mason, P.W.; Pincus, S.; Fournier, M.J.; Mason, T.L.; Shope, R.E.; Paoletti, E. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 1991, 180, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Mason, P.W.; Shustov, A.V.; Frolov, I. Production and characterization of vaccines based on flaviviruses defective in replication. Virology 2006, 351, 432–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, J.; Zuckerman, J.; Clarke, P.; Barrett, P.; Kirkpatrick, C.; Blondeau, C. Comparison of the immunogenicity and safety of two 17D yellow fever vaccines. Am. J. Trop. Med. Hyg. 1999, 60, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Lee, M.; Jin, X. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine. Cell. Mol. Immunol. 2016, 13, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, J.; Ciurea, A.; Gabay, C.; Hasler, P.; Müller, R.; Niedrig, M.; Fehr, J.; Villiger, P.; Visser, L.G.; de Visser, A.W.; et al. Long-term immunogenicity after yellow fever vaccination in immunosuppressed and healthy individuals. Vaccine 2020, 38, 3610–3617. [Google Scholar] [CrossRef]
- Roukens, A.H.; Gelinck, L.B.; Visser, L.G. Intradermal vaccination to protect against yellow fever and influenza. Curr. Top. Microbiol. Immunol. 2012, 351, 159–179. [Google Scholar]
- Poore, E.A.; Slifka, D.K.; Raué, H.P.; Thomas, A.; Hammarlund, E.; Quintel, B.K.; Torrey, L.L.; Slifka, A.M.; Richner, J.M.; Dubois, M.E.; et al. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2017, 35, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, S.S.; Blaney, J.E.; Durbin, A.P.; Murphy, B.R. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 2007, 5, 518–528. [Google Scholar] [CrossRef]
- Heinz, F.X.; Allison, S.L.; Stiasny, K.; Schalich, J.; Holzmann, H.; Mandl, C.W.; Kunz, C. Recombinant and virion-derived soluble and particulate immunogens for vaccination against tick-borne encephalitis. Vaccine 1995, 13, 1636–1642. [Google Scholar] [CrossRef]
- Aberle, J.H.; Aberle, S.W.; Allison, S.L.; Stiasny, K.; Ecker, M.; Mandl, C.W.; Berger, R.; Heinz, F.X. A DNA immunization model study with constructs expressing the tick-borne encephalitis virus envelope protein E in different physical forms. J. Immunol. 1999, 163, 6756–6761. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Lin, L.; Martinez, L.J.; Ruck, R.C.; Eckels, K.H.; Collard, A.; De La Barrera, R.; Paolino, K.M.; Toussaint, J.F.; Lepine, E.; et al. Phase 1 Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults in the United States. Am. J. Trop. Med. Hyg. 2017, 96, 1325–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.H.; Diaz, C.; Acosta, C.J.; Liu, M.; Borkowski, A. Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in healthy adults: An observer-blind, randomised, phase 1 trial. Lancet Infect. Dis. 2021, 21, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Abbink, P.; Larocca, R.A.; Visitsunthorn, K.; Boyd, M.; De La Barrera, R.A.; Gromowski, G.D.; Kirilova, M.; Peterson, R.; Li, Z.; Nanayakkara, O.; et al. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci. Transl. Med. 2017, 9, eaao4163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumathy, K.; Kulkarni, B.; Gondu, R.K.; Ponnuru, S.K.; Bonguram, N.; Eligeti, R.; Gadiyaram, S.; Praturi, U.; Chougule, B.; Karunakaran, L.; et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci. Rep. 2017, 7, 46375. [Google Scholar] [CrossRef] [Green Version]
- Posadas-Herrera, G.; Inoue, S.; Fuke, I.; Muraki, Y.; Mapua, C.A.; Khan, A.H.; Parquet Mdel, C.; Manabe, S.; Tanishita, O.; Ishikawa, T.; et al. Development and evaluation of a formalin-inactivated West Nile Virus vaccine (WN-VAX) for a human vaccine candidate. Vaccine 2010, 28, 7939–7946. [Google Scholar] [CrossRef] [Green Version]
- Muraki, Y.; Fujita, T.; Matsuura, M.; Fuke, I.; Manabe, S.; Ishikawa, T.; Okuno, Y.; Morita, K. The efficacy of inactivated West Nile vaccine (WN-VAX) in mice and monkeys. Virol. J. 2015, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Quintel, B.K.; Thomas, A.; Poer DeRaad, D.E.; Slifka, M.K.; Amanna, I.J. Advanced oxidation technology for the development of a next-generation inactivated West Nile virus vaccine. Vaccine 2019, 37, 4214–4221. [Google Scholar] [CrossRef]
- Monath, T.P. Japanese encephalitis vaccines: Current vaccines and future prospects. Curr. Top. Microbiol. Immunol. 2002, 267, 105–138. [Google Scholar]
- Fan, Y.C.; Chen, J.M.; Chiu, H.C.; Chen, Y.Y.; Lin, J.W.; Shih, C.C.; Chen, C.M.; Chang, C.C.; Chang, G.J.; Chiou, S.S. Partially neutralizing potency against emerging genotype I virus among children received formalin-inactivated Japanese encephalitis virus vaccine. PLoS Negl. Trop. Dis. 2012, 6, e1834. [Google Scholar] [CrossRef] [Green Version]
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.; Gingrich, J.B.; Latendresse, J.; Fukai, K.; et al. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef]
- Poland, J.D.; Cropp, C.B.; Craven, R.B.; Monath, T.P. Evaluation of the potency and safety of inactivated Japanese encephalitis vaccine in US inhabitants. J. Infect. Dis. 1990, 161, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Defraites, R.F.; Gambel, J.M.; Hoke, C.H., Jr.; Sanchez, J.L.; Withers, B.G.; Karabatsos, N.; Shope, R.E.; Tirrell, S.; Yoshida, I.; Takagi, M.; et al. Japanese encephalitis vaccine (inactivated, BIKEN) in U.S. soldiers: Immunogenicity and safety of vaccine administered in two dosing regimens. Am. J. Trop. Med. Hyg. 1999, 61, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, J.L.; Hoke, C.H.; McCown, J.; DeFraites, R.F.; Takafuji, E.T.; Diniega, B.M.; Pang, L.W. Further experience with Japanese encephalitis vaccine. Lancet 1990, 335, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Plesner, A.M.; Arlien-Soborg, P.; Herning, M. Neurological complications to vaccination against Japanese encephalitis. Eur. J. Neurol. 1998, 5, 479–485. [Google Scholar] [CrossRef]
- Lindsey, N.P.; Staples, J.E.; Jones, J.F.; Sejvar, J.J.; Griggs, A.; Iskander, J.; Miller, E.R.; Fischer, M. Adverse event reports following Japanese encephalitis vaccination in the United States, 1999–2009. Vaccine 2010, 29, 58–64. [Google Scholar] [CrossRef]
- Plesner, A.; Rønne, T.; Wachmann, H. Case-control study of allergic reactions to Japanese encephalitis vaccine. Vaccine 2000, 18, 1830–1836. [Google Scholar] [CrossRef]
- Andersen, M.M.; Rønne, T. Side-effects with Japanese encephalitis vaccine. Lancet 1991, 337, 1044. [Google Scholar] [CrossRef]
- Ruff, T.A.; Eisen, D.; Fuller, A.; Kass, R. Adverse reactions to Japanese encephalitis vaccine. Lancet 1991, 338, 881–882. [Google Scholar] [CrossRef]
- Halstead, S.B.; Thomas, S.J. New Japanese encephalitis vaccines: Alternatives to production in mouse brain. Expert Rev. Vaccines 2011, 10, 355–364. [Google Scholar] [CrossRef]
- Fischer, M.; Lindsey, N.; Staples, J.E.; Hills, S. Japanese encephalitis vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2010, 59, 1–27. [Google Scholar]
- Tauber, E.; Kollaritsch, H.; von Sonnenburg, F.; Lademann, M.; Jilma, B.; Firbas, C.; Jelinek, T.; Beckett, C.; Knobloch, J.; McBride, W.J.; et al. Randomized, double-blind, placebo-controlled phase 3 trial of the safety and tolerability of IC51, an inactivated Japanese encephalitis vaccine. J. Infect. Dis. 2008, 198, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Tauber, E.; Kollaritsch, H.; Korinek, M.; Rendi-Wagner, P.; Jilma, B.; Firbas, C.; Schranz, S.; Jong, E.; Klingler, A.; Dewasthaly, S.; et al. Safety and immunogenicity of a Vero-cell-derived, inactivated Japanese encephalitis vaccine: A non-inferiority, phase III, randomised controlled trial. Lancet 2007, 370, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Murrell, S.; Wu, S.C.; Butler, M. Review of dengue virus and the development of a vaccine. Biotechnol. Adv. 2011, 29, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.J.; Davis, B.S.; Hunt, A.R.; Holmes, D.A.; Kuno, G. Flavivirus DNA vaccines: Current status and potential. Ann. N. Y. Acad. Sci. 2001, 951, 272–285. [Google Scholar] [CrossRef]
- Schmaljohn, C.; Custer, D.; VanderZanden, L.; Spik, K.; Rossi, C.; Bray, M. Evaluation of tick-borne encephalitis DNA vaccines in monkeys. Virology 1999, 263, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.R.; Muramatsu, H.; Jha, B.K.; Silverman, R.H.; Weissman, D.; Karikó, K. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329–9338. [Google Scholar] [CrossRef] [Green Version]
- Karikó, K.; Ni, H.; Capodici, J.; Lamphier, M.; Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 2004, 279, 12542–12550. [Google Scholar] [CrossRef] [Green Version]
- Porter, K.R.; Ewing, D.; Chen, L.; Wu, S.J.; Hayes, C.G.; Ferrari, M.; Teneza-Mora, N.; Raviprakash, K. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine 2012, 30, 336–341. [Google Scholar] [CrossRef]
- Dowd, K.A.; Ko, S.Y.; Morabito, K.M.; Yang, E.S.; Pelc, R.S.; DeMaso, C.R.; Castilho, L.R.; Abbink, P.; Boyd, M.; Nityanandam, R.; et al. Rapid development of a DNA vaccine for Zika virus. Science 2016, 354, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef]
- Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125.e1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagger, B.W.; Dowd, K.A.; Chen, R.E.; Desai, P.; Foreman, B.; Burgomaster, K.E.; Himansu, S.; Kong, W.P.; Graham, B.S.; Pierson, T.C.; et al. Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. J. Infect. Dis. 2019, 220, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Berlanda Scorza, F.; Otten, G.R.; Yu, D.; Mandl, C.W.; Mason, P.W.; et al. Self-amplifying mRNA vaccines. Adv. Genet. 2015, 89, 179–233. [Google Scholar] [PubMed]
- Luisi, K.; Morabito, K.M.; Burgomaster, K.E.; Sharma, M.; Kong, W.P.; Foreman, B.M.; Patel, S.; Fisher, B.; Aleshnick, M.A.; Laliberte, J.; et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Sci. Adv. 2020, 6, eaba5068. [Google Scholar] [CrossRef] [PubMed]
- Iavarone, C.; O’Hagan, D.T.; Yu, D.; Delahaye, N.F.; Ulmer, J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines 2017, 16, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K.C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H.; et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther. 2018, 26, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Pepini, T.; Pulichino, A.M.; Carsillo, T.; Carlson, A.L.; Sari-Sarraf, F.; Ramsauer, K.; Debasitis, J.C.; Maruggi, G.; Otten, G.R.; Geall, A.J.; et al. Induction of an IFN-Mediated Antiviral Response by a Self-Amplifying RNA Vaccine: Implications for Vaccine Design. J. Immunol. 2017, 198, 4012–4024. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.S.; Chang, G.J.; Cropp, B.; Roehrig, J.T.; Martin, D.A.; Mitchell, C.J.; Bowen, R.; Bunning, M.L. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J. Virol. 2001, 75, 4040–4047. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.A.; Nisbet, D.J.; Pham, K.B.; Pyke, A.T.; Smith, G.A.; Khromykh, A.A. DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc. Natl. Acad. Sci. USA 2003, 100, 10460–10464. [Google Scholar] [CrossRef] [Green Version]
- Mühlebach, M.D. Vaccine platform recombinant measles virus. Virus Genes 2017, 53, 733–740. [Google Scholar] [CrossRef]
- Swamy, G.K.; Heine, R.P. Vaccinations for pregnant women. Obstet. Gynecol. 2015, 125, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Zabel, F.; Kündig, T.M.; Bachmann, M.F. Virus-induced humoral immunity: On how B cell responses are initiated. Curr. Opin. Virol. 2013, 3, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Müller, M. Next generation prophylactic human papillomavirus vaccines. Lancet Oncol. 2015, 16, e217–e225. [Google Scholar] [CrossRef]
- Torresi, J.; Ebert, G.; Pellegrini, M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum. Vaccin. Immunother. 2017, 13, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Bukreyev, A.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Nonsegmented negative-strand viruses as vaccine vectors. J. Virol. 2006, 80, 10293–10306. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Yu, J.; Lu, M.; Ma, Y.; Attia, Z.; Shan, C.; Xue, M.; Liang, X.; Craig, K.; Makadiya, N.; et al. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 2018, 9, 3067. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Buonocore, L.; Price, R.; Forman, J.; Rose, J.K. Attenuated vesicular stomatitis viruses as vaccine vectors. J. Virol. 1999, 73, 3723–3732. [Google Scholar] [CrossRef] [Green Version]
- Cox, F.; van der Fits, L.; Abbink, P.; Larocca, R.A.; van Huizen, E.; Saeland, E.; Verhagen, J.; Peterson, R.; Tolboom, J.; Kaufmann, B.; et al. Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PLoS ONE 2018, 13, e0202820. [Google Scholar] [CrossRef]
- Salisch, N.C.; Stephenson, K.E.; Williams, K.; Cox, F.; van der Fits, L.; Heerwegh, D.; Truyers, C.; Habets, M.N.; Kanjilal, D.G.; Larocca, R.A.; et al. A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti-Zika Virus Vaccine. Ann. Intern. Med. 2021, 174, 585–594. [Google Scholar] [CrossRef]
- López-Camacho, C.; Abbink, P.; Larocca, R.A.; Dejnirattisai, W.; Boyd, M.; Badamchi-Zadeh, A.; Wallace, Z.R.; Doig, J.; Velazquez, R.S.; Neto, R.D.L.; et al. Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nat. Commun. 2018, 9, 2441. [Google Scholar] [CrossRef] [Green Version]
- Desprès, P.; Combredet, C.; Frenkiel, M.P.; Lorin, C.; Brahic, M.; Tangy, F. Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J. Infect. Dis. 2005, 191, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nürnberger, C.; Bodmer, B.S.; Fiedler, A.H.; Gabriel, G.; Mühlebach, M.D. A Measles Virus-Based Vaccine Candidate Mediates Protection against Zika Virus in an Allogeneic Mouse Pregnancy Model. J. Virol. 2019, 93, e01485-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brault, A.C.; Domi, A.; McDonald, E.M.; Talmi-Frank, D.; McCurley, N.; Basu, R.; Robinson, H.L.; Hellerstein, M.; Duggal, N.K.; Bowen, R.A.; et al. A Zika Vaccine Targeting NS1 Protein Protects Immunocompetent Adult Mice in a Lethal Challenge Model. Sci. Rep. 2017, 7, 14769. [Google Scholar] [CrossRef] [Green Version]
- To, A.; Medina, L.O.; Mfuh, K.O.; Lieberman, M.M.; Wong, T.A.S.; Namekar, M.; Nakano, E.; Lai, C.Y.; Kumar, M.; Nerurkar, V.R.; et al. Recombinant Zika Virus Subunits Are Immunogenic and Efficacious in Mice. mSphere 2018, 3, e00576-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, W.; He, L.; Wang, Y.; Sun, S.; Zhao, G.; Luo, C.; Li, P.; Zhao, H.; Fremont, D.H.; Li, F.; et al. Critical neutralizing fragment of Zika virus EDIII elicits cross-neutralization and protection against divergent Zika viruses. Emerg. Microbes Infect. 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, C.; Afridi, S.K.; Zu, S.; Xu, J.W.; Quanquin, N.; Yang, H.; Cheng, G.; Xu, Z. E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol. Commun. 2018, 6, 77. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, L. Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infect. Dis. 2019, 5, 1070–1080. [Google Scholar] [CrossRef]
- Boigard, H.; Alimova, A.; Martin, G.R.; Katz, A.; Gottlieb, P.; Galarza, J.M. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis. 2017, 11, e0005608. [Google Scholar] [CrossRef] [Green Version]
- Salvo, M.A.; Kingstad-Bakke, B.; Salas-Quinchucua, C.; Camacho, E.; Osorio, J.E. Zika virus like particles elicit protective antibodies in mice. PLoS Negl. Trop. Dis. 2018, 12, e0006210. [Google Scholar] [CrossRef]
- De Lorenzo, G.; Tandavanitj, R.; Doig, J.; Setthapramote, C.; Poggianella, M.; Sanchez-Velazquez, R.; Scales, H.E.; Edgar, J.M.; Kohl, A.; Brewer, J.; et al. Zika Virus-Like Particles Bearing a Covalent Dimer of Envelope Protein Protect Mice from Lethal Challenge. J. Virol. 2020, 95, e01415-20. [Google Scholar] [CrossRef]
- Barba-Spaeth, G.; Dejnirattisai, W.; Rouvinski, A.; Vaney, M.C.; Medits, I.; Sharma, A.; Simon-Lorière, E.; Sakuntabhai, A.; Cao-Lormeau, V.M.; Haouz, A.; et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 2016, 536, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, E.; Dejnirattisai, W.; Cao, B.; Scheaffer, S.M.; Supasa, P.; Wongwiwat, W.; Esakky, P.; Drury, A.; Mongkolsapaya, J.; Moley, K.H.; et al. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat. Immunol. 2017, 18, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, R.K.; Ramasamy, V.; Shukla, R.; Arora, U.; Swaminathan, S.; Khanna, N. Pichia pastoris-expressed Zika virus envelope domain III on a virus-like particle platform: Design, production and immunological evaluation. Pathog. Dis. 2019, 77, ftz026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral-Miranda, G.; Lim, S.M.; Mohsen, M.O.; Pobelov, I.V.; Roesti, E.S.; Heath, M.D.; Skinner, M.A.; Kramer, M.F.; Martina, B.E.E.; Bachmann, M.F. Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection. Vaccines 2019, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Kostyuchenko, V.A.; Ng, T.S.; Lim, X.N.; Ooi, J.S.G.; Lambert, S.; Tan, T.Y.; Widman, D.G.; Shi, J.; Baric, R.S.; et al. Neutralization mechanism of a highly potent antibody against Zika virus. Nat. Commun. 2016, 7, 13679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimica, V.; Galarza, J.M. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin. Immunol. 2017, 183, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Karaca, K.; Bowen, R.; Austgen, L.E.; Teehee, M.; Siger, L.; Grosenbaugh, D.; Loosemore, L.; Audonnet, J.C.; Nordgren, R.; Minke, J.M. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine 2005, 23, 3808–3813. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Tartaglia, J.; Taylor, J. Safe and effective poxvirus vectors--NYVAC and ALVAC. Dev. Biol. Stand. 1994, 82, 65–69. [Google Scholar]
- Minke, J.M.; Siger, L.; Karaca, K.; Austgen, L.; Gordy, P.; Bowen, R.; Renshaw, R.W.; Loosmore, S.; Audonnet, J.C.; Nordgren, B. Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch. Virol. Suppl. 2004, 18, 221–230. [Google Scholar]
- Brandler, S.; Marianneau, P.; Loth, P.; Lacôte, S.; Combredet, C.; Frenkiel, M.P.; Desprès, P.; Contamin, H.; Tangy, F. Measles vaccine expressing the secreted form of West Nile virus envelope glycoprotein induces protective immunity in squirrel monkeys, a new model of West Nile virus infection. J. Infect. Dis. 2012, 206, 212–219. [Google Scholar] [CrossRef]
- Iyer, A.V.; Boudreaux, M.J.; Wakamatsu, N.; Roy, A.F.; Baghian, A.; Chouljenko, V.N.; Kousoulas, K.G. Complete genome analysis and virulence characteristics of the Louisiana West Nile virus strain LSU-AR01. Virus Genes 2009, 38, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Julander, J.G.; Testori, M.; Cheminay, C.; Volkmann, A. Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Front. Immunol. 2018, 9, 1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monath, T.P. Dengue and yellow fever--challenges for the development and use of vaccines. N. Engl. J. Med. 2007, 357, 2222–2225. [Google Scholar] [CrossRef] [PubMed]
- Douam, F.; Ploss, A. Yellow Fever Virus: Knowledge Gaps Impeding the Fight Against an Old Foe. Trends Microbiol. 2018, 26, 913–928. [Google Scholar] [CrossRef]
- Monath, T.P. Suspected yellow fever vaccine-associated viscerotropic adverse events (1973 and 1978), United States. Am. J. Trop. Med. Hyg. 2010, 82, 919–921. [Google Scholar] [CrossRef] [Green Version]
- Domingo, C.; Charrel, R.N.; Schmidt-Chanasit, J.; Zeller, H.; Reusken, C. Yellow fever in the diagnostics laboratory. Emerg Microbes Infect. 2018, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Heinz, F.X.; Stiasny, K. Flaviviruses and their antigenic structure. J. Clin. Virol. 2012, 55, 289–295. [Google Scholar] [CrossRef]
- Pierson, T.C.; Kielian, M. Flaviviruses: Braking the entering. Curr. Opin. Virol. 2013, 3, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Pletnev, A.G.; Bray, M.; Hanley, K.A.; Speicher, J.; Elkins, R. Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: Evaluation in rhesus monkeys and in mosquitoes. J. Virol. 2001, 75, 8259–8267. [Google Scholar] [CrossRef] [Green Version]
Vaccine Types | Virus | Vaccine Candidate | Developer/ Manufacturer | Evaluation | References |
---|---|---|---|---|---|
LAV | DENV | Dengvaxia® | Sanofi Pasteur | Licensed | [17] |
TDV | Takeda Pharmaceutical Company | Phase III (NCT02747927) | [71] | ||
LATV | NIAID | Phase III (NCT02406729) | [69] | ||
TDEN | WRAIR and GSK | Phase II (NCT01843621) | [69] | ||
ZIKV | ChinZIKV | Beijing Institute of Microbiology and Epidemiology | In vivo (animal) | [95] | |
ChimeriVax-Zika | Sanofi Pasteur | In vivo (animal) | [27] | ||
rZIKV/D4Δ30–713 | NIAID | Phase I (NCT03611946) | [27] | ||
WNV | ChinWNV | Beijing Institute of Microbiology and Epidemiology | In vivo (animal) | [97] | |
WN/DEN4Δ30 | NIH in US | Phase I (NCT00094718 and NCT00537147) | [98] | ||
ChimeriVax-WN02 | Acambis in UK | Phase II (NCT00442169) | [102] | ||
RepliVAX WN | Department of Microbiology and Immunology in US | In vivo (animal) | [66] | ||
JEV | SA14-14-2 | Chengdu Institute of Biological Products in China | Licensed | [13] | |
ChimeriVax-JE | Acambis in UK | Phase III (NCT01092507) | [110] | ||
RepliVAX-JE.2 | Department of Pathology, University of Texas Medical Branch et al. | In vivo (animal) | [112] | ||
YFV | YFV-17D | Theiler et al. | Licensed | [13] | |
INV | DENV | DPIV | WRAIR and GSK | Phase I (NCT01666652) | [121] |
ZIKV | ZPIV | NIAD, WRAIR and BIDMC | Phase I (NCT03008122, NCT02963909, NCT02952833 NCT02937233) | [96] | |
PIV vaccine | R&D Department Bharat Biotech International Ltd. | In vivo (animal) | [124] | ||
WNV | WN-VAX | Muraki et al. | In vivo (animal) | [125,126] | |
HydroVax-001 WNV | Najít Technologies, Inc, Beaverton, OR in US | In vivo (animal) | [117] | ||
HydroVax-II | Najít Technologies, Inc, Beaverton, OR in US | In vivo (animal) | [127] | ||
JEV | JE-VAX | Research Foundation for Microbial Diseases of Osaka University | Licensed | [130] | |
IC51 | Intercell Biomedical Livingston in UK | Licensed | [106] | ||
CVI-JE | Liaoning Cheng Da Biotechnology Co., Ltd. | Licensed | [48,106] | ||
Nucleic acid vaccines | DENV | TVDV | AMRDCk, WRAIR, NMRC and Vical Inc. in US | Phase I (NCT01502358) | [148] |
ZIKV | GLS-5700 | GeneOne Life Science/Inovio Pharmaceuticals | Phase I (NCT02887482, NCT02809443) | [150] | |
VRC5283 | NIAID | Phase II (NCT03110770) | [149] | ||
VRC5288 | NIAID | Phase I (NCT02840487) | [149] | ||
mRNA-1325 | Moderna | Phase I (NCT03014089) | [151] | ||
mRNA-1839 | Moderna | Phase I (NCT04064905) | [152] | ||
SAM | GSK | In vivo (animal) | [153,154] | ||
WNV | pCBWN | Davis et al. | In vivo (animal) | [158] | |
pKUN1 plasmid DNA | Hall et al. | In vivo (animal) | [159] | ||
Viral vector vaccines | DENV | cAdVaxD12/ cAdVaxD34 | Raviprakash et al. | In vivo (animal) | [143] |
ZIKV | Ad26.ZIKV.001 | Janssen Vaccines | Phase I (NCT03356561) | [168] | |
ChAdOx1 Zika | University of Oxford | Phase I (NCT04015648) | [170] | ||
MV-Zika | Themis Bioscience | Phase I (NCT02996890) | [172] | ||
MV-Zika RSP | Themis Bioscience | Phase I (NCT04033068) | [27,172] | ||
WNV | ALVAC®-WNV | Minke et al. | In vivo (animal) | [59,188] | |
YFV | MVA-BN-YF | Ju lander et al. | In vivo (animal) | [192] | |
subunit protein vaccines | DENV | V180 | Merck & Co., Inc. | Phase I (NCT00936429, NCT01477580) | [69] |
WNV | MVSchwsEWNV | Unite’ des Interactions Mole´culaires Flavivirus-Hoˆtes and Unite´ des Virus Lents in France | In vivo (animal) | [190] | |
VLP vaccines | ZIKV | ZIKVLPs | University of Wisconsin | In vivo (animal) | [179] |
VLP-cvD | MRC—University of Glasgow Centre for Virus Research | In vivo (animal) | [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Qi, Z.; Qian, X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023, 15, 813. https://doi.org/10.3390/v15040813
Wu B, Qi Z, Qian X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses. 2023; 15(4):813. https://doi.org/10.3390/v15040813
Chicago/Turabian StyleWu, Bingan, Zhongtian Qi, and Xijing Qian. 2023. "Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development" Viruses 15, no. 4: 813. https://doi.org/10.3390/v15040813
APA StyleWu, B., Qi, Z., & Qian, X. (2023). Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses, 15(4), 813. https://doi.org/10.3390/v15040813