Diagnostic Accuracy of a Point-of-Care Immunoassay for Feline Immunodeficiency Virus Antibodies, Feline Leukemia Virus Antigen, and Dirofilaria immitis Antigen
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. FIV
3.2. FeLV
3.3. Heartworm
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Little, S.; Levy, J.; Hartmann, K.; Hofmann-Lehmann, R.; Hosie, M.; Olah, G.; Denis, K.S. 2020 AAFP Feline Retrovirus Testing and Management Guidelines. J. Feline Med. Surg. 2020, 22, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K. Clinical Aspects of Feline Retroviruses: A Review. Viruses 2012, 4, 2684–2710. [Google Scholar] [CrossRef] [PubMed]
- Genchi, C.; Kramer, L.H. The prevalence of Dirofilaria immitis and D. repens in the Old World. Vet. Parasitol. 2020, 280, 108995. [Google Scholar] [CrossRef] [PubMed]
- Venco, L.; Marchesotti, F.; Manzocchi, S. Feline heartworm disease: A ‘Rubik’s-cube-like’ diagnostic and therapeutic challenge. J. Vet. Cardiol. 2015, 17, S190–S201. [Google Scholar] [CrossRef] [PubMed]
- Sellon, R.K.; Jordan, H.L.; Kennedy-Stoskopf, S.; Tompkins, M.B.; Tompkins, W.A.F. Feline immunodeficiency virus can be experimentally transmitted via milk during acute maternal infection. J. Virol. 1994, 68, 3380–3385. [Google Scholar] [CrossRef] [PubMed]
- O’neil, L.L.; Burkhard, M.J.; Diehl, L.J.; Hoover, E.A. Vertical Transmission of Feline Immunodeficiency Virus. AIDS Res. Hum. Retroviruses 2009, 11, 171–182. [Google Scholar] [CrossRef]
- Medeiros, S.D.O.; Martins, A.N.; Dias, C.G.A.; Tanuri, A.; Brindeiro, R.D.M. Natural transmission of feline immunodeficiency virus from infected queen to kitten. Virol. J. 2012, 9, 99. [Google Scholar] [CrossRef]
- Hosie, M.J.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Lutz, H.; Marsilio, F.; et al. Feline immunodeficiency. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 575–584. [Google Scholar] [CrossRef]
- Beczkowski, P.M.; Litster, A.; Lin, T.L.; Mellor, D.J.; Willett, B.J.; Hosie, M.J. Contrasting clinical outcomes in two cohorts of cats naturally infected with feline immunodeficiency virus (FIV). Vet. Microbiol. 2015, 176, 50–60. [Google Scholar] [CrossRef]
- CAPC Vet. CAPC FIV Prevalence. 2023. Available online: https://CapcvetOrg/Maps/#/2023/All-Year/Fiv/Cat/United-States (accessed on 21 July 2023).
- Buch, J.; Beall, M.; O’Connor, T.; Chandrashekar, R. Worldwide Clinic-Based Serologic Survey of FIV Antibody and FeLV Antigen in Cats; ACVIM: National Harbor, MD, USA, 2017; p. ID14. [Google Scholar]
- Battilani, M.; Kaehler, E.; Tirolo, A.; Balboni, A.; Dondi, F. Clinicopathological Findings in Cats Tested for Feline Immunodeficiency Virus (FIV) and Feline Leukaemia Virus (FELV). Acta Vet. Brno 2022, 72, 419–432. [Google Scholar] [CrossRef]
- Maruyama, S.; Kabeya, H.; Nakao, R.; Tanaka, S.; Sakai, T.; Xuan, X.; Katsube, Y.; Mikami, T. Seroprevalence of Bartonella henselae, Toxoplasma gondii, FIV and FeLV infections in domestic cats in Japan. Microbiol. Immunol. 2003, 47, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Hosie, M.J.; Lloret, A.; et al. Feline leukaemia. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Hofmann-Lehmann, R.; Hartmann, K. Feline leukaemia virus infection: A practical approach to diagnosis. J. Feline Med. Surg. 2020, 22, 831–846. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Hofmann-Lehmann, R.; Sykes, J.E. Feline Leukemia Virus Infection. In Greene’s Infectious Diseases of the Dog and Cat, 5th ed.; Elsevier: Amsterdam, Netherlands, 2021; pp. 382–413. [Google Scholar] [CrossRef]
- CAPC Vet. CAPC FeLV Prevalence. 2023. Available online: https://CapcvetOrg/Maps/#/2023/All-Year/Felv/Cat/United-States (accessed on 21 July 2023).
- Studer, N.; Lutz, H.; Saegerman, C.; Gönczi, E.; Meli, M.L.; Boo, G.; Hartmann, K.; Hosie, M.J.; Moestl, K.; Tasker, S.; et al. Pan-European Study on the Prevalence of the Feline Leukaemia Virus Infection—Reported by the European Advisory Board on Cat Diseases (ABCD Europe). Viruses 2019, 11, 993. [Google Scholar] [CrossRef]
- Giselbrecht, J.; Jähne, S.; Bergmann, M.; Meli, M.L.; Pineroli, B.; Boenzli, E.; Teichmann-Knorrn, S.; Zablotski, Y.; Pennisi, M.-G.; Layachi, N.; et al. Prevalence of Different Courses of Feline Leukaemia Virus Infection in Four European Countries. Viruses 2023, 15, 1718. [Google Scholar] [CrossRef]
- Watanabe, S.; Kawamura, M.; Odahara, Y.; Anai, Y.; Ochi, H.; Nakagawa, S.; Endo, Y.; Tsujimoto, H.; Nishigaki, K. Phylogenetic and Structural Diversity in the Feline Leukemia Virus Env Gene. PLoS ONE 2013, 8, e61009. [Google Scholar] [CrossRef]
- Pennisi, M.G.; Tasker, S.; Hartmann, K.; Belák, S.; Addie, D.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Hofmann-Lehmann, R.; Hosie, M.; et al. Dirofilarioses in cats: European guidelines from the ABCD on prevention and management. J. Feline Med. Surg. 2020, 22, 442–451. [Google Scholar] [CrossRef]
- Berdoulay, P.; Levy, J.K.; Snyder, P.S.; Pegelow, M.J.; Hooks, J.L.; Tavares, L.M.; Gibson, N.M.; Salute, M.E. Comparison of serological tests for the detection of natural heartworm infection in cats. J. Am. Anim. Hosp. Assoc. 2004, 40, 376–384. [Google Scholar] [CrossRef]
- Litster, A.; Atkins, C.; Atwell, R. Acute death in heartworm-infected cats: Unraveling the puzzle. Vet. Parasitol. 2008, 158, 196–203. [Google Scholar] [CrossRef]
- CAPC Vet. CAPC Heartworm Prevalence. 2023. Available online: https://CapcvetOrg/Maps/#/2023/All-Year/Feline-Heartworm-Ag/Cat/United-States (accessed on 21 July 2023).
- Alberigi, B.; Campos, D.R.; Branco, A.S.; Bendas, A.; Brum, R.P.; Calixto, R.; Alves, L.C.; Júnior, J.W.P.; Knackfuss, F.B.; Labarthe, N. Feline Heartworm in Clinical Settings in a High Canine Prevalence Area. Front. Vet. Sci. 2022, 9, 819082. [Google Scholar] [CrossRef]
- Hays, K.M.; Rodriguez, J.Y.; Little, S.E.; Litster, A.L.; Mwacalimba, K.K.; Sundstrom, K.D.; Amodie, D.M.; Serrano, M.A.; Guerios, S.D.; Lane, J.N.; et al. Heartworm prevalence in dogs versus cats: Multiple diagnostic modalities provide new insights. Vet. Parasitol. 2020, 277, 100027. [Google Scholar] [CrossRef] [PubMed]
- Pancino, G.; Camoin, L.; Sonigo, P. Structural analysis of the principal immunodominant domain of the feline immunodeficiency virus transmembrane glycoprotein. J. Virol. 1995, 69, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Pancino, G.; Chappey, C.; Saurin, W.; Sonigo1, P. B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins. J. Virol. 1993, 67, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Avrameas, A.; Strosberg, A.D.; Moraillon, A.; Sonigo, P.; Pancino, G. Serological diagnosis of feline immunodeficiency virus infection based on synthetic peptides from Env glycoproteins. Res. Virol. 1993, 144, 209–218. [Google Scholar] [CrossRef] [PubMed]
- De Ronde, A.; Stam, J.G.; Boers, P.; Langeduk, H.; Meloen, R.; Hesselink, W.; Keldermans, L.C.; van Vliet, A.; Verschoor, E.J.; Horzinek, M.C.; et al. Antibody response in cats to the envelope proteins of feline immunodeficiency virus: Identification of an immunodominant neutralization domain. Virology 1994, 198, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Moskaluk, A.; Nehring, M.; Vande Woude, S. Serum Samples from Co-Infected and Domestic Cat Field Isolates Nonspecifically Bind FIV and Other Antigens in Enzyme-Linked Immunosorbent Assays. Pathogens 2021, 10, 665. [Google Scholar] [CrossRef]
- Beall, M.J.; Buch, J.; Cahill, R.J.; Clark, G.; Hanscom, J.; Estrada, M.; Leutenegger, C.M.; Chandrashekar, R. Evaluation of a quantitative enzyme-linked immunosorbent assay for feline leukemia virus p27 antigen and comparison to proviral DNA loads by real-time polymerase chain reaction. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101348. [Google Scholar] [CrossRef]
- Beall, M.J.; Buch, J.; Clark, G.; Estrada, M.; Rakitin, A.; Hamman, N.T.; Frenden, M.K.; Jefferson, E.P.; Amirian, E.S.; Levy, J.K. Feline Leukemia Virus p27 Antigen Concentration and Proviral DNA Load Are Associated with Survival in Naturally Infected Cats. Viruses 2021, 13, 302. [Google Scholar] [CrossRef]
- Lu, T.L.; Wong, J.Y.; Tan, T.L.; Hung, Y.W. Prevalence and epidemiology of canine and feline heartworm infection in Taiwan. Parasit. Vectors 2017, 10, 7–15. [Google Scholar] [CrossRef]
- Hosie, M.J.; Jarrett, O. Serological responses of cats to feline immunodeficiency virus. Aids 1990, 4, 215–220. Available online: https://journals.lww.com/aidsonline/Abstract/1990/03000/Serological_responses_of_cats_to_feline.6.aspx (accessed on 17 November 2022). [CrossRef]
- Buch, J.S.; Clark, G.H.; Cahill, R.; Thatcher, B.; Smith, P.; Chandrashekar, R.; Leutenegger, C.M.; O’connor, T.P.; Beall, M.J. Analytical validation of a reference laboratory ELISA for the detection of feline leukemia virus p27 antigen. J. Vet. Diagn. Investig. 2017, 29, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, R.; Mainville, C.A.; Beall, M.J.; O Connor, T.; Eberts, M.D.; Alleman, A.R.; Gaunt, S.D.; Breitschwerdt, E.B. Performance of a commercially available in-clinic ELISA for the detection of antibodies against Anaplasma phagocytophilum, Ehrlichia canis, and Borrelia burgdorferi and Dirofilaria immitis antigen in dogs. Am. J. Vet. Res. 2010, 71, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Core Team R. R: A Language and Environment for Statistical Computing (Version 4.1.0) 2021. Statistical software package. Available online: https://www.R-project.org (accessed on 21 July 2023).
- IDEXX Laboratories Inc. SNAP FIV/FeLV Combo Test. Available online: https://wwwidexxcom/Files/Snap-Combo-Test-AccuracyPdf2017 (accessed on 21 July 2023).
- IDEXX Laboratories Inc. SNAP Feline Triple Test. Available online: https://wwwidexxcom/Files/Snap-Feline-Triple-Test-AccuracyPdf2016 (accessed on 21 July 2023).
- Hartmann, K.; Werner, R.M.; Egberink, H.; Jarrett, O. Comparison of six in-house tests for the rapid diagnosis of feline immunodeficiency and feline leukaemia virus infections. Vet. Rec. 2001, 149, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Sand, C.; Englert, T.; Egberink, H.; Lutz, H.; Hartmann, K. Evaluation of a new in-clinic test system to detect feline immunodeficiency virus and feline leukemia virus infection. Vet. Clin. Pathol. 2010, 39, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Wardrop, K.; Birkenheuer, A.; Blais, M.; Callan, M.; Kohn, B.; Lappin, M.; Sykes, J. Update on Canine and Feline Blood Donor Screening for Blood-Borne Pathogens. J. Vet. Intern. Med. 2016, 30, 15–35. [Google Scholar] [CrossRef]
FIV Plus Western Blot | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
SNAP Feline Triple FIV | Positive | 95 | 4 | 99 |
Negative | 0 | 180 | 180 | |
Total | 95 | 184 | 279 | |
Sensitivity | 95% CL | 100% | 96.2–100% | |
Specificity | 95% CL | 97.8% | 95.4–99.4% |
PetChek FeLV ELISA | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
SNAP Feline Triple FeLV | Positive | 158 | 2 | 160 |
Negative | 0 | 247 | 247 | |
Total | 158 | 249 | 407 | |
Sensitivity | 95% CL | 100% | 97.7–100% | |
Specificity | 95% CL | 99.2% | 97.1–99.9% |
PetChek Heartworm ELISA | ||||
---|---|---|---|---|
Positive | Negative | Total | ||
SNAP Feline Triple HW | Positive | 37 | 0 | 37 |
Negative | 4 | 215 | 219 | |
Total | 41 | 215 | 256 | |
Sensitivity | 95% CL | 90.2% | 76.9–97.3% | |
Specificity | 95% CL | 100% | 98.3–100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Davenport, K.A.; Schooley, E.; Ruggiero, A.; Nassar, S.; Buch, J.; Chandrashekar, R. Diagnostic Accuracy of a Point-of-Care Immunoassay for Feline Immunodeficiency Virus Antibodies, Feline Leukemia Virus Antigen, and Dirofilaria immitis Antigen. Viruses 2023, 15, 2117. https://doi.org/10.3390/v15102117
Singh S, Davenport KA, Schooley E, Ruggiero A, Nassar S, Buch J, Chandrashekar R. Diagnostic Accuracy of a Point-of-Care Immunoassay for Feline Immunodeficiency Virus Antibodies, Feline Leukemia Virus Antigen, and Dirofilaria immitis Antigen. Viruses. 2023; 15(10):2117. https://doi.org/10.3390/v15102117
Chicago/Turabian StyleSingh, Seema, Kristen A. Davenport, Elizabeth Schooley, Anthony Ruggiero, Salam Nassar, Jesse Buch, and Ramaswamy Chandrashekar. 2023. "Diagnostic Accuracy of a Point-of-Care Immunoassay for Feline Immunodeficiency Virus Antibodies, Feline Leukemia Virus Antigen, and Dirofilaria immitis Antigen" Viruses 15, no. 10: 2117. https://doi.org/10.3390/v15102117
APA StyleSingh, S., Davenport, K. A., Schooley, E., Ruggiero, A., Nassar, S., Buch, J., & Chandrashekar, R. (2023). Diagnostic Accuracy of a Point-of-Care Immunoassay for Feline Immunodeficiency Virus Antibodies, Feline Leukemia Virus Antigen, and Dirofilaria immitis Antigen. Viruses, 15(10), 2117. https://doi.org/10.3390/v15102117