Appendectomy Mitigates Coxsackievirus B3−Induced Viral Myocarditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus and Animals
2.2. Surgical Procedures
2.3. CVB3−Induced Viral Myocarditis in Mice
2.4. Echocardiography
2.5. RT−PCR
2.6. Histopathological Analysis
2.7. Isolation of Cells from Cecal Patch and Flow Cytometry
2.8. Isolation of Immune Cells from Intestinal Lamina Propria and Heart
2.9. Intracellular Cytokine Staining
2.10. Statistical Analysis
3. Results
3.1. Appendectomy Alleviated the Incidence and Severity of CVB3−Induced Myocarditis
3.2. Appendectomized Mice Had Decreased Viral Replication in the Hearts and Small Intestine
3.3. Appendectomized Mice Had Reduced Cardiac Infiltration of Neutrophils and Macrophages and Pro-Inflammatory Cytokine Production
3.4. Appendectomy Significantly Increased IFN-γ+ CD4+ T and IFN-γ+ CD8+ T Response in the Intestine after CVB3 Infection
3.5. Appendectomy Significantly Decreased Intestinal IL-10 Level and IL-10+ CD4+ Th Frequency after CVB3 Infection
3.6. Cecal Patch CD4+ T Cells Are Main IL-10 Producers after CVB3 Infection and Appendectomy May Lead to Intestinal IL-10 Reduction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masahata, K.; Umemoto, E.; Kayama, H.; Kotani, M.; Nakamura, S.; Kurakawa, T.; Kikuta, J.; Gotoh, K.; Motooka, D.; Sato, S.; et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat. Commun. 2014, 5, 3704. [Google Scholar] [CrossRef] [PubMed]
- Sucic, L.; Galati-Fournier, V.; Kym, U.; Pfeifle, V.A.; Gros, S.J.; Schafer, K.H.; Holland-Cunz, S.; Keck, S. Increased regulatory T cells in pediatric acute appendicitis. Pediatr. Allergy Immunol. 2018, 29, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Guinane, C.M.; Tadrous, A.; Fouhy, F.; Ryan, C.A.; Dempsey, E.M.; Murphy, B.; Andrews, E.; Cotter, P.D.; Stanton, C.; Ross, R.P. Microbial composition of human appendices from patients following appendectomy. mBio 2013, 4, e00366-12. [Google Scholar] [CrossRef] [PubMed]
- Arjomand Fard, N.; Armstrong, H.; Perry, T.; Wine, E. Appendix and Ulcerative Colitis: A Key to Explaining the Pathogenesis and Directing Novel Therapies? Inflamm. Bowel Dis. 2023, 29, 151–160. [Google Scholar] [CrossRef]
- Vitetta, L.; Chen, J.; Clarke, S. The vermiform appendix: An immunological organ sustaining a microbiome inoculum. Clin. Sci. 2019, 133, 1–8. [Google Scholar] [CrossRef]
- Killinger, B.A.; Madaj, Z.; Sikora, J.W.; Rey, N.; Haas, A.J.; Vepa, Y.; Lindqvist, D.; Chen, H.; Thomas, P.M.; Brundin, P.; et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci. Transl. Med. 2018, 10, eaar5280. [Google Scholar] [CrossRef]
- Girard-Madoux, M.J.H.; Gomez de Aguero, M.; Ganal-Vonarburg, S.C.; Mooser, C.; Belz, G.T.; Macpherson, A.J.; Vivier, E. The immunological functions of the Appendix: An example of redundancy? Semin. Immunol. 2018, 36, 31–44. [Google Scholar] [CrossRef]
- Killinger, B.; Labrie, V. The Appendix in Parkinson’s Disease: From Vestigial Remnant to Vital Organ? J. Parkinsons. Dis. 2019, 9 (Suppl. S2), S345–S358. [Google Scholar] [CrossRef]
- Chung, W.S.; Lin, C.L.; Hsu, C.Y. Women who had appendectomy have increased risk of systemic lupus erythematosus: A nationwide cohort study. Clin. Rheumatol. 2018, 37, 3009–3016. [Google Scholar] [CrossRef]
- Janszky, I.; Mukamal, K.J.; Dalman, C.; Hammar, N.; Ahnve, S. Childhood appendectomy, tonsillectomy, and risk for premature acute myocardial infarction—A nationwide population-based cohort study. Eur. Heart J. 2011, 32, 2290–2296. [Google Scholar] [CrossRef]
- Chen, C.H.; Tsai, M.C.; Lin, H.C.; Lee, H.C.; Lee, C.Z.; Chung, S.D. Appendectomy increased the risk of ischemic heart disease. J. Surg. Res. 2015, 199, 435–440. [Google Scholar] [CrossRef]
- Van Linthout, S.; Savvatis, K.; Miteva, K.; Peng, J.; Ringe, J.; Warstat, K.; Schmidt-Lucke, C.; Sittinger, M.; Schultheiss, H.P.; Tschope, C. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur. Heart J. 2011, 32, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, K.; Liu, J.; Li, F. Ginkgo biloba extract may alleviate viral myocarditis by suppression of S100A4 and MMP-3. J. Med. Virol. 2019, 91, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, H.P.; Kuhl, U.; Cooper, L.T. The management of myocarditis. Eur. Heart J. 2011, 32, 2616–2625. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, H.P.; Kuhl, U. Why is diagnosis of infectious myocarditis such a challenge? Expert Rev. Anti. Infect Ther. 2011, 9, 1093–1095. [Google Scholar] [CrossRef]
- Lasrado, N.; Reddy, J. An overview of the immune mechanisms of viral myocarditis. Rev. Med. Virol. 2020, 30, 1–14. [Google Scholar] [CrossRef]
- Vargova, A.; Bopegamage, S.; Borsanyiova, M.; Petrovicova, A.; Benkovicova, M. Coxsackievirus infection of mice. II. Viral kinetics and histopathological changes in mice experimentally infected with coxsackievirus B3 by intraperitoneal route. Acta Virol. 2003, 47, 253–257. [Google Scholar]
- Qian, Q.; Xiong, S.; Xu, W. Manipulating intestinal immunity and microflora: An alternative solution to viral myocarditis? Future Microbiol. 2012, 7, 1207–1216. [Google Scholar] [CrossRef]
- Abo-Shaban, T.; Sharna, S.S.; Hosie, S.; Lee, C.Y.Q.; Balasuriya, G.K.; McKeown, S.J.; Franks, A.E.; Hill-Yardin, E.L. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J. Neural Transm. 2023, 130, 269–280. [Google Scholar] [CrossRef]
- Mizoguchi, A.; Mizoguchi, E.; Chiba, C.; Bhan, A.K. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J. Exp. Med. 1996, 184, 707–715. [Google Scholar] [CrossRef]
- Kawanishi, H. Immunocompetence of normal human appendiceal lymphoid cells: In vitro studies. Immunology 1987, 60, 19–28. [Google Scholar]
- Su, N.; Yue, Y.; Xiong, S. Monocytic myeloid-derived suppressor cells from females, but not males, alleviate CVB3-induced myocarditis by increasing regulatory and CD4(+)IL-10(+) T cells. Sci. Rep. 2016, 6, 22658. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Liu, G.; Pan, Z.; Zhang, M.; Ma, Y.; Wei, Q.; Xia, H.; Zhang, R.X.; She, J. Murine Appendectomy Model of Chronic Colitis Associated Colorectal Cancer by Precise Localization of Caecal Patch. J. Vis. Exp. 2019, 150, e59921. [Google Scholar] [CrossRef]
- Collard, M.K.; Tourneur-Marsille, J.; Uzzan, M.; Albuquerque, M.; Roy, M.; Dumay, A.; Freund, J.N.; Hugot, J.P.; Guedj, N.; Treton, X.; et al. The Appendix Orchestrates T-Cell Mediated Immunosurveillance in Colitis-Associated Cancer. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 665–687. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yue, Y.; Xiong, S. Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis. Cardiovasc. Pathol. 2013, 22, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, C.; Xiong, S. IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis. J. Mol. Cell. Cardiol. 2017, 103, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Houston, S.A.; Cerovic, V.; Thomson, C.; Brewer, J.; Mowat, A.M.; Milling, S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 2016, 9, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Bopegamage, S.; Borsanyiova, M.; Vargova, A.; Petrovicova, A.; Benkovicova, M.; Gomolcak, P. Coxsackievirus infection of mice. I. Viral kinetics and histopathological changes in mice experimentally infected with coxsackieviruses B3 and B4 by oral route. Acta Virol. 2003, 47, 245–251. [Google Scholar]
- Pinkert, S.; Dieringer, B.; Klopfleisch, R.; Savvatis, K.; Van Linthout, S.; Pryshliak, M.; Tschope, C.; Klingel, K.; Kurreck, J.; Beling, A.; et al. Early Treatment of Coxsackievirus B3-Infected Animals with Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circ. Heart Fail. 2019, 12, e005250. [Google Scholar] [CrossRef]
- Esfandiarei, M.; McManus, B.M. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. 2008, 3, 127–155. [Google Scholar] [CrossRef]
- Lockhart, A.; Mucida, D.; Parsa, R. Immunity to enteric viruses. Immunity 2022, 55, 800–818. [Google Scholar] [CrossRef] [PubMed]
- Mayassi, T.; Jabri, B. Human intraepithelial lymphocytes. Mucosal Immunol. 2018, 11, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.; Scheffold, A.; Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 2019, 44, 101344. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, D.F.; Bond, M.W.; Mosmann, T.R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 1989, 170, 2081–2095. [Google Scholar] [CrossRef]
- Dennert, R.; Crijns, H.J.; Heymans, S. Acute viral myocarditis. Eur. Heart J. 2008, 29, 2073–2082. [Google Scholar] [CrossRef] [PubMed]
- Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14, 667–685. [Google Scholar] [CrossRef]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef]
- Fenimore, J.; Young, H.A. Regulation of IFN-gamma Expression. Adv. Exp. Med. Biol. 2016, 941, 1–19. [Google Scholar]
- Izcue, A.; Coombes, J.L.; Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 2009, 27, 313–338. [Google Scholar] [CrossRef]
- Davidson, N.J.; Leach, M.W.; Fort, M.M.; Thompson-Snipes, L.; Kuhn, R.; Muller, W.; Berg, D.J.; Rennick, D.M. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 1996, 184, 241–251. [Google Scholar] [CrossRef]
- Barnes, M.J.; Powrie, F. Regulatory T cells reinforce intestinal homeostasis. Immunity 2009, 31, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Morovati, S.; Karimi, N.; Alizadeh, K.; Vanderkamp, S.; Kakish, J.E.; Bridle, B.W.; Karimi, K. Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022, 11, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
Genes | Sequence (5′-3′) |
---|---|
Actin | F: CACTGTCGAGTCGCGTCCA R: TGACCCATTCCCACCATCAC |
CVB3 | F: AACGCCAAAACAACGGATGG R: GATCTGGGTCTGGGGGTAGT |
TNF-α | F: CCCTCACACTCAGATCATCTTCT R: GCTACGACGTGGGCTACAG |
IL-1β | F: GCAACTGTTCCTGAACTCAACT R: TCTTTTGGGGTCCGTCAACT |
IL-6 Il-10 | F: TAGTCCTTCCTACCCCAATTTCC R: TTGGTCCTTAGCCACTCCTTC F: GCTCTTACTGACTGGCATGAG R: CGCAGCTCTAGGAGCATGTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, C.; Xu, W.; Xiong, S. Appendectomy Mitigates Coxsackievirus B3−Induced Viral Myocarditis. Viruses 2023, 15, 1974. https://doi.org/10.3390/v15101974
Niu C, Xu W, Xiong S. Appendectomy Mitigates Coxsackievirus B3−Induced Viral Myocarditis. Viruses. 2023; 15(10):1974. https://doi.org/10.3390/v15101974
Chicago/Turabian StyleNiu, Chengrui, Wei Xu, and Sidong Xiong. 2023. "Appendectomy Mitigates Coxsackievirus B3−Induced Viral Myocarditis" Viruses 15, no. 10: 1974. https://doi.org/10.3390/v15101974
APA StyleNiu, C., Xu, W., & Xiong, S. (2023). Appendectomy Mitigates Coxsackievirus B3−Induced Viral Myocarditis. Viruses, 15(10), 1974. https://doi.org/10.3390/v15101974