Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Design of the Workflow for Molecular Diagnostics and Discrimination between RVA Wild-Type and RVA Vaccine-like Strains
2.3. Discrimination of Wild-Type RVA and RV5
2.4. Discrimination of Wild-Type RVA and RV1
2.5. Detecting Co-Infections with Other AGE Pathogens
3. Results
3.1. Differentiation between Wild-Type RVA and RV5-like Strains
3.2. Differentiation between Wild-Type RVA and RV1-like Strains
3.3. Patients
Patient No. | Sampling Year | Age [mo.] | Gender | Vaccine Used | d.p.v. | RV1/RV5 Detected | Wild-Type RVA Detected | Other AGE Pathogen Detected | ID |
---|---|---|---|---|---|---|---|---|---|
1 | 2009 | 2 | Female | RV1 | 5 | + | − | NV | |
2 | 2009 | 5 | Male | RV5 | n.d. | − | − | NV | |
3 | 2009 | 5 | Female | RV5 | 34 | − | − | Not tested | |
4 | 2009 | 4 | Female | RV5 | >30 | − | − | Not tested | |
5 | 2009 | 4 | Male | RV5 | n.d. | + | − | − | SCID |
6 | 2009 | 6 | Male | RV1 | 76 | − | − | Not tested | |
7 | 2010 | 4 | Male | RV1 | 6 | + | − | − | SCID |
8 | 2010 | 2 | Female | RV5 | 7 | + | − | − | |
9 | 2011 | 2 | Female | RV1 | 16 | + | − | − | |
10 | 2011 | 6 | Male | RV1 | 6 | + | G1P[8] | C. diff. | |
11 | 2011 | 10 | Male | RV1 | n.d. | − | G9P[8] | Not tested | Unspecif. |
12 | 2011 | n.d. | Male | RV5 | n.d. | − | − | Not tested | |
13 | 2011 | n.d. | N.d. | RV5 | n.d. | + | − | − | |
14 | 2012 | 2 | Female | RV5 | 7 | + | − | − | |
15 | 2013 | 5 | Male | RV5 | n.d. | + | − | − | SCID |
16 | 2013 | 2 | Female | RV1 | 5 | − | G9P[8] | Not tested | |
17 | 2013 | 3 | Female | RV5 | 7 | + | − | − | |
18 | 2014 | 6 | Male | RV5 | n.d. | + | − | − | |
19 | 2014 | 3 | Male | RV1 | 7 | + | − | − | |
20 | 2014 | 7 | Female | RV5 | 6 | − | − | Not tested | |
21 | 2014 | 1 | Male | RV1 | 14 | − | − | Not tested | |
22 | 2014 | 4 | Female | RV5 | n.d. | − | − | Not tested | |
23 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
24 | 2014 | 4 | Female | RV1 | n.d. | − | − | Not tested | |
25 | 2014 | 4 | Female | RV1 | 29 | − | − | Not tested | |
26 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
27 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
28 | 2015 | 2 | Male | RV5 | n.d. | + | − | C. diff. | |
29 | 2015 | 5 | Male | RV5 | n.d. | + | − | − | |
30 | 2015 | 2 | Female | RV5 | 3 | + | G9P[8] | EPEC | |
31 | 2015 | 12 | Female | Not vaccinated § | - | − | G9P[8] | Not tested | |
32 | 2015 | 5 | Male | RV5 | n.d. | + | − | − | |
33 | 2015 | 4 | Female | RV5 | n.d. | − | G3Px | Not tested | |
34 | 2015 | 8 | Male | RV5 | n.d. | + | − | − | |
35 | 2015 | 2 | Male | RV1 | 9 | + | − | − | |
36 | 2016 | 9 | Male | RV1 | 200 | + | − | − | SCID |
37 | 2016 | 4 | Male | RV5 | 3 | − | − | − | |
38 | 2016 | 2 | Male | RV1 | 10 | + | − | NV | |
39 | 2016 | 3 | Male | RV5 | 7 | − | − | − | Suspected |
40 | 2016 | 5 | Male | RV1 | 33 | + | − | − | |
41 | 2016 | 1 | Male | RV1 | 17 * | + | − | − | |
42 | 2016 | 4 | Male | RV5 | 34 | − | − | − | |
43 | 2016 | 3 | Female | RV1 | 34 | + | − | − | |
44 | 2016 | 3 | Male | RV1 | 23 | + | − | − | |
45 | 2016 | 2 | Female | RV1 | 17 | + | − | NV | |
46 | 2017 | 3 | Female | RV1 | 30 * | − | − | − | |
47 | 2017 | 6 | Male | RV1 | n.d. | − | − | − | |
48 | 2017 | 5 | Male | RV5 | 5 | + | − | − | |
49 | 2017 | 2 | Male | RV1 | 8 | + | − | − | |
50 | 2017 | 2 | Female | RV5 | 15 | + | − | − | |
51 | 2017 | 2 | Male | RV5 | 9 | + | − | − | |
52 | 2017 | 7 | Female | RV5 | 60 * | + | − | − | SCID |
53 | 2017 | 765 | Female | Not vacc. ° | n.d. | − | G2P[4] | − | |
54 | 2017 | 3 | Male | RV5 | 49 | − | − | − | |
55 | 2017 | 2 | Male | RV5 | 6 | + | − | − | |
56 | 2017 | 2 | Female | RV1 | 12 | − | − | − | |
57 | 2017 | 2 | Female | RV5 | 35 | + | − | − | |
58 | 2017 | 2 | Male | RV1 | 17 | + | − | − | |
59 | 2017 | 2 | Male | RV1 | 15 | + | − | − | |
60 | 2018 | 4 | Female | RV1 | 9 | − | − | NV | |
61 | 2018 | 2 | Male | RV1 | 12 | + | G3P[8] | − | |
62 | 2018 | 352 | Female | Not vacc. §§ | n.d. | − | G3P[8] | − | |
63 | 2018 | 19 | Female | Not vacc. §§ | n.d. | − | G3P[8] | − | |
64 | 2018 | 92 | Female | Not vacc. §§ | n.d. | − | G3P[8] | HAstV | |
65 | 2018 | 2 | Male | RV5 | 10 | + | − | − | |
66 | 2018 | 3 | Female | RV5 | 45 | + | − | − | |
67 | 2018 | 6 | Female | RV1 | 72 | + | − | − | Suspected |
68 | 2019 | 4 | Male | RV1 | 11 | + | − | − | |
69 | 2019 | 2 | Female | RV1 | 7 | − | G2P[4] | − | |
70 | 2019 | 2 | Female | RV1 | 12 | + | − | − | |
71 | 2019 | 7 | Male | RV5 | 195* | + | − | − | |
72 | 2019 | 3 | Male | RV1 | 36 | + | − | − | |
73 | 2019 | <1 | Male | Not vacc. ° | 28 | - | − | − | |
74 | 2019 | 4 | Male | RV1 | 47 | + | − | NV |
3.4. Shedding of Vaccine and Wild-Type Strains
3.5. RVA Shedding in Patients with Immunodeficiencies
3.6. Suspected Horizontal Transmission
3.7. Screening for Co-Infection with Other AGE Pathogens
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, E.; Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desselberger, U. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017, 6, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, E.P.; Ramani, S.; Lopman, B.A.; Church, J.A.; Iturriza-Gomara, M.; Prendergast, A.J.; Grassly, N.C. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2018, 13, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef] [Green Version]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Banyai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef] [Green Version]
- Rotavirus Classification Working Group: List of Accepted RVA Genotypes. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (accessed on 6 July 2022).
- Banga-Mingo, V.; Esona, M.D.; Betrapally, N.S.; Gautam, R.; Jaimes, J.; Katz, E.; Waku-Kouomou, D.; Bowen, M.D.; Gouandjika-Vasilache, I. Whole gene analysis of a genotype G29P[6] human rotavirus strain identified in Central African Republic. BMC Res. Notes 2021, 14, 218. [Google Scholar] [CrossRef]
- Doro, R.; Laszlo, B.; Martella, V.; Leshem, E.; Gentsch, J.; Parashar, U.; Banyai, K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 2014, 28, 446–461. [Google Scholar] [CrossRef]
- Koch, J.; Wiese-Posselt, M.; Remschmidt, C.; Wichmann, O.; Bertelsmann, H.; Garbe, E.; Hengel, H.; Meerpohl, J.J.; Mas Marques, A.; Oppermann, H.; et al. Background paper to the recommendation for routine rotavirus vaccination of infants in Germany. Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 957–984. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Rotavirus vaccines: WHO position paper—July 2021. Weekly Epidemiol. Record. 2021, 96, 219–301. Available online: https://www.who.int/publications/i/item/WHO-WER9628 (accessed on 6 July 2022).
- Soares-Weiser, K.; Bergman, H.; Henschke, N.; Pitan, F.; Cunliffe, N. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2019, 3, CD008521. [Google Scholar] [CrossRef]
- Velazquez, F.R.; Matson, D.O.; Calva, J.J.; Guerrero, L.; Morrow, A.L.; Carter-Campbell, S.; Glass, R.I.; Estes, M.K.; Pickering, L.K.; Ruiz-Palacios, G.M. Rotavirus infections in infants as protection against subsequent infections. N. Engl. J. Med. 1996, 335, 1022–1028. [Google Scholar] [CrossRef]
- Bergman, H.; Henschke, N.; Hungerford, D.; Pitan, F.; Ndwandwe, D.; Cunliffe, N.; Soares-Weiser, K. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2021, 11, CD008521. [Google Scholar] [CrossRef]
- Marquis, A.; Koch, J. Impact of Routine Rotavirus Vaccination in Germany: Evaluation Five Years After Its Introduction. Pediatr. Infect. Dis. J. 2020, 39, e109–e116. [Google Scholar] [CrossRef]
- Dettori, S.; Cortesia, I.; Mariani, M.; Opisso, A.; Mesini, A.; Saffioti, C.; Castagnola, E. Impact of rotavirus vaccine in reducing hospitalization rates in pediatric patients: A single center experience in Italy. Hum. Vaccines Immunother. 2021, 17, 5646–5649. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wu, F.T.; Hsiung, C.A.; Wu, H.S.; Chang, K.Y.; Huang, Y.C. Comparison of virus shedding after lived attenuated and pentavalent reassortant rotavirus vaccine. Vaccine 2014, 32, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Markkula, J.; Hemming, M.; Vesikari, T. Detection of vaccine-derived rotavirus strains in nonimmunocompromised children up to 3-6 months after RotaTeq(R) vaccination. Pediatr. Infect. Dis. J. 2015, 34, 296–298. [Google Scholar] [CrossRef]
- Payne, D.C.; Edwards, K.M.; Bowen, M.D.; Keckley, E.; Peters, J.; Esona, M.D.; Teel, E.N.; Kent, D.; Parashar, U.D.; Gentsch, J.R. Sibling transmission of vaccine-derived rotavirus (RotaTeq) associated with rotavirus gastroenteritis. Pediatrics 2010, 125, e438–e441. [Google Scholar] [CrossRef]
- Rose, T.L.; Miagostovich, M.P.; Leite, J.P. Rotavirus A genotype G1P[8]: A novel method to distinguish wild-type strains from the Rotarix vaccine strain. Mem. Inst. Oswaldo Cruz. 2010, 105, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Roczo-Farkas, S.; Bines, J.E.; Australian Rotavirus Surveillance, G. Australian Rotavirus Surveillance Program: Annual Report, 2018. Commun. Dis. Intell. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- Thomas, S.; Donato, C.M.; Roczo-Farkas, S.; Hua, J.; Bines, J.E.; Australian Rotavirus Surveillance, G. Australian Rotavirus Surveillance Program: Annual Report, 2019. Commun. Dis. Intell. 2021, 45, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Gower, C.M.; Dunning, J.; Nawaz, S.; Allen, D.; Ramsay, M.E.; Ladhani, S. Vaccine-derived rotavirus strains in infants in England. Arch. Dis. Child. 2020, 105, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Whiley, D.M.; Ware, R.S.; Kirkwood, C.D.; Lambert, S.B.; Grimwood, K. Multivalent Rotavirus Vaccine and Wild-type Rotavirus Strain Shedding in Australian Infants: A Birth Cohort Study. Clin. Infect. Dis. 2018, 66, 1411–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japhet, M.O.; Famurewa, O.; Iturriza-Gomara, M.; Adesina, O.A.; Opaleye, O.O.; Niendorf, S.; Bock, C.T.; Mas Marques, A. Group A rotaviruses circulating prior to a national immunization programme in Nigeria: Clinical manifestations, high G12P[8] frequency, intra-genotypic divergence of VP4 and VP7. J. Med. Virol. 2018, 90, 239–249. [Google Scholar] [CrossRef]
- Mas Marques, A.; Diedrich, S.; Huth, C.; Schreier, E. Group A rotavirus genotypes in Germany during 2005/2006. Arch. Virol. 2007, 152, 1743–1749. [Google Scholar] [CrossRef]
- Iturriza-Gomara, M.; Kang, G.; Gray, J. Rotavirus genotyping: Keeping up with an evolving population of human rotaviruses. J. Clin. Virol. 2004, 31, 259–265. [Google Scholar] [CrossRef]
- Oka, T.; Katayama, K.; Hansman, G.S.; Kageyama, T.; Ogawa, S.; Wu, F.T.; White, P.A.; Takeda, N. Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction. J. Med. Virol. 2006, 78, 1347–1353. [Google Scholar] [CrossRef]
- Bernard, H.; Hohne, M.; Niendorf, S.; Altmann, D.; Stark, K. Epidemiology of norovirus gastroenteritis in Germany 2001-2009: Eight seasons of routine surveillance. Epidemiol. Infect. 2014, 142, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Japhet, M.O.; Famurewa, O.; Adesina, O.A.; Opaleye, O.O.; Wang, B.; Hohne, M.; Bock, C.T.; Mas Marques, A.; Niendorf, S. Viral gastroenteritis among children of 0-5 years in Nigeria: Characterization of the first Nigerian aichivirus, recombinant noroviruses and detection of a zoonotic astrovirus. J. Clin. Virol. 2019, 111, 4–11. [Google Scholar] [CrossRef]
- Rosenfeld, L.; Mas Marques, A.; Niendorf, S.; Hofmann, J.; Gratopp, A.; Kuhl, J.S.; Schulte, J.H.; von Bernuth, H.; Voigt, S. Life-threatening systemic rotavirus infection after vaccination in severe combined immunodeficiency (SCID). Pediatr. Allergy Immunol. 2017, 28, 841–843. [Google Scholar] [CrossRef]
- Anderson, E.J. Rotavirus vaccines: Viral shedding and risk of transmission. Lancet Infect. Dis. 2008, 8, 642–649. [Google Scholar] [CrossRef]
- Markkula, J.; Hemming-Harlo, M.; Vesikari, T. Shedding of oral pentavalent bovine-human reassortant rotavirus vaccine indicates high uptake rate of vaccine and prominence of G-type G1. Vaccine 2020, 38, 1378–1383. [Google Scholar] [CrossRef]
- Patel, N.C.; Hertel, P.M.; Estes, M.K.; de la Morena, M.; Petru, A.M.; Noroski, L.M.; Revell, P.A.; Hanson, I.C.; Paul, M.E.; Rosenblatt, H.M.; et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. N. Engl. J. Med. 2010, 362, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Kaplon, J.; Cros, G.; Ambert-Balay, K.; Leruez-Ville, M.; Chomton, M.; Fremy, C.; Pothier, P.; Blanche, S. Rotavirus vaccine virus shedding, viremia and clearance in infants with severe combined immune deficiency. Pediatr. Infect. Dis. J. 2015, 34, 326–328. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Sarkar, R.; Menon, V.K.; Babji, S.; Paul, A.; Rajendran, P.; Sowmyanarayanan, T.V.; Moses, P.D.; Iturriza-Gomara, M.; Gray, J.J.; et al. Rotavirus shedding in symptomatic and asymptomatic children using reverse transcription-quantitative PCR. J. Med. Virol. 2013, 85, 1661–1668. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.; Bar-Zeev, N.; Jere, K.C.; Tate, J.E.; Parashar, U.D.; Nakagomi, O.; Heyderman, R.S.; French, N.; Iturriza-Gomara, M.; Cunliffe, N.A. Determination of a Viral Load Threshold To Distinguish Symptomatic versus Asymptomatic Rotavirus Infection in a High-Disease-Burden African Population. J. Clin. Microbiol. 2015, 53, 1951–1954. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, R.; Tarr, G.A.M.; Xie, J.; Freedman, S.B.; Payne, D.C.; Lee, B.E.; McWilliams, C.; Chui, L.; Ali, S.; Pang, X.; et al. Detection and Clinical Implications of Monovalent Rotavirus Vaccine-Derived Virus Strains in Children with Gastroenteritis in Alberta, Canada. J. Clin. Microbiol. 2021, 59, e0115421. [Google Scholar] [CrossRef]
- Bakare, N.; Menschik, D.; Tiernan, R.; Hua, W.; Martin, D. Severe combined immunodeficiency (SCID) and rotavirus vaccination: Reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine 2010, 28, 6609–6612. [Google Scholar] [CrossRef]
- Palau, M.J.; Vescina, C.M.; Regairaz, L.; Cabanillas, D.; Stupka, J.A.; Degiuseppe, J.I. Persistent infection with a rotavirus vaccine strain in a child suffering from Severe Combined Immunodeficiency in Argentina. Rev. Argent. Microbiol. 2021, 53, 216–219. [Google Scholar] [CrossRef]
- Imade, P.E.; Eghafona, N.O. Viral Agents of Diarrhea in Young Children in Two Primary Health Centers in Edo State, Nigeria. Int. J. Microbiol. 2015, 2015, 685821. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, N.; Humphries, E.M.; Yu, J.M.; Li, S.; Lindsay, B.R.; Stine, O.C.; Duan, Z.J. Aetiology of diarrhoeal disease and evaluation of viral-bacterial coinfection in children under 5 years old in China: A matched case-control study. Clin. Microbiol. Infect. 2016, 22, 381 e9–381 e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.M.; Khurshid, A.; Shaukat, S.; Sharif, S.; Suleman, R.M.; Angez, M.; Nisar, N.; Aamir, U.B.; Naeem, M.; Zaidi, S.S. Human bocavirus in Pakistani children with gastroenteritis. J. Med. Virol. 2015, 87, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Vasco, G.; Trueba, G.; Atherton, R.; Calvopina, M.; Cevallos, W.; Andrade, T.; Eguiguren, M.; Eisenberg, J.N. Identifying etiological agents causing diarrhea in low income Ecuadorian communities. Am. J. Trop. Med. Hyg. 2014, 91, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, R.; Esona, M.D.; Mijatovic-Rustempasic, S.; Ian Tam, K.; Gentsch, J.R.; Bowen, M.D. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix((R)) and RotaTeq((R)) vaccine strains in stool samples. Hum. Vaccines Immunother. 2014, 10, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, C.; Schuster, V.; Liebert, U.G. A hospital based study on inter- and intragenotypic diversity of human rotavirus A VP4 and VP7 gene segments, Germany. J. Clin. Virol. 2011, 50, 136–141. [Google Scholar] [CrossRef]
- Sakon, N.; Miyamoto, R.; Komano, J. An infant with acute gastroenteritis caused by a secondary infection with a Rotarix-derived strain. Eur. J. Pediatr. 2017, 176, 1275–1278. [Google Scholar] [CrossRef]
- Gibory, M.; Bruun, T.; Flem, E.; Dembinski, J.L.; Haltbakk, I.; Stordal, K.; Nordbo, S.A.; Jakobsen, K.; Haarr, E.; Leegaard, T.M.; et al. Genetic diversity of rotavirus strains circulating in Norway before and after the introduction of rotavirus vaccination in children. J. Med. Virol. 2021, 96, 2624–2631. [Google Scholar] [CrossRef]
- Degiuseppe, J.I.; Stupka, J.A. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine 2020, 38, 733–740. [Google Scholar] [CrossRef]
- Kirkwood, C.D. Genetic and antigenic diversity of human rotaviruses: Potential impact on vaccination programs. J. Infect. Dis. 2010, 202, S43–S48. [Google Scholar] [CrossRef]
- Boom, J.A.; Sahni, L.C.; Payne, D.C.; Gautam, R.; Lyde, F.; Mijatovic-Rustempasic, S.; Bowen, M.D.; Tate, J.E.; Rench, M.A.; Gentsch, J.R.; et al. Symptomatic infection and detection of vaccine and vaccine-reassortant rotavirus strains in 5 children: A case series. J. Infect. Dis. 2012, 206, 1275–1279. [Google Scholar] [CrossRef] [Green Version]
- Donato, C.M.; Ch’ng, L.S.; Boniface, K.F.; Crawford, N.W.; Buttery, J.P.; Lyon, M.; Bishop, R.F.; Kirkwood, C.D. Identification of Strains of Rotavirus Vaccine RotaTeq(R) in Infants with Gastroenteritis Following Routine Vaccination. J. Infect. Dis. 2012, 206, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Hallowell, B.D.; Tate, J.; Parashar, U. An overview of rotavirus vaccination programs in developing countries. Expert Rev Vaccines 2020, 19, 529–537. [Google Scholar] [CrossRef]
- Yen, C.; Healy, K.; Tate, J.E.; Parashar, U.D.; Bines, J.; Neuzil, K.; Santosham, M.; Steele, A.D. Rotavirus vaccination and intussusception—Science, surveillance, and safety: A review of evidence and recommendations for future research priorities in low and middle income countries. Hum. Vaccines Immunother. 2016, 12, 2580–2589. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Immergluck, L.; Parker, T.C.; Jain, S.; Leong, T.; Anderson, E.J.; Jerris, R.C. Association between mixed rotavirus vaccination types of infants and rotavirus acute gastroenteritis. Vaccine 2015, 33, 5670–5677. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Than, V.T.; Lim, I.; Kim, W. Differentiation of RotaTeq((R)) vaccine strains from wild-type strains using NSP3 gene in reverse transcription polymerase chain reaction assay. J. Virol. Methods 2016, 237, 72–78. [Google Scholar] [CrossRef]
- Gautam, R.; Mijatovic-Rustempasic, S.; Esona, M.D.; Tam, K.I.; Quaye, O.; Bowen, M.D. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix(R) and RotaTeq(R)) in stool samples. PeerJ 2016, 4, e1560. [Google Scholar] [CrossRef] [Green Version]
- Bucardo, F.; Rippinger, C.M.; Svensson, L.; Patton, J.T. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect. Genet. Evol. 2012, 12, 1282–1294. [Google Scholar] [CrossRef] [Green Version]
- Burke, R.M.; Tate, J.E.; Kirkwood, C.D.; Steele, A.D.; Parashar, U.D. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 2019, 32, 435–444. [Google Scholar] [CrossRef]
- Kirkwood, C.D.; Ma, L.F.; Carey, M.E.; Steele, A.D. The rotavirus vaccine development pipeline. Vaccine 2017, 37, 7328–7335. [Google Scholar] [CrossRef]
Assay | Target | Fragment Length | Primer Name | Primer Sequence |
---|---|---|---|---|
VP4 gene (complements P typing PCR [26]) | RV1-like | 246 bp | RoA83 | CTT GCT TTC ACC AAA TAT CA |
NSP4 gene 1st PCR round | RV5-like | 398 bp | RoA71 | AAA GAT GGA TAA GCT TAC |
(multiplex: RV5, wild-type) | RoA74 | CGT GAA TGC GTT TTA GT | ||
Wild type | 451 to 452 bp | RoA61 | TCT GTT CCG AGA GAG C | |
RoA64c | CTC AYC AGT YGA TCG MAC | |||
RoA64d | CTC GCC AGT TGA TYG MAC | |||
RoA64e | TAR CGT CAR CTG GTY TAG | |||
RoA64f | TAG TGT CAA CCG GTC TAG | |||
NSP4 gene 2nd PCR round | RV5-like | 197 bp | RoA72 | ACA GCA CAT TGC ACA CG |
(nested to 1st PCR round, | RoA73 | TGC CAA TTT CAA CAA CGC | ||
multiplex: RV5, wild type) | Wild type | 119-122 bp | RoA62b | ACA YTA CAY AAA GCD TCA |
RoA63a | CCT GCT ARC KTT AAT AAT GT | |||
RoA63b | TAT CCT GCC AAC TTT AAA AGA G | |||
RoA63c | CCT GCT AGT TTC ART AAC GT |
Detected RVA Strains | All Patients | Vaccinated | Not Vaccinated |
---|---|---|---|
Vaccine strain | 43 | 43 | 0 |
Wild-type strain | 9 | 4 | 5 |
Vaccine + wild-type strain | 3 | 3 | 0 |
Negative | 19 | 18 | 1 |
All | 74 | 68 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobsen, S.; Niendorf, S.; Lorenz, R.; Bock, C.-T.; Mas Marques, A. Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses 2022, 14, 1670. https://doi.org/10.3390/v14081670
Jacobsen S, Niendorf S, Lorenz R, Bock C-T, Mas Marques A. Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses. 2022; 14(8):1670. https://doi.org/10.3390/v14081670
Chicago/Turabian StyleJacobsen, Sonja, Sandra Niendorf, Roswitha Lorenz, C.-Thomas Bock, and Andreas Mas Marques. 2022. "Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination" Viruses 14, no. 8: 1670. https://doi.org/10.3390/v14081670