Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Design of the Workflow for Molecular Diagnostics and Discrimination between RVA Wild-Type and RVA Vaccine-like Strains
2.3. Discrimination of Wild-Type RVA and RV5
2.4. Discrimination of Wild-Type RVA and RV1
2.5. Detecting Co-Infections with Other AGE Pathogens
3. Results
3.1. Differentiation between Wild-Type RVA and RV5-like Strains
3.2. Differentiation between Wild-Type RVA and RV1-like Strains
3.3. Patients
Patient No. | Sampling Year | Age [mo.] | Gender | Vaccine Used | d.p.v. | RV1/RV5 Detected | Wild-Type RVA Detected | Other AGE Pathogen Detected | ID |
---|---|---|---|---|---|---|---|---|---|
1 | 2009 | 2 | Female | RV1 | 5 | + | − | NV | |
2 | 2009 | 5 | Male | RV5 | n.d. | − | − | NV | |
3 | 2009 | 5 | Female | RV5 | 34 | − | − | Not tested | |
4 | 2009 | 4 | Female | RV5 | >30 | − | − | Not tested | |
5 | 2009 | 4 | Male | RV5 | n.d. | + | − | − | SCID |
6 | 2009 | 6 | Male | RV1 | 76 | − | − | Not tested | |
7 | 2010 | 4 | Male | RV1 | 6 | + | − | − | SCID |
8 | 2010 | 2 | Female | RV5 | 7 | + | − | − | |
9 | 2011 | 2 | Female | RV1 | 16 | + | − | − | |
10 | 2011 | 6 | Male | RV1 | 6 | + | G1P[8] | C. diff. | |
11 | 2011 | 10 | Male | RV1 | n.d. | − | G9P[8] | Not tested | Unspecif. |
12 | 2011 | n.d. | Male | RV5 | n.d. | − | − | Not tested | |
13 | 2011 | n.d. | N.d. | RV5 | n.d. | + | − | − | |
14 | 2012 | 2 | Female | RV5 | 7 | + | − | − | |
15 | 2013 | 5 | Male | RV5 | n.d. | + | − | − | SCID |
16 | 2013 | 2 | Female | RV1 | 5 | − | G9P[8] | Not tested | |
17 | 2013 | 3 | Female | RV5 | 7 | + | − | − | |
18 | 2014 | 6 | Male | RV5 | n.d. | + | − | − | |
19 | 2014 | 3 | Male | RV1 | 7 | + | − | − | |
20 | 2014 | 7 | Female | RV5 | 6 | − | − | Not tested | |
21 | 2014 | 1 | Male | RV1 | 14 | − | − | Not tested | |
22 | 2014 | 4 | Female | RV5 | n.d. | − | − | Not tested | |
23 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
24 | 2014 | 4 | Female | RV1 | n.d. | − | − | Not tested | |
25 | 2014 | 4 | Female | RV1 | 29 | − | − | Not tested | |
26 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
27 | 2014 | 3 | Female | RV1 | n.d. | + | − | − | |
28 | 2015 | 2 | Male | RV5 | n.d. | + | − | C. diff. | |
29 | 2015 | 5 | Male | RV5 | n.d. | + | − | − | |
30 | 2015 | 2 | Female | RV5 | 3 | + | G9P[8] | EPEC | |
31 | 2015 | 12 | Female | Not vaccinated § | - | − | G9P[8] | Not tested | |
32 | 2015 | 5 | Male | RV5 | n.d. | + | − | − | |
33 | 2015 | 4 | Female | RV5 | n.d. | − | G3Px | Not tested | |
34 | 2015 | 8 | Male | RV5 | n.d. | + | − | − | |
35 | 2015 | 2 | Male | RV1 | 9 | + | − | − | |
36 | 2016 | 9 | Male | RV1 | 200 | + | − | − | SCID |
37 | 2016 | 4 | Male | RV5 | 3 | − | − | − | |
38 | 2016 | 2 | Male | RV1 | 10 | + | − | NV | |
39 | 2016 | 3 | Male | RV5 | 7 | − | − | − | Suspected |
40 | 2016 | 5 | Male | RV1 | 33 | + | − | − | |
41 | 2016 | 1 | Male | RV1 | 17 * | + | − | − | |
42 | 2016 | 4 | Male | RV5 | 34 | − | − | − | |
43 | 2016 | 3 | Female | RV1 | 34 | + | − | − | |
44 | 2016 | 3 | Male | RV1 | 23 | + | − | − | |
45 | 2016 | 2 | Female | RV1 | 17 | + | − | NV | |
46 | 2017 | 3 | Female | RV1 | 30 * | − | − | − | |
47 | 2017 | 6 | Male | RV1 | n.d. | − | − | − | |
48 | 2017 | 5 | Male | RV5 | 5 | + | − | − | |
49 | 2017 | 2 | Male | RV1 | 8 | + | − | − | |
50 | 2017 | 2 | Female | RV5 | 15 | + | − | − | |
51 | 2017 | 2 | Male | RV5 | 9 | + | − | − | |
52 | 2017 | 7 | Female | RV5 | 60 * | + | − | − | SCID |
53 | 2017 | 765 | Female | Not vacc. ° | n.d. | − | G2P[4] | − | |
54 | 2017 | 3 | Male | RV5 | 49 | − | − | − | |
55 | 2017 | 2 | Male | RV5 | 6 | + | − | − | |
56 | 2017 | 2 | Female | RV1 | 12 | − | − | − | |
57 | 2017 | 2 | Female | RV5 | 35 | + | − | − | |
58 | 2017 | 2 | Male | RV1 | 17 | + | − | − | |
59 | 2017 | 2 | Male | RV1 | 15 | + | − | − | |
60 | 2018 | 4 | Female | RV1 | 9 | − | − | NV | |
61 | 2018 | 2 | Male | RV1 | 12 | + | G3P[8] | − | |
62 | 2018 | 352 | Female | Not vacc. §§ | n.d. | − | G3P[8] | − | |
63 | 2018 | 19 | Female | Not vacc. §§ | n.d. | − | G3P[8] | − | |
64 | 2018 | 92 | Female | Not vacc. §§ | n.d. | − | G3P[8] | HAstV | |
65 | 2018 | 2 | Male | RV5 | 10 | + | − | − | |
66 | 2018 | 3 | Female | RV5 | 45 | + | − | − | |
67 | 2018 | 6 | Female | RV1 | 72 | + | − | − | Suspected |
68 | 2019 | 4 | Male | RV1 | 11 | + | − | − | |
69 | 2019 | 2 | Female | RV1 | 7 | − | G2P[4] | − | |
70 | 2019 | 2 | Female | RV1 | 12 | + | − | − | |
71 | 2019 | 7 | Male | RV5 | 195* | + | − | − | |
72 | 2019 | 3 | Male | RV1 | 36 | + | − | − | |
73 | 2019 | <1 | Male | Not vacc. ° | 28 | - | − | − | |
74 | 2019 | 4 | Male | RV1 | 47 | + | − | NV |
3.4. Shedding of Vaccine and Wild-Type Strains
3.5. RVA Shedding in Patients with Immunodeficiencies
3.6. Suspected Horizontal Transmission
3.7. Screening for Co-Infection with Other AGE Pathogens
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, E.; Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Desselberger, U. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.P.; Ramani, S.; Lopman, B.A.; Church, J.A.; Iturriza-Gomara, M.; Prendergast, A.J.; Grassly, N.C. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2018, 13, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Banyai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef]
- Rotavirus Classification Working Group: List of Accepted RVA Genotypes. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (accessed on 6 July 2022).
- Banga-Mingo, V.; Esona, M.D.; Betrapally, N.S.; Gautam, R.; Jaimes, J.; Katz, E.; Waku-Kouomou, D.; Bowen, M.D.; Gouandjika-Vasilache, I. Whole gene analysis of a genotype G29P[6] human rotavirus strain identified in Central African Republic. BMC Res. Notes 2021, 14, 218. [Google Scholar] [CrossRef]
- Doro, R.; Laszlo, B.; Martella, V.; Leshem, E.; Gentsch, J.; Parashar, U.; Banyai, K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 2014, 28, 446–461. [Google Scholar] [CrossRef]
- Koch, J.; Wiese-Posselt, M.; Remschmidt, C.; Wichmann, O.; Bertelsmann, H.; Garbe, E.; Hengel, H.; Meerpohl, J.J.; Mas Marques, A.; Oppermann, H.; et al. Background paper to the recommendation for routine rotavirus vaccination of infants in Germany. Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 957–984. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Rotavirus vaccines: WHO position paper—July 2021. Weekly Epidemiol. Record. 2021, 96, 219–301. Available online: https://www.who.int/publications/i/item/WHO-WER9628 (accessed on 6 July 2022).
- Soares-Weiser, K.; Bergman, H.; Henschke, N.; Pitan, F.; Cunliffe, N. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2019, 3, CD008521. [Google Scholar] [CrossRef]
- Velazquez, F.R.; Matson, D.O.; Calva, J.J.; Guerrero, L.; Morrow, A.L.; Carter-Campbell, S.; Glass, R.I.; Estes, M.K.; Pickering, L.K.; Ruiz-Palacios, G.M. Rotavirus infections in infants as protection against subsequent infections. N. Engl. J. Med. 1996, 335, 1022–1028. [Google Scholar] [CrossRef]
- Bergman, H.; Henschke, N.; Hungerford, D.; Pitan, F.; Ndwandwe, D.; Cunliffe, N.; Soares-Weiser, K. Vaccines for preventing rotavirus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2021, 11, CD008521. [Google Scholar] [CrossRef]
- Marquis, A.; Koch, J. Impact of Routine Rotavirus Vaccination in Germany: Evaluation Five Years After Its Introduction. Pediatr. Infect. Dis. J. 2020, 39, e109–e116. [Google Scholar] [CrossRef]
- Dettori, S.; Cortesia, I.; Mariani, M.; Opisso, A.; Mesini, A.; Saffioti, C.; Castagnola, E. Impact of rotavirus vaccine in reducing hospitalization rates in pediatric patients: A single center experience in Italy. Hum. Vaccines Immunother. 2021, 17, 5646–5649. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wu, F.T.; Hsiung, C.A.; Wu, H.S.; Chang, K.Y.; Huang, Y.C. Comparison of virus shedding after lived attenuated and pentavalent reassortant rotavirus vaccine. Vaccine 2014, 32, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Markkula, J.; Hemming, M.; Vesikari, T. Detection of vaccine-derived rotavirus strains in nonimmunocompromised children up to 3-6 months after RotaTeq(R) vaccination. Pediatr. Infect. Dis. J. 2015, 34, 296–298. [Google Scholar] [CrossRef]
- Payne, D.C.; Edwards, K.M.; Bowen, M.D.; Keckley, E.; Peters, J.; Esona, M.D.; Teel, E.N.; Kent, D.; Parashar, U.D.; Gentsch, J.R. Sibling transmission of vaccine-derived rotavirus (RotaTeq) associated with rotavirus gastroenteritis. Pediatrics 2010, 125, e438–e441. [Google Scholar] [CrossRef]
- Rose, T.L.; Miagostovich, M.P.; Leite, J.P. Rotavirus A genotype G1P[8]: A novel method to distinguish wild-type strains from the Rotarix vaccine strain. Mem. Inst. Oswaldo Cruz. 2010, 105, 1068–1072. [Google Scholar] [CrossRef][Green Version]
- Roczo-Farkas, S.; Bines, J.E.; Australian Rotavirus Surveillance, G. Australian Rotavirus Surveillance Program: Annual Report, 2018. Commun. Dis. Intell. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- Thomas, S.; Donato, C.M.; Roczo-Farkas, S.; Hua, J.; Bines, J.E.; Australian Rotavirus Surveillance, G. Australian Rotavirus Surveillance Program: Annual Report, 2019. Commun. Dis. Intell. 2021, 45, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Gower, C.M.; Dunning, J.; Nawaz, S.; Allen, D.; Ramsay, M.E.; Ladhani, S. Vaccine-derived rotavirus strains in infants in England. Arch. Dis. Child. 2020, 105, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Whiley, D.M.; Ware, R.S.; Kirkwood, C.D.; Lambert, S.B.; Grimwood, K. Multivalent Rotavirus Vaccine and Wild-type Rotavirus Strain Shedding in Australian Infants: A Birth Cohort Study. Clin. Infect. Dis. 2018, 66, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Japhet, M.O.; Famurewa, O.; Iturriza-Gomara, M.; Adesina, O.A.; Opaleye, O.O.; Niendorf, S.; Bock, C.T.; Mas Marques, A. Group A rotaviruses circulating prior to a national immunization programme in Nigeria: Clinical manifestations, high G12P[8] frequency, intra-genotypic divergence of VP4 and VP7. J. Med. Virol. 2018, 90, 239–249. [Google Scholar] [CrossRef]
- Mas Marques, A.; Diedrich, S.; Huth, C.; Schreier, E. Group A rotavirus genotypes in Germany during 2005/2006. Arch. Virol. 2007, 152, 1743–1749. [Google Scholar] [CrossRef]
- Iturriza-Gomara, M.; Kang, G.; Gray, J. Rotavirus genotyping: Keeping up with an evolving population of human rotaviruses. J. Clin. Virol. 2004, 31, 259–265. [Google Scholar] [CrossRef]
- Oka, T.; Katayama, K.; Hansman, G.S.; Kageyama, T.; Ogawa, S.; Wu, F.T.; White, P.A.; Takeda, N. Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction. J. Med. Virol. 2006, 78, 1347–1353. [Google Scholar] [CrossRef]
- Bernard, H.; Hohne, M.; Niendorf, S.; Altmann, D.; Stark, K. Epidemiology of norovirus gastroenteritis in Germany 2001-2009: Eight seasons of routine surveillance. Epidemiol. Infect. 2014, 142, 63–74. [Google Scholar] [CrossRef]
- Japhet, M.O.; Famurewa, O.; Adesina, O.A.; Opaleye, O.O.; Wang, B.; Hohne, M.; Bock, C.T.; Mas Marques, A.; Niendorf, S. Viral gastroenteritis among children of 0-5 years in Nigeria: Characterization of the first Nigerian aichivirus, recombinant noroviruses and detection of a zoonotic astrovirus. J. Clin. Virol. 2019, 111, 4–11. [Google Scholar] [CrossRef]
- Rosenfeld, L.; Mas Marques, A.; Niendorf, S.; Hofmann, J.; Gratopp, A.; Kuhl, J.S.; Schulte, J.H.; von Bernuth, H.; Voigt, S. Life-threatening systemic rotavirus infection after vaccination in severe combined immunodeficiency (SCID). Pediatr. Allergy Immunol. 2017, 28, 841–843. [Google Scholar] [CrossRef]
- Anderson, E.J. Rotavirus vaccines: Viral shedding and risk of transmission. Lancet Infect. Dis. 2008, 8, 642–649. [Google Scholar] [CrossRef]
- Markkula, J.; Hemming-Harlo, M.; Vesikari, T. Shedding of oral pentavalent bovine-human reassortant rotavirus vaccine indicates high uptake rate of vaccine and prominence of G-type G1. Vaccine 2020, 38, 1378–1383. [Google Scholar] [CrossRef]
- Patel, N.C.; Hertel, P.M.; Estes, M.K.; de la Morena, M.; Petru, A.M.; Noroski, L.M.; Revell, P.A.; Hanson, I.C.; Paul, M.E.; Rosenblatt, H.M.; et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. N. Engl. J. Med. 2010, 362, 314–319. [Google Scholar] [CrossRef]
- Kaplon, J.; Cros, G.; Ambert-Balay, K.; Leruez-Ville, M.; Chomton, M.; Fremy, C.; Pothier, P.; Blanche, S. Rotavirus vaccine virus shedding, viremia and clearance in infants with severe combined immune deficiency. Pediatr. Infect. Dis. J. 2015, 34, 326–328. [Google Scholar] [CrossRef]
- Mukhopadhya, I.; Sarkar, R.; Menon, V.K.; Babji, S.; Paul, A.; Rajendran, P.; Sowmyanarayanan, T.V.; Moses, P.D.; Iturriza-Gomara, M.; Gray, J.J.; et al. Rotavirus shedding in symptomatic and asymptomatic children using reverse transcription-quantitative PCR. J. Med. Virol. 2013, 85, 1661–1668. [Google Scholar] [CrossRef]
- Bennett, A.; Bar-Zeev, N.; Jere, K.C.; Tate, J.E.; Parashar, U.D.; Nakagomi, O.; Heyderman, R.S.; French, N.; Iturriza-Gomara, M.; Cunliffe, N.A. Determination of a Viral Load Threshold To Distinguish Symptomatic versus Asymptomatic Rotavirus Infection in a High-Disease-Burden African Population. J. Clin. Microbiol. 2015, 53, 1951–1954. [Google Scholar] [CrossRef][Green Version]
- Zhuo, R.; Tarr, G.A.M.; Xie, J.; Freedman, S.B.; Payne, D.C.; Lee, B.E.; McWilliams, C.; Chui, L.; Ali, S.; Pang, X.; et al. Detection and Clinical Implications of Monovalent Rotavirus Vaccine-Derived Virus Strains in Children with Gastroenteritis in Alberta, Canada. J. Clin. Microbiol. 2021, 59, e0115421. [Google Scholar] [CrossRef]
- Bakare, N.; Menschik, D.; Tiernan, R.; Hua, W.; Martin, D. Severe combined immunodeficiency (SCID) and rotavirus vaccination: Reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine 2010, 28, 6609–6612. [Google Scholar] [CrossRef]
- Palau, M.J.; Vescina, C.M.; Regairaz, L.; Cabanillas, D.; Stupka, J.A.; Degiuseppe, J.I. Persistent infection with a rotavirus vaccine strain in a child suffering from Severe Combined Immunodeficiency in Argentina. Rev. Argent. Microbiol. 2021, 53, 216–219. [Google Scholar] [CrossRef]
- Imade, P.E.; Eghafona, N.O. Viral Agents of Diarrhea in Young Children in Two Primary Health Centers in Edo State, Nigeria. Int. J. Microbiol. 2015, 2015, 685821. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, N.; Humphries, E.M.; Yu, J.M.; Li, S.; Lindsay, B.R.; Stine, O.C.; Duan, Z.J. Aetiology of diarrhoeal disease and evaluation of viral-bacterial coinfection in children under 5 years old in China: A matched case-control study. Clin. Microbiol. Infect. 2016, 22, 381 e9–381 e16. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Khurshid, A.; Shaukat, S.; Sharif, S.; Suleman, R.M.; Angez, M.; Nisar, N.; Aamir, U.B.; Naeem, M.; Zaidi, S.S. Human bocavirus in Pakistani children with gastroenteritis. J. Med. Virol. 2015, 87, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Vasco, G.; Trueba, G.; Atherton, R.; Calvopina, M.; Cevallos, W.; Andrade, T.; Eguiguren, M.; Eisenberg, J.N. Identifying etiological agents causing diarrhea in low income Ecuadorian communities. Am. J. Trop. Med. Hyg. 2014, 91, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Esona, M.D.; Mijatovic-Rustempasic, S.; Ian Tam, K.; Gentsch, J.R.; Bowen, M.D. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix((R)) and RotaTeq((R)) vaccine strains in stool samples. Hum. Vaccines Immunother. 2014, 10, 767–777. [Google Scholar] [CrossRef]
- Pietsch, C.; Schuster, V.; Liebert, U.G. A hospital based study on inter- and intragenotypic diversity of human rotavirus A VP4 and VP7 gene segments, Germany. J. Clin. Virol. 2011, 50, 136–141. [Google Scholar] [CrossRef]
- Sakon, N.; Miyamoto, R.; Komano, J. An infant with acute gastroenteritis caused by a secondary infection with a Rotarix-derived strain. Eur. J. Pediatr. 2017, 176, 1275–1278. [Google Scholar] [CrossRef]
- Gibory, M.; Bruun, T.; Flem, E.; Dembinski, J.L.; Haltbakk, I.; Stordal, K.; Nordbo, S.A.; Jakobsen, K.; Haarr, E.; Leegaard, T.M.; et al. Genetic diversity of rotavirus strains circulating in Norway before and after the introduction of rotavirus vaccination in children. J. Med. Virol. 2021, 96, 2624–2631. [Google Scholar] [CrossRef]
- Degiuseppe, J.I.; Stupka, J.A. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine 2020, 38, 733–740. [Google Scholar] [CrossRef]
- Kirkwood, C.D. Genetic and antigenic diversity of human rotaviruses: Potential impact on vaccination programs. J. Infect. Dis. 2010, 202, S43–S48. [Google Scholar] [CrossRef]
- Boom, J.A.; Sahni, L.C.; Payne, D.C.; Gautam, R.; Lyde, F.; Mijatovic-Rustempasic, S.; Bowen, M.D.; Tate, J.E.; Rench, M.A.; Gentsch, J.R.; et al. Symptomatic infection and detection of vaccine and vaccine-reassortant rotavirus strains in 5 children: A case series. J. Infect. Dis. 2012, 206, 1275–1279. [Google Scholar] [CrossRef][Green Version]
- Donato, C.M.; Ch’ng, L.S.; Boniface, K.F.; Crawford, N.W.; Buttery, J.P.; Lyon, M.; Bishop, R.F.; Kirkwood, C.D. Identification of Strains of Rotavirus Vaccine RotaTeq(R) in Infants with Gastroenteritis Following Routine Vaccination. J. Infect. Dis. 2012, 206, 377–383. [Google Scholar] [CrossRef]
- Hallowell, B.D.; Tate, J.; Parashar, U. An overview of rotavirus vaccination programs in developing countries. Expert Rev Vaccines 2020, 19, 529–537. [Google Scholar] [CrossRef]
- Yen, C.; Healy, K.; Tate, J.E.; Parashar, U.D.; Bines, J.; Neuzil, K.; Santosham, M.; Steele, A.D. Rotavirus vaccination and intussusception—Science, surveillance, and safety: A review of evidence and recommendations for future research priorities in low and middle income countries. Hum. Vaccines Immunother. 2016, 12, 2580–2589. [Google Scholar] [CrossRef]
- Mohammed, A.; Immergluck, L.; Parker, T.C.; Jain, S.; Leong, T.; Anderson, E.J.; Jerris, R.C. Association between mixed rotavirus vaccination types of infants and rotavirus acute gastroenteritis. Vaccine 2015, 33, 5670–5677. [Google Scholar] [CrossRef]
- Jeong, S.; Than, V.T.; Lim, I.; Kim, W. Differentiation of RotaTeq((R)) vaccine strains from wild-type strains using NSP3 gene in reverse transcription polymerase chain reaction assay. J. Virol. Methods 2016, 237, 72–78. [Google Scholar] [CrossRef]
- Gautam, R.; Mijatovic-Rustempasic, S.; Esona, M.D.; Tam, K.I.; Quaye, O.; Bowen, M.D. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix(R) and RotaTeq(R)) in stool samples. PeerJ 2016, 4, e1560. [Google Scholar] [CrossRef]
- Bucardo, F.; Rippinger, C.M.; Svensson, L.; Patton, J.T. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect. Genet. Evol. 2012, 12, 1282–1294. [Google Scholar] [CrossRef]
- Burke, R.M.; Tate, J.E.; Kirkwood, C.D.; Steele, A.D.; Parashar, U.D. Current and new rotavirus vaccines. Curr. Opin. Infect. Dis. 2019, 32, 435–444. [Google Scholar] [CrossRef]
- Kirkwood, C.D.; Ma, L.F.; Carey, M.E.; Steele, A.D. The rotavirus vaccine development pipeline. Vaccine 2017, 37, 7328–7335. [Google Scholar] [CrossRef]
Assay | Target | Fragment Length | Primer Name | Primer Sequence |
---|---|---|---|---|
VP4 gene (complements P typing PCR [26]) | RV1-like | 246 bp | RoA83 | CTT GCT TTC ACC AAA TAT CA |
NSP4 gene 1st PCR round | RV5-like | 398 bp | RoA71 | AAA GAT GGA TAA GCT TAC |
(multiplex: RV5, wild-type) | RoA74 | CGT GAA TGC GTT TTA GT | ||
Wild type | 451 to 452 bp | RoA61 | TCT GTT CCG AGA GAG C | |
RoA64c | CTC AYC AGT YGA TCG MAC | |||
RoA64d | CTC GCC AGT TGA TYG MAC | |||
RoA64e | TAR CGT CAR CTG GTY TAG | |||
RoA64f | TAG TGT CAA CCG GTC TAG | |||
NSP4 gene 2nd PCR round | RV5-like | 197 bp | RoA72 | ACA GCA CAT TGC ACA CG |
(nested to 1st PCR round, | RoA73 | TGC CAA TTT CAA CAA CGC | ||
multiplex: RV5, wild type) | Wild type | 119-122 bp | RoA62b | ACA YTA CAY AAA GCD TCA |
RoA63a | CCT GCT ARC KTT AAT AAT GT | |||
RoA63b | TAT CCT GCC AAC TTT AAA AGA G | |||
RoA63c | CCT GCT AGT TTC ART AAC GT |
Detected RVA Strains | All Patients | Vaccinated | Not Vaccinated |
---|---|---|---|
Vaccine strain | 43 | 43 | 0 |
Wild-type strain | 9 | 4 | 5 |
Vaccine + wild-type strain | 3 | 3 | 0 |
Negative | 19 | 18 | 1 |
All | 74 | 68 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobsen, S.; Niendorf, S.; Lorenz, R.; Bock, C.-T.; Mas Marques, A. Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses 2022, 14, 1670. https://doi.org/10.3390/v14081670
Jacobsen S, Niendorf S, Lorenz R, Bock C-T, Mas Marques A. Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses. 2022; 14(8):1670. https://doi.org/10.3390/v14081670
Chicago/Turabian StyleJacobsen, Sonja, Sandra Niendorf, Roswitha Lorenz, C.-Thomas Bock, and Andreas Mas Marques. 2022. "Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination" Viruses 14, no. 8: 1670. https://doi.org/10.3390/v14081670
APA StyleJacobsen, S., Niendorf, S., Lorenz, R., Bock, C.-T., & Mas Marques, A. (2022). Differentiation between Wild-Type Group A Rotaviruses and Vaccine Strains in Cases of Suspected Horizontal Transmission and Adverse Events Following Vaccination. Viruses, 14(8), 1670. https://doi.org/10.3390/v14081670