Known and Potential Invertebrate Vectors of Raspberry Viruses
Abstract
:1. Introduction
2. Raspberry
3. Known Plant Viruses Infecting Raspberry
4. Known and Potential Invertebrate Vectors of Raspberry Viruses
4.1. Aphids
4.2. Whiteflies
4.3. Leafhoppers
4.4. Thrips
4.5. Mites
4.6. Plant-Parasitic Nematodes
4.7. The Interaction between Virus Vectors and Other Herbivores
Herbivore Group | Family | Species | References |
---|---|---|---|
Aphids | Aphididae | Acyrthosiphon malvae (Mosley) Amphorophora amurensis (Mordvilko) Amphorophora sensoriata Mason Aphis gossypii Glover Aphis ruborum (Börner & Schilder) Kaltenbachiella pallida (Haliday) Macrosiphum funestum (Macchiati) Matsumuraja hirakurensis Sorin Matsumuraja rubi (Matsumura) Matsumuraja rubifoliae Takahashi Matsumuraja taisetsusana Miyazaki Pemphigus rubiradicis Theobald | [61,62,135] |
Whiteflies | Aleyrodidae | Aleurodicus dispersus Russell Aleyroides lonicerae Walker Bemisia tabaci (Gennadius) Trialeurodes abutiloneus (Haldeman) Trialeurodes vaporariorum (Westwood) | [26,91,92,136] |
Leafhoppers | Cicadellidae | Edwardsiana rosae (Linnaeus) Edwardsiana sociabilis (Ossiannilsson) Empoasca spp. Walsh Evacanthus interruptus (Linnaeus) Macropsis fuscula (Zetterstedt) Platymetopius undatus (De Geer) Typhlocyba pomaria McAtee Ribautiana tenerrima (Herrich-Schaffer) | [26,61,74,137,138,139] |
Treehopper | Membracidae | Centrotus cornutus (Linnaeus) | [26,61,62,63,113,135,140] |
Spittlebug | Aphrophoridae | Philaenus spumarius (Linnaeus) | [26,91,92] |
Capsid bugs | Miridae | Closterotomus fulvomaculatus (De Geer) Lopidea dakota Knight Lygocoris pabulinus (Linnaeus) Lygus lineolaris (Palisot de Beauvois) Lygus rugulipennis Poppius Plagiognathus arbustorum (Fabricius) | [26,61,141,142] |
Shield bugs | Pentatomidae | Cuspicona simplex Walker Dolycoris baccarum (Linnaeus) Nezara viridula (Linnaeus) Palomena prasina (Linnaeus) Pentatoma rufipes (Linnaeus) Plautia affinis Dallas | [61,143] |
Pyrrhocoridae | Dindymus versicolor (Herrich-Schaeffer) | [143] | |
Coreidae | Amblypelta nitida Stål | [143] | |
Scale Insects | Coccidae | Aulacaspis rosae (Bouché) Parthenolecanium corni (Bouché) | [61,144] |
Cicada | Cicadidae | Cicadetta montana (Scopoli) | [113] |
Tree Crickets | Gryllidae | Oecanthus nigricornis (Walker) Oecanthus pellucens (Scopoli) | [63,113] |
Thrips | Thripidae | Frankliniella occidentalis (Pergande) Tenothrips frici (Uzel) Thrips imaginis Bagnall Thrips fuscipennis Haliday Thrips tabaci Lindeman | [26,143,145,146] |
Beetles | Attelabidae | Neocoenorrhinus germanicus (Herbst) | [61] |
Buprestidae | Agrilus cuprescens (Ménétriés) (syn.: A. aurichalceus Redtenbacher) Agrilus ruficollis (Fabricius) Coraebus rubi (Linnaeus) | [61,63,113,140] | |
Byturidae | Byturus rubi Barber Byturus tomentosus (De Geer) Byturus unicolor Say | [26,61,63,113,147] | |
Cantharidae | Cantharis obscura Linnaeus | [61] | |
Cerambycidae | Oberea bimaculata (Olivier) | [63] | |
Chrysomelidae | Batophila aerate (Marsham) Batophila rubi (Paykull) Galerucella sagittariae (Gyllenhal) | [61] | |
Curculionidae | Anthonomus rubi (Herbst) Barypeithes araneiformis (Schrank) Barypeithes pellucidus (Boheman) Mitoplinthus caliginosus (syn.: Plinthus caliginosus) (Fabricius) Otiorhynchus armadillo (Rossi) Otiorhynchus clavipes (Bonsdorff) Otiorhynchus globus Boheman Otiorhynchus ovatus (Linnaeus) Otiorhynchus rugosostriatus (Goeze) Otiorhynchus singularis (Linnaeus) Otiorhynchus sulcatus (Fabricius) Peritelus noxius Boheman Sciaphilus asperatus (Bonsdorff) | [61,63,113,148,149] | |
Elateridae | Agriotes lineatus (Linnaeus) Agriotes obscurus (Linnaeus) | [61] | |
Scarabaeidae | Cetonia aurata (Linnaeus) Cotinis nitida (Linnaeus) Macrodactylus subspinosus (Fabricius) Melolontha melolontha (Linnaeus) Popillia japonica Newman Tropinota hirta (Poda) Amphimallon solstitialis (Linnaeus) | [61,63,113,140] | |
Tenebrionidae | Lagria hirta (Linnaeus) | [61] | |
Moths | Cossidae | Zeuzera pyrina (Linnaeus) | [113] |
Erebidae | Arctia caja (Linnaeus) Euproctis similis (Fuessly) Lymantria dispar (Linnaeus) Orgyia antiqua (Linnaeus) Sphrageidus similis (syn.: Euproctis similis) (Fuessly) Spilosoma lutea (Hufnagel) | [61,113,150] | |
Geometridae | Dysstroma truncata (syn.: Chloroclysta truncata) (Hufnagel) Operophtera bruceata (Hulst) Operophtera brumata (Linnaeus) Operophtera occidentalis (Hulst) 1 | [61,151,152] | |
Hepialidae | Hepialus humuli (Linnaeus) Hepialus lupulinus (Linnaeus) | [61] | |
Incurvariidae | Lampronia rubiella (syn.: Incurvaria rubiella) (Bjerkander) | [61,63,113] | |
Lasiocampidae | Macrothylacia rubi (Linnaeus) Malacosoma neustria (Linnaeus) | [61,153] | |
Nepticulidae | Stigmella aurella (Fabricius) Stigmella fragariella (Heinemann) | [61,150] | |
Noctuidae | Acronicta psi (Linnaeus) Ceramica pisi (Linnaeus) Graphiphora augur (Fabricius) Hydraecia micacea (Esper) Lacanobia oleracea (Linnaeus) Melanchra persicariae (Linnaeus) Naenia typica (Linnaeus) Orthosia gothica (Linnaeus) Orthosia gracilis (Denis & Schiffermüller) Orthosia incerta (Hufnagel) Papaipema nebris (Guenée) Peridroma saucia (Hübner) Xestia c-nigrum (Linnaeus) | [61,63,113,150] | |
Notodontidae | Phalera bucephala (Linnaeus) | [61] | |
Oecophoridae | Carcina quercana (Fabricius) | [61] | |
Saturniidae | Saturnia pavonia (Linnaeus) | [61,113] | |
Schreckensteiniidae | Schreckensteinia festaliella (Hübner) | [61] | |
Sesiidae | Pennisetia hylaeiformis (Laspeyres) Pennisetia bohemica Králíček & Povolný Pennisetia marginata (Harris) Synanthedon bibionipennis (Boisduval) | [61,63,113,154,155] | |
Thyatiridae | Thyatira batis (Linnaeus) | [61] | |
Tischeriidae | Tischeria marginea (syn.: Coptotriche marginea) Haworth | [61] | |
Tortricidae | Acleris laterana (Fabricius) Acleris variegana (Denis & Schiffermüller) Adoxophyes orana (Fischer von Röslerstamm) Archips podana (Scopoli) Archips rosana (Linnaeus) Argyrotaenia citrana (Fernald) Cacoecimorpha pronubana (Hübner) Celypha lacunana (Denis & Schiffermüller) Choristoneura rosaceana (Harris) Clepsis spectrana (Treitschke) Cnephasia asseclana (Denis & Schiffermüller) Cnephasia longana (Haworth) Ditula angustiorana (Haworth) Epiphyas postvittana (Walker) Lozotaenia forsterana (Fabricius) Pandemis cerasana (Hübner) Pandemis heparana (Denis & Schiffermüller) Ptycholoma lecheana (Linnaeus) Notocelia uddmanniana (Linnaeus) Spilonota ocellana (Denis & Schiffermüller) | [61,63,113,140,150,156,157,158] | |
Flies | Agromyzidae | Agromyza potentillae (Kaltenbach) | [61] |
Anthomyiidae | Pegomya rubivora (Coquillett) | [61,63,113] | |
Cecidomyiidae | Dasineura plicatrix (Loew) Resseliella theobaldi (syn.: Thomasiniana theobaldi) (Barnes) Lasioptera rubi (Schrank) | [61,63,113,140,156,159,160] | |
Drosophilidae | Drosophila suzukii (Matsumura) | [26,161] | |
Tipulidae | Nephrotoma appendiculata (Pierre) | [61] | |
Sawflies | Tenthredinidae | Allantus cinctus (Linnaeus) Cladius difformis (Panzer) Empria tridens (Konow) Metallus pumilus (Klug) Monophadnoides geniculatus (Hartig) Priophorus morio (Lepeletier) | [61,63] |
Cephidae | Hartigia cressoni (Kirby) | [162] | |
Gall wasp | Cynipidae | Diastrophus rubi (Bouché) | [61] |
Mites | Tetranychidae | Amphitetranychus viennensis (Zacher) Eotetranychus carpini borealis (Ewing) Eotetranychus frosti (McGregor) Eotetranychus rubiphilus (Reck) Neotetranychus rubi Trägårdh Neotetranychus rubicola Bagdasarian Panonychus ulmi (Koch) Tetranychus mcdanielli McGregor Tetranychus schoenei McGregor Tetranychus turkestani Ugarov & Nikolski Tetranychus urticae Koch | [26,61,63,113,114,156,163,164,165,166] |
Tenuipalpidae | Cenopalpus spinosus (Donnadieu) Pentamerismus erythreus (Ewing) | [164,167] | |
Eriophyidae | Acalitus essigi (Hassan) Acalitus orthomera (Keifer) Aceria silvicola (Canestrini) Epitrimerus gibbosus (Nalepa) | [113,168] | |
Nematodes (Order: Tylenchida) | Anguinidae | Ditylenchus dipsaci (Kühn) | [117] |
Belonolaimidae | Tylenchorhynchus elegans Siddiqi Tylenchorhynchus cylindricus Cobb Tylenchorhynchus claytoni Steiner | [117] | |
Criconematidae | Xenocriconemella macrodora (Taylor) | [117] | |
Heteroderidae | Meloidogyne arenaria (Neal) Meloidogyne hapla Chitwood Meloidogyne incognita (Kofoid & White) Meloidogyne javanica (Treub) | [117,169] | |
Hoplolaimidae | Helicotylenchus digonicus Perry Helicotylenchus dihystera (Cobb) | [117] | |
Pratylenchidae | Pratylenchus crenatus Loof Pratylenchus penetrans (Cobb) Pratylenchus scribneri Steiner Pratylenchus thornei Sher & Allen Pratylenchus vovlasi sp. Nov. Pratylenchus vulnus Allen & Jensen | [63,117,118,169,170] | |
Nematode (Order: Dorylaimida) | Longidoridae | Xiphinema pachtaicum (Tulaganov) Kirjanova | [117] |
5. Pest Management for Better Control of Raspberry Viruses
5.1. Aphids
5.2. Mites
5.3. Nematodes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dietzgen, R.G.; Mann, K.S.; Johnson, K.N. Plant virus-Insect vector interactions: Current and potential future research directions. Viruses 2016, 8, 303. [Google Scholar] [CrossRef]
- Koch, K.G.; Jones, T.-K.L.; Badillo-Vargas, I.E. Anthropod vectors of plant viruses. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 349–379. [Google Scholar]
- Butter, N.S. Insect Vectors and Plant Pathogens; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sarwar, M. Insects as transport devices of plant viruses. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 381–402. [Google Scholar]
- Singh, S.; Awasthi, L.P.; Jangre, A. Transmission of plant viruses in fields through various vectors. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 313–334. [Google Scholar]
- Adams, M.J.; Antoniw, J.F.; Kreuze, J. Virgaviridae: A new family of rod-shaped plant viruses. Arch. Virol. 2009, 154, 1967–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanfaçon, H.; Wellink, J.; Gall, O.L.; Karasev, A.; Vlugt, R.v.d.; Wetzel, T. Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch. Virol. 2009, 154, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.R.; Dasgupta, I.; Fuchs, M.; Iwanami, T.; Karasev, A.V.; Petrzik, K.; Sanfaçon, H.; Tzanetakis, I.; Vlugt, R.v.d.; Wetzel, T.; et al. ICTV virus taxonomy profile: Secoviridae. J. Gen. Virol. 2017, 98, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.G. Plant viruses: Soil-borne. In eLS; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Andret-Link, P.; Fuchs, M. Transmission specificity of plant viruses by vectors. J. Plant Pathol. 2005, 87, 153–165. [Google Scholar]
- Singh, S.; Awasthi, L.P.; Jangre, A.; Nirmalkar, V.K. Transmission of plant viruses through soil-inhabiting nematode vectors. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 292–300. [Google Scholar]
- MacFarlane, S.A.; Robinson, D.J. Transmission of plant viruses by nematodes. In SGM Symposium 63: Microbe-Vector Interactions in Vector-Borne Diseases; Gillespie, S.H., Smith, G.L., Osbourn, A., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 263–285. [Google Scholar]
- Food and Agriculture Organization. FAOSTAT—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 January 2022).
- Padmanabhan, P.; Correa-Betanzo, J.; Paliyath, G. Berries and related fruits. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 364–371. [Google Scholar]
- Raudone, L.; Bobinaite, R.; Janulis, V.; Viskelis, P.; Trumbeckaite, S. Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages. Food Funct. 2014, 5, 1167–1174. [Google Scholar] [CrossRef]
- Bobinaite, R.; Viskelis, P.; Venskutonis, P.R. Chemical composition of raspberry (Rubus spp.) cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 713–731. [Google Scholar]
- Albuquerque, T.G.; Silva, M.A.; Oliveira, M.B.P.P.; Costa, H.S. Analysis, identification, and quantification of anthocyanins in fruit juices. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 693–737. [Google Scholar]
- Heide, O.M.; Sønsteby, A. Physiology of flowering and dormancy regulation in annual- and biennial-fruiting red raspberry (Rubus idaeus L.)—A review. J. Hortic. Sci. Biotechnol. 2011, 85, 433–442. [Google Scholar] [CrossRef]
- Sønsteby, A.; Heide, O.M. Environmental control of growth and flowering of Rubus idaeus L. cv. Glen Ample. Sci. Hortic. 2008, 117, 249–256. [Google Scholar] [CrossRef]
- Carew, J.G.; Gillespie, T.; White, J.; Wainwright, H.; Brennan, R.; Battey, N.H. The control of the annual growth cycle in raspberry. J. Hortic. Sci. Biotechnol. 2000, 75, 495–503. [Google Scholar] [CrossRef]
- Sønsteby, A.; Heide, O.M. Earliness and fruit yield and quality of annual-fruiting red raspberry (Rubus idaeus L.): Effects of temperature and genotype. J. Hortic. Sci. Biotechnol. 2010, 85, 341–349. [Google Scholar] [CrossRef]
- Garcia, A.V.; Perez, S.E.M.; Butsko, M.; Moya, M.S.P.; Sanahuja, A.B. Authentication of “Adelita” raspberry cultivar based on physical properties, antioxidant activity and volatile profile. Antioxidants 2020, 9, 593. [Google Scholar] [CrossRef]
- Knight, V.H. Rubus breeding worldwide and the raspberry breeding programme at Horticultural Research International. East Malling. Jugosl. Voćarstvo 2004, 38, 23–38. [Google Scholar]
- Demchak, K. Small fruit production in high tunnels. HortTechnology 2009, 19, 44–49. [Google Scholar] [CrossRef]
- Hanson, E.; Weihe, M.V.; Schilder, A.C.; Chanon, A.M.; Scheerens, J.C. High tunnel and open field production of floricane- and primocane-fruiting raspberry cultivars. HortTechnology 2011, 21, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Leach, H.; Isaacs, R. Seasonal occurence of key arthropod pests and beneficial insects in Michigan high tunnel and field grown raspberries. Environ. Entomol. 2018, 47, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Lefeuvre, P.; Martin, D.P.; Elena, S.F.; Shepherd, D.N.; Roumagnac, P.; Varsani, A. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 2019, 17, 632–644. [Google Scholar] [CrossRef]
- Baumann, G.; Casper, R.; Converse, R.H. Apple Mosaic Virus in Rubus. In Virus Diseases of Small Fruits; Converse, R.H., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1987; pp. 246–248. [Google Scholar]
- Medina, C.; Matus, J.T.; Zúñiga, M.; San-Martín, C.; Arce-Johnson, P. Occurrence and distribution of viruses in commercial plantings of Rubus, Ribes and Vaccinium species in Chile. Cienc. E Investig. Agrar. 2006, 33, 23–28. [Google Scholar] [CrossRef]
- Martin, R.R.; MacFarlane, S.; Sabanadzovic, S.; Quito, D.; Poudel, B.; Tzanetakis, I.E. Viruses and virus diseases of Rubus. Plant Dis. 2013, 97, 168–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.T.; Wood, G.A. The virus status of raspberries (Rubus idaeus L.) in New Zealand. N. Z. J. Agric. Res. 1979, 22, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Jevremović, D.; Leposavić, A.; Paunović, S.A. Molecular and biological characterization of Black Raspberry Necrosis Virus on red raspberry in Serbia. In Proceedings of the AgriConf 2019: 30th Scientific-Experts Conference of Agriculture and Food Industry, Sarajevo, Bosnia and Herzegovina, 26–27 September 2020; pp. 82–87. [Google Scholar]
- Sanfaçon, H.; Iwanami, T.; Karasev, A.V.; van der Vlugt, R.; Wellink, J.; Wetzel, T.; Yoshikawa, N. Family—Secoviridae. In Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 881–899. [Google Scholar]
- Jones, A.T.; McElroy, F.D.; Brown, D.J.F. Tests for transmission of cherry leaf roll virus using Longidorus, Paralongidorus and Xiphinema nematodes. Ann. Appl. Biol. 1981, 99, 143–150. [Google Scholar] [CrossRef]
- Jones, A.T.; Mayo, M.A.; Henderson, S.J. Biological and biochemical properties of an isolate of cherry rasp leaf virus from red raspberry. Ann. Appl. Biol. 1985, 106, 101–110. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jacques, M.-A.; Miret, J.A.J.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of non-EU viruses of Rubus L. EFSA J. 2020, 18, e05853. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yu, C.; Yin, Y.; Gao, S.; Wang, F.; Jiao, C.; Yao, M. Pepper crop improvement against cucumber mosaic virus (CMV): A review. Front. Plant Sci. 2020, 11, 598798. [Google Scholar] [CrossRef] [PubMed]
- Arogundade, O.; Balogun, O.S.; Kumar, P.L. Seed transmissibility of Cucumber mosaic virus in Capsicum species. Int. J. Veg. Sci. 2019, 25, 146–153. [Google Scholar] [CrossRef]
- Quito-Avila, D.F.; Lightle, D.; Lee, J.; Martin, R.R. Transmission biology of raspberry latent virus, the first aphid-borne reovirus. Phytopathology 2012, 102, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightle, D.M.; Quito-Avila, D.; Martin, R.R.; Lee, J.C. Seasonal phenology of Amphorophora agathonica (Hemiptera: Aphididae) and spread of viruses in red raspberry in Washington. Environ. Entomol. 2014, 43, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Lemmetty, A.; Latvala, S.; Samuilova, O.; Valkonen, J.P.T. Occurrence and genetic diversity of Raspberry leaf blotch virus (RLBV) infecting cultivated and wild Rubus species in Finland. Ann. Appl. Biol. 2015, 168, 122–132. [Google Scholar] [CrossRef]
- Zindović, J.; Marn, M.V.; Plesko, I.M. First report of Raspberry leaf blotch virus in red raspberry in Montenegro. J. Plant Pathol. 2015, 92, 398. [Google Scholar] [CrossRef]
- Converse, R.H. Diseases caused by viruses and viruslike agents. In Compendium of Raspberry and Blackberry Diseases and Insects; Ellis, M.A., Converse, R.H., Williams, R.N., Williamson, B., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 42–58. [Google Scholar]
- Xu, Y.-M.; Zhao, Z.-Q. Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida); Landcare Research: Lincoln, New Zealand, 2019. [Google Scholar]
- Esnard, J.; Zuckerman, B.M. Small Fruits. In Plant and Nematode Interactions; Barker, K.R., Pederson, G.A., Windham, G.L., Bartels, J.M., Eds.; The American Society of Agronomy: Madison, WI, USA, 1998; Volume 36, pp. 685–725. [Google Scholar]
- McGavin, W.J.; Cock, P.J.A.; MacFarlane, S.A. Partial sequence and RT-PCR diagnostic test for the plant rhabdovirus Raspberry vein chlorosis virus. Plant Pathol. 2011, 60, 462–467. [Google Scholar] [CrossRef]
- Diaz-Lara, A.; Mosier, N.J.; Stevens, K.; Keller, K.E.; Martin, R.R. Evidence of Rubus yellow net virus integration into the red raspberry genome. Cytogenet. Genome Res. 2020, 160, 329–334. [Google Scholar] [CrossRef]
- Kalischuk, M.L.; Kawchuk, L.M.; Leggett, F. First report of Rubus yellow net virus on Rubus idaeus in Alberta, Canada. Plant Dis. 2008, 92, 974. [Google Scholar] [CrossRef] [PubMed]
- McGavin, W.J.; MacFarlane, S.A. Rubus chlorotic mottle virus, a new sobemovirus infecting raspberry and bramble. Virus Res. 2009, 139, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Truve, E.; Fargette, D. Sobemovirus. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 1185–1189. [Google Scholar]
- Dullemans, A.M.; Botermans, M.; Kock, M.J.D.d.; Krom, C.E.d.; Lee, T.A.J.v.d.; Roenhorst, J.W.; Stulemeijer, I.J.E.; Verbeek, M.; Westenberg, M.; Vlugt, R.A.A.v.d. Creation of a new genus in the family Secoviridae substantiated by sequence variation of newly identified strawberry latent ringspot virus isolates. Arch. Virol. 2020, 165, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.J.F. The transmission of two strains of Strawberry latent ringspot virus by populations of Xiphinema diversicaudatum (Nematode: Dorylaimoidea). Nematol. Mediterr. 1985, 13, 217–223. [Google Scholar]
- Tzanetakis, I.E.; Mackey, I.C.; Martin, R.R. Strawberry necrotic shock virus is a distinct virus and not a strain of Tobacco streak virus. Arch. Virol. 2004, 149, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Šubíková, V.; Kollerová, E.; Slováková, L. Occurrence of nepoviruses in small fruits and fruit trees in Slovakia. Plant Prot. Sci. 2002, 38, 367–369. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organisation. PM 7/2 (2) Tobacco ringspot virus. Bull. OEPP/EPPO Bull. 2017, 47, 135–145. [Google Scholar] [CrossRef]
- Martin, R.R. Raspberry viruses in Oregon, Washington and British Columbia. Acta Hortic. 1999, 505, 259–262. [Google Scholar] [CrossRef]
- Eastwell, K.C. Ilarvirus. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 46–56. [Google Scholar]
- Zarzyńska-Nowak, A.; Hasiów-Jaroszewska, B.; Budzyńska, D.; Trzmiel, K. Genetic variability of Polish tomato black ring virus isolates and their satellite RNAs. Plant Pathol. 2020, 69, 1034–1041. [Google Scholar] [CrossRef]
- Pinkerton, J.N.; Kraus, J.; Martin, R.R.; Schreiner, R.P. Epidemiology of Xiphinema americanum and Tomato ringspot virus on red raspberry, Rubus idaeus. Plant Dis. 2008, 92, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwar, M. Mite (Acari Acarina) vectors involved in transmission of plant viruses. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 257–273. [Google Scholar]
- Alford, D.V. Pests of Fruit Crops: A Color Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Baker, E.; Dransfield, R.D.; Brightwell, R. Aphids on Berries (Rubus). Available online: https://influentialpoints.com/Gallery/Aphids_on_berries_Rubus.htm (accessed on 28 June 2021).
- Martin, R.R.; Ellis, M.A.; Williamson, B.; Williams, R.N. Compendium of Raspberry and Blackberry Diseases and Pests; APS Press: St. Paul, MN, USA, 2017. [Google Scholar]
- Converse, R.H.; Stace-Smith, R.; Jones, A.T. Aphid-borne disease: Raspberry mosaic. In Virus Disease of Small Fruits; Converse, R.H., Ed.; Faculty Publication in the Biological Sciences: Lincoln, NE, USA, 1987; pp. 168–174. [Google Scholar]
- Lightle, D.M.; Dosett, M.; Backus, E.A.; Lee, J.C. Location of the mechanism of resistance to Amphorophora agathonica (Hemiptera: Aphididae) in red raspberry. Plant Resist. 2012, 105, 1465–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Converse, R.H. Aphid-transmitted diseases: Raspberry mosaic disease complex. In Compendium of Raspberry and Blackberry Diseases and Insects; Ellis, M.A., Converse, R.H., Williams, R.N., Williamson, B., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 43–45. [Google Scholar]
- McGavin, W.J.; Mitchell, C.; Cock, P.J.A.; Wright, K.M.; MacFarlane, S.A. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. J. Gen. Virol. 2012, 93, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, M.; Komuro, Y. Viruses isolated from Narcissus (Narcissus spp.) in Japan V. Arabis mosaic virus. Jpn. J. Phytopathol. 1974, 40, 344–353. [Google Scholar] [CrossRef]
- Bhat, A.I.; Rao, G.P. Characterization of Plant Viruses: Methods and Protocols; Humana Press: New York, NY, USA, 2020. [Google Scholar]
- McMenemy, L.S.; Mitchell, C.; Johnson, S.N. Biology of the European large raspberry aphid (Amphorophora idaei): Its role in virus transmission and resistance breakdown in red raspberry. Agric. For. Entomol. 2009, 11, 61–71. [Google Scholar] [CrossRef]
- McGavin, M.J.; MacFarlane, S.A. Sequence similarities between Raspberry leaf mottle virus, Raspberry leaf spot virus and the closterovirus Raspberry mottle virus. Ann. Appl. Biol. 2010, 156, 439–448. [Google Scholar] [CrossRef]
- McMenemy, L.S.; Hartley, S.E.; MacFarlane, S.A.; Karley, A.J.; Shepherd, T.; Johnson, S.N. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 2012, 144, 56–68. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F.; Hills, M. Morphological and cytological separation of Amphorophora Buckton (Homoptera: Aphididae) feeding on European raspberry and blackberry (Rubus spp.). Bull. Entomol. Res. 1977, 67, 285–296. [Google Scholar] [CrossRef]
- Gordon, S.C.; Woodford, J.A.T.; Birch, A.N.E. Arthropod pests of Rubus in Europe: Pest status, current and future control strategies. J. Hortic. Sci. 1997, 76, 831–862. [Google Scholar] [CrossRef]
- Lightle, D.; Lee, J. Raspberry viruses affect the behavior and performance of Amphorophora agathonica in single and mixed infections. Entomol. Exp. Appl. 2014, 151, 57–64. [Google Scholar] [CrossRef]
- Quito-Avila, D.F.; Lightle, D.; Martin, R.R. Effect of Raspberry bushy dwarf virus, Raspberry leaf mottle virus, and Raspberry latent virus on plant growth and fruit crumbliness in ‘Meeker’ red raspberry. Plant Dis. 2014, 98, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Dossett, M.; Kempler, C. Biotypic diversity and resistance to the raspberry aphid Amphorophora agathonica in Pacific Northwestern North America. J. Am. Soc. Hortic. Sci. 2012, 137, 445–451. [Google Scholar] [CrossRef] [Green Version]
- MacFarlane, S.A.; McGavin, W.J. Sequencing studies for the identification and characterization of new and old Rubus viruses. In Proceedings of the The 21st International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops, Neustadt, Germany, 5–10 July 2010; pp. 39–40. [Google Scholar]
- Stace-Smith, R. Studies on Rubus virus disease in British Columbia: VII. Raspberry vein chlorosis. Can. J. Bot. 1961, 39, 559–565. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. Available online: https://www.cabi.org/isc/ (accessed on 23 July 2021).
- Bolton, A.T. Spread of Raspberry leaf curl virus. Can. J. Plant Sci. 1970, 50, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Dassonville, N.; Thiellemans, T.; Gosset, V. FresaProtect and BerryProtect: Mixes of parasitoids to control all common aphid species on protected soft fruit crops. Product development and case studies from three years of experience. Asp. Appl. Biol. 2013, 119, 79–87. [Google Scholar]
- Jones, D.R. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 2003, 109, 195–219. [Google Scholar] [CrossRef]
- Fiallo-Olive, E.; Pan, L.-L.; Liu, S.-S.; Navas-Castillo, J. Transmission of begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology 2020, 110, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Soumia, P.S.; Pandi, G.G.P.; Krishna, R.; Ansari, W.A.; Jaiswal, D.K.; Verma, J.P.; Singh, M. Whitefly-transmitted plant viruses and their management. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021; pp. 175–196. [Google Scholar]
- Susaimuthu, J.; Gergerich, R.C.; Bray, M.M.; Clay, K.A.; Clark, J.R.; Tzanetakis, I.E.; Martin, R.R. Incidence and ecology of Blackberry yellow vein associated virus. Plant Dis. 2007, 91, 809–813. [Google Scholar] [CrossRef]
- Tzanetakis, I.E.; Martin, R.R.; Wintermantel, W.M. Epidemiology of criniviruses: An emerging problem in world agriculture. Front. Microbiol. 2013, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Poudel, B.; Wintermantel, W.M.; Cortez, A.A.; Ho, T.; Khadgi, A.; Tzanetakis, I.E. Epidemiology of Blackberry yellow vein associated virus. Plant Dis. 2013, 97, 1352–1357. [Google Scholar] [CrossRef] [Green Version]
- Tzanetakis, I.E.; Wintermantel, W.M.; Cortez, A.A.; Barnes, J.E.; Barrett, S.M.; Bolda, M.P.; Martin, R.R. Epidemiology of Strawberry pallidosis-associated virus and occurence of pallidosis disease in North America. Plant Dis. 2006, 90, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Abrahamian, P.E.; Abou-Jawdah, Y. Whitefly-transmitted criniviruses of cucurbits: Current status and future prospects. Virus Dis. 2014, 25, 26–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, J.L.; Toscano, N.C.; Ballmer, G.R. Greenhouse and field evaluation of six novel insecticices against the greenhouse whitefly Trialeurodes vaporariorum on strawberries. Crop Prot. 2002, 21, 49–55. [Google Scholar] [CrossRef]
- Mware, B.; Olubayo, F.; Narla, R.; Songa, J.; Amata, R.; Kyamanywa, S.; Ateka, E.M. First record of spiraling whitefly in coastal Kenya: Emergence, host range, distribution and associatio with Cassava brown streak virus disease. Int. J. Agric. Biol. 2010, 12, 411–415. [Google Scholar]
- Yin, X.-G.; Agyenim-Boateng, K.G.; Lu, J.-N.; Shi, Y.-Z. Review of leafhopper (Empoasca flavescens): A major pest in castor (Ricinus communis). J. Genet. Genom. Sci. 2018, 3, 009. [Google Scholar] [CrossRef]
- Coutinho, J.; Amado, C.; Barateiro, A.; Quartau, J.; Rebelo, T. First record of the leafhopper Asymmetrasca decedens (Homoptera: Cidadellidae) in mainland Portugal. Rev. Cienc. Agrar. 2015, 38, 213–219. [Google Scholar]
- Linck, H.; Reineke, A. Rubus stunt: A review of an important phytoplasma disease in Rubus spp. J. Plant Dis. Prot. 2019, 126, 393–399. [Google Scholar] [CrossRef]
- Vindimian, M.E.; Grassi, A.; Ciccotti, A.; Pollini, C.P.; Terlizzi, F. Epidemiological studies on Rubus stunt (RS) in blackberry orchards located near Trento (Italy). Acta Hortic. 2004, 656, 177–180. [Google Scholar] [CrossRef]
- Linck, H.; Reineke, A. Preliminary survey on putative insect vectors for Rubus stunt phytoplasmas. J. Appl. Entomol. 2019, 143, 328–332. [Google Scholar] [CrossRef]
- Rotenberg, D.; Jacobson, A.L.; Schneweis, D.J.; Whitfield, A.E. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015, 15, 80–89. [Google Scholar] [CrossRef]
- Moritz, G.; Kumm, S.; Mound, L. Tospovirus transmission depends on thrips ontogeny. Virus Res. 2004, 100, 143–149. [Google Scholar] [CrossRef]
- Maris, P.C.; Joosten, N.N.; Goldbach, R.W.; Peters, D. Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis. Virology 2004, 94, 706–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.R. Plant viruses transmitted by thrips. Eur. J. Plant Pathol. 2005, 113, 119–157. [Google Scholar] [CrossRef]
- Mound, L.; Hoddle, M.; Hastings, A. Thysanoptera Californica: Tenothrips Frici. Available online: https://keys.lucidcentral.org/keys/v3/thrips_of_california_2019/the_key/key/california_thysanoptera_2019/Media/Html/entities/tenothrips_frici.htm (accessed on 4 August 2021).
- Mound, L.A.; Masumoto, M. The genus Thrips (Thysanoptera, Thripidae) in Australia, New Caledonia and New Zealand. Zootaxa 2005, 1020, 1–64. [Google Scholar] [CrossRef]
- Nakahara, S. The genus Thrips Linnaeus (Thysanoptera: Thripidae) of the New World. U. S. Dep. Agric. Tech. Bull. 1994, 1822, 1–183. [Google Scholar]
- Ghotbi, T.; Baniameri, V. Identification and determination of transmission ability of thrips species as vectors of two tospovirus, tomato spotted wilt virus (TSWV) and impatiens necrotic spot virus (INSV) on ornamental plants in Iran. In Proceedings of the Integrated Control in Protected Crops, Mediterranean Climate, Murcia, Spain, 14–18 May 2006; p. 297. [Google Scholar]
- Day, M.F.; Irzykiewicz, H. Physiological studies on thrips in relation to transmission of tomato spotted wilt virus. Aust. J. Biol. Sci. 1954, 7, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoddle, M.S.; Mound, L.A.; Paris, D. Thrips of California: Thrips Imaginis. Available online: https://keys.lucidcentral.org/keys/v3/thrips_of_california/identify-thrips/key/california-thysanoptera-2012/Media/Html/browse_species/Thrips_imaginis.htm#:~:text=imaginis%20has%20not%20been%20found,setae%20on%20the%20abdominal%20sternites (accessed on 20 January 2022).
- Riley, D.G.; Joseph, S.V.; Srinivasan, R.; Diffie, S. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2011, 2, 1–10. [Google Scholar] [CrossRef]
- Milne, J.R.; Walter, G.H. The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards—A precondition for thrips-mediated transmission via infected pollen. Ann. Appl. Biol. 2003, 142, 291–298. [Google Scholar] [CrossRef]
- Converse, R.H. Tobacco Streak. In Compendium of Raspberry and Blackberry Diseases and Insects; Ellis, M.A., Converse, R.H., Williams, R.N., Williamson, B., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 54–55. [Google Scholar]
- Morison, G.D. A review of British glasshouse Thysanoptera. Trans. Entomol. Soc. Lond. 1957, 109, 467–520. [Google Scholar] [CrossRef]
- Lim, J.-R.; Choi, S.-U.; Kim, J.-H.; Lee, K.-K.; Cheong, S.-S.; Ryu, J.; Hwang, C.-Y. Occurrence of insect pests in Rubus coreanus Miquel. Korean J. Appl. Entomol. 2010, 49, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Totic, I. Raspberry breeding and protection against disease and pests. Bulg. J. Agric. Sci. 2014, 20, 391–404. [Google Scholar]
- Maric, I.; Marcic, D.; Petanovic, R.; Auger, P. Biodiversity of spider mites (Acari: Tetranychidae) in Serbia: A review, new records and key to all known species. Acarologia 2017, 58, 3–14. [Google Scholar] [CrossRef]
- Gordon, S.C.; Taylor, C.E. Biology of the raspberry leaf and bud mite (Phyllocoptes (Eriophyes) gracilis Nal.) Eriophyidae in Scotland. J. Hortic. Sci. 1976, 51, 501–508. [Google Scholar] [CrossRef]
- Gordon, S.C. Dryberry mite. In Compendium of Raspberry and Blackberry Diseases and Insects; Ellis, M.A., Converse, R.H., Williams, R.N., Williamson, B., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 70–71. [Google Scholar]
- Mohamedova, M.; Samaliev, H. Phytonematodes associated with red raspberry (Rubus idaeus L.) in Bulgaria. J. Entomol. Zool. Stud. 2018, 6, 123–127. [Google Scholar]
- Walters, T.W.; Pinkerton, J.N.; Riga, E.; Zasada, I.A.; Particka, M.; Yoshida, H.A.; Ishida, C. Managing plant-parasitic nematodes in established red raspberry fields. HortTechnology 2009, 19, 762–768. [Google Scholar] [CrossRef]
- Taylor, C.E.; Thomas, P.R.; Converse, R.H. An outbreak of Arabis Mosaic Virus and Xiphinema diversicaudatum (Micoletzky) in Scotland. Plant Pathol. 1966, 15, 170–174. [Google Scholar] [CrossRef]
- Brown, D.J.F.; MacFarlane, S.A.; Furlanetto, C.; Oliveira, C.M.G. Transmissão de vírus por nematóides parasitos de plantas. In Revisão Anual de Patologia de Plantas; Luz, W.C., Ed.; Sociedade Brasileira de Fitopatologia: Brasília, Brazil, 2004; Volume 12, pp. 201–242. [Google Scholar]
- Trudgill, D.L.; Brown, D.J.F.; McNamara, D.G. Methods and criteria for assessing the transmission of plant viruses by longidorid nematodes. Rev. Nématol. 1983, 6, 133–141. [Google Scholar]
- Brown, D.J.F.; Halbrendt, M.; Jones, A.T.; Taylor, C.E.; Lamberti, F. An appraisal of some aspects of the ecology of nematode vectors of plant viruses. Nematol. Mediterr. 1994, 22, 253–263. [Google Scholar]
- Sanny, A. Response of blackberry cultivars to nematode transmission of Tobacco ringspot virus. Inq. Univ. Ark. Undergrad. Res. J. 2003, 4, 106–109. [Google Scholar]
- Fuchs, M.; Abawi, G.S.; Marsella-Herrick, P.; Cox, R.; Cox, K.D.; Carroll, J.E.; Martin, R.R. Occurence of Tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York state. J. Plant Pathol. 2010, 92, 451–459. [Google Scholar]
- Jones, A.T. Cherry Rasp Leaf Virus in Rubus. In Virus Disease of Small Fruits; Converse, R.H., Ed.; United States Department of Agriculture: Corvallis, OR, USA, 1987; pp. 241–243. [Google Scholar]
- Converse, R.H. Nematode-Transmitted Diseases. In Compendium of Raspberry and Blackberry Diseases and Insects; Ellis, M.A., Converse, R.H., Williams, R.N., Williamson, B., Eds.; APS Press: St. Paul, MN, USA, 1991; pp. 47–50. [Google Scholar]
- EFSA Panel on Plant Health. Scientific opinion on the risk to plant health posed by Arabis mosaic virus, Raspberry ringspot virus, Strawberry latent ringspot virus and Tomato black ring virus to the EU territory with the identification and evaluation of risk reduction options. ESFA J. 2013, 11, 3377. [Google Scholar] [CrossRef]
- Crowder, D.W.; Li, J.; Borer, E.T.; Finke, D.L.; Sharon, R.; Pattemore, D.E.; Medlock, J. Species interactions affect the spread of vector-borne plant pathogens independent of transmission mode. Ecology 2019, 100, e02782. [Google Scholar] [CrossRef] [PubMed]
- Reitz, S.R.; Trumble, J.T. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 2002, 47, 435–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisholm, P.J.; Eigenbrode, S.D.; Clark, R.E.; Basu, S.; Crowder, D.W. Plant-mediated interactions between a vector and a non-vector herbivore promote the spread of a plant virus. Proc. R. Soc. B 2019, 286, 20191383. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Yang, F.; Yao, Q.; Peng, Z.; Tong, H.; Wang, S.; Xie, W.; Wu, Q.; Zhang, Y. A non-vector herbivore indirectly increases the transmission of a vector-borne virus by reducing plant chemical defences. Funct. Ecol. 2020, 34, 1091–1101. [Google Scholar] [CrossRef]
- McKenzie, S.W.; Vanbergen, A.J.; Hails, R.S.; Jones, T.H.; Johnson, S.N. Reciprocal feeding facilitation between above- and below-ground herbivores. Biol. Lett. 2013, 9, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Hoysted, G.A.; Lilley, C.J.; Field, K.J.; Dickinson, M.; Hartley, S.E.; Urwin, P.E. A plant-feeding nematode indirectly increases the fitness of an aphid. Front. Plant Sci. 2017, 8, 1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotzampigikis, A.; Hristova, D.; Tasheva-Terzieva, E. Virus-vector relationship between potato virus Y—PVY and Myzus persicae Sulzer. Bulg. J. Agric. Sci. 2009, 15, 557–565. [Google Scholar]
- Holman, J. The plants and their aphids. In Host Plant Catalog of Aphids: Palaearctic Region; Springer: Berlin, Germany, 2009; pp. 675–1140. [Google Scholar]
- Malumphy, C.; Ostrauskas, H.; Pye, D. New data on whiteflies (Hemiptera: Aleyrodidae) of Estonia, Latvia and Lithuania, including the first records of rhododendron whitefly Massilieurodes chittendeni (Laing). Zool. Ecol. 2013, 23, 1–4. [Google Scholar] [CrossRef]
- Somerfield, K.G. Insects of economic significance recently recorded in New Zealand. N. Z. J. Agric. Res. 1977, 20, 421–428. [Google Scholar] [CrossRef]
- Ossiannilsson, F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: The Families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae); Brill: Leiden, The Netherlands, 1981; Volume 7. [Google Scholar]
- Ossiannilsson, F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 3: The Family Cicadellidae: Deltocephalinae, Catalogue, Literature and Index; Brill: Leiden, The Netherlands, 1983; Volume 7. [Google Scholar]
- Hrncic, S.; Radonjic, S. A survey of raspberry pests in Montenegro. Acta Hortic. 2011, 946, 243–246. [Google Scholar] [CrossRef]
- Blommers, L.H.M.; Vaal, F.W.N.M.; Helsen, H.H.M. Life history, seasonal adaptations and monitoring of common green capsid Lygocoris pabulinus (L.) (Hem., Miridae). J. Appl. Entomol. 1997, 121, 389–398. [Google Scholar] [CrossRef]
- Wheeler, A.G. Blackberry and Raspberry. In Biology of the Plant Bugs (Hemiptera: Miridae): Pests, Predators, Opportunists; Comstock Publishing Associates: Ithaca, NY, USA, 2001; p. 249. [Google Scholar]
- Coombs, M.; Khan, S.A. Population levels and natural enemies of Plautia affinis Dallas (Hemiptera: Pentatomidae) on raspberry, Rubus idaeus L., in south-eastern Queensland. Aust. J. Entomol. 1998, 37, 125–129. [Google Scholar] [CrossRef]
- Masten Milek, T.; Simala, M.; Novak, A. Species of genus Aulacaspis Cockerell, 1836 (Hemiptera: Coccoidae: Diaspididae) in Croatia, with emphasis on Aulacaspis yasumatsui Takagi, 1977. Entomol. Croat. 2008, 12, 55–64. [Google Scholar]
- Mateus, C. Os tripes na cultura de framboesa (Thrips in raspberry culture). In Proceedings of the V Colóquio National da Produção de Pequenos Frutos, Oeiras, Portugal, 14–15 October 2016; pp. 177–182. [Google Scholar]
- van Frankenhuyzen, A. Schadelijke en Nuttige Insekten en Mijten in Aardbei en Houtig Kleinfruit; Nederlandse Fruittelers Organisatie: Zoetermeer, The Netherlands, 1996. [Google Scholar]
- Malloch, G.; Fenton, B.; Goodrich, M.A. Phylogeny of raspberry beetles and other Byturidae (Coleoptera). Insect Mol. Biol. 2001, 10, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.E.; Hartley, S.E.; Brennan, R.M.; MacKenzie, K.; Johnson, S.N. Oviposition and feeding behaviour by the vine weevil Otiorhynchus sulcatus on red raspberry: Effects of cultivars and plant nutritional status. Agric. For. Entomol. 2011, 14, 157–163. [Google Scholar] [CrossRef]
- Gordon, S.C.; Woodford, J.A.T.; Grassi, A.; Zini, M.; Tuovinen, T.; Lindqvist, I.; McNicol, J.W. Monitoring and importancce of wingless weevils (Otiorhynchus spp.) in European red raspberry production. IOBC/WPRS Bull.-Integr. Plant Prot. Orchard.-Soft Fruits 2003, 26, 55–60. [Google Scholar]
- Allen, J.; Pope, T.; Bennison, J.; ADAS; Birch, N.; Gordon, S. Midge, Mite and Caterpillar Pests of Cane Fruit Crops. Available online: https://projectblue.blob.core.windows.net/media/Default/Horticulture/Publications/Midge,%20mite%20and%20caterpillar%20pests%20of%20cane%20fruit%20crops.pdf (accessed on 9 December 2021).
- Fitzpatrick, S.M.; Troubridge, J.T.; Peterson, B. Distribution of European winter moth, Operophtera brumata (L.), Bruce spanworm, O. bruceata (Hulst), in the lower Fraser Valley, British Columbia. J. Entomol. Soc. Br. Columbia 1991, 88, 39–45. [Google Scholar]
- Kúti, Z.; Hirka, A.; Hufnagel, L.; Ladányi, M. A population dynamical model of Operophtera brumata, L. extended by climatic factors. Appl. Ecol. Environ. Res. 2011, 9, 433–447. [Google Scholar] [CrossRef]
- Velcheva, N.V. Externaly-feeding lepidopteran complex on untreated apple trees—Species composition, domination and occurrence. Plant Sci. 2011, 48, 475–483. [Google Scholar]
- Leska, W. Studies of the biology of the raspberry crown borer (clearwing)—Bembecia hylaeiformis Lasp. (Lepidoptera, Aegeriidae, syn. Sessidae). Pol. Pismo Entomol. 1970, 40, 841–855. [Google Scholar]
- Johnson, D.T.; Kim, S.-H.S. Biology, Identification and Management of Raspberry Crown Borer. Available online: https://www.uaex.edu/publications/PDF/FSA-7082.pdf (accessed on 25 June 2021).
- Tartanus, M.; Malusa, E.; Labanowska, B.H.; Labanowski, G. Survey of pests and beneficial fauna in organic small fruits plantations. In Proceedings of the 8th International Conference on Organic Fruit Growing, Hohenheim, Germany, 19–21 February 2018; pp. 221–224. [Google Scholar]
- Dang, P.T.; Duncan, R.W.; Fitzpatrick, S. Occurrence of two palaearctic species of Clepsis Guenee, C. spectrana Treitschke and C. consimilana (Hubner) (Tortricidae), in British Columbia, Canada. J. Lepid. Soc. 1996, 50, 321–328. [Google Scholar]
- Li, S.Y.; Fitzpatrick, S.M. Monitoring obliquebanded leafroller (Lepidoptera: Tortricidae) larvae and adults of raspberries. Environ. Entomol. 1997, 26, 170–177. [Google Scholar] [CrossRef]
- Vetek, G.; Thuroczy, C.; Penzes, B. Interrelationship between the raspberry cane midge, Resseliella theobaldi (Diptera: Cecidomyiidae) and its parasitoid, Aprostocetus epicharmus (Hymenoptera: Eulophidae). Bull. Entomol. Res. 2006, 96, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Yegorenkova, E.; Yefremova, Z. Notes on Lasioptera rubi (Schrank) (Diptera: Cecidomyiidae) and its larval parasitoids (Hymenoptera) on raspberries in Russia. Entomol. Fenn. 2016, 27, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Schoneberg, T.; Lewis, M.T.; Burrack, H.J.; Grieshop, M.; Isaacs, R.; Rendon, D.; Rogers, M.; Rothwell, N.; Sial, A.A.; Walton, V.M.; et al. Cultural control of Drosophilla suzukii in small fruit- current and pending tactics in the U.S. Insects 2021, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Bolda, M.P.; Bettiga, L.J. Agriculture: Caneberries Pest Management Guidelines: Raspberry Horntail. Available online: https://www2.ipm.ucanr.edu/agriculture/caneberries/Raspberry-Horntail/ (accessed on 18 January 2022).
- Cagle, L.R. Biology of a red spider mite, Panonychus sp., on raspberry in Virginia. Ann. Entomol. Soc. Am. 1962, 55, 373–378. [Google Scholar] [CrossRef]
- Tjosvold, S.A.; Karlik, J.F. Insects and other animals/Mites. In Encyclopedia of Rose Science; Roberts, A.V., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 431–437. [Google Scholar]
- Seeman, O.D.; Beard, J.J. Identification of exotic pest and Australian native and naturalised species of Tetranychus (Acari: Tetranychidae). Zootaxa 2011, 2961, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Bounfour, M.; Tanigoshi, L.K. Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Ann. Entomol. Soc. Am. 2001, 94, 400–404. [Google Scholar] [CrossRef]
- Castro, E.B.; Mesa, N.C.; Feres, R.J.F.; Moraes, G.J.d.; Ochoa, R.; Beard, J.J.; Demite, P.R. Tenuipalpidae Database. Available online: http://www.tenuipalpidae.ibilce.unesp.br (accessed on 11 November 2021).
- Shi, A. Eriophyoid mites of blackberries and raspberries (Rubus spp.). IOBC/WPRS Bull.-Integr. Plant Prot. Orchard.-Soft Fruits 2000, 23, 63–65. [Google Scholar]
- Mokrini, F.; Laasli, S.-E.; Iraqui, D.; Wifaya, A.; Mimuoni, A.; Erginbas-Orakci, G.; Imren, M.; Dababat, A.A. Distribution and occurrence of plant-parasitic nematodes associated with raspberry (Rubus idaeus) in Souss-Massa region of Morocco: Relationship with soil-physico-chemical factors. Russ. J. Nematol. 2019, 27, 107–121. [Google Scholar] [CrossRef]
- Troccoli, A.; Fanelli, E.; Castillo, P.; Liébanas, G.; Cotroneo, A.; Luca, F.D. Pratylenchus vovlasi sp. Nov. (Nematode: Pratylenchidae) on raspberries in North Italy with a morphometrical and molecular characterization. Plants 2021, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Troubridge, J.T.; Fitzpatrick, S.M. A revision of the North American Operophtera (Lepidoptera: Geometridae). Can. Entomol. 1993, 125, 379–397. [Google Scholar] [CrossRef]
- Wilson, C.R. Applied Plant Virology; CABi: Wallingford, UK, 2014. [Google Scholar]
- Sargent, D.J.; Fernandez-Fernandez, F.; Rys, A.; Knight, V.H.; Simpson, D.W.; Tobutt, K.R. Mapping of A1 conferring resistance to the aphd Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol. 2007, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, A.N.E.; Jones, A.T.; Fenton, B.; Malloch, G.; Geoghegan, I.; Gordon, S.C.; Hillier, J.; Begg, G. Resistance-breaking raspberry aphid biotypes: Contraints to sustainable control through plant breeding. Acta Hortic. 2002, 585, 315–317. [Google Scholar] [CrossRef]
- Bouska, C.; Edmunds, B. Blackberry and raspberry pests. In 2021 PNW Insect Management Handbook; Kaur, N., Ed.; Oregon State University Extension Service: Portland, OR, USA, 2021; pp. 9–22. [Google Scholar]
- Isaacs, R.; Birch, A.N.E.; Martin, R.R. IPM Case Studies: Berry Crops. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2017; pp. 620–631. [Google Scholar]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Union, E. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF (accessed on 22 November 2021).
- Foster, S.P.; Devine, G.; Devonshire, A.L. Insecticide Resistance. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CAB International: Wallingford, UK, 2017; pp. 426–447. [Google Scholar]
- Jones, A.T. Virus diseases of Ribes and Rubus in Europe and approaches to their control. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits 2004, 27, 1–8. [Google Scholar]
- Lightle, D.; Lee, J. Large Raspberry Aphid, Amphorophora agathonica. Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw648.pdf (accessed on 27 September 2021).
- Mitchell, C.; Johnson, S.N.; Gordon, S.C.; Birch, A.N.E.; Hubbard, S.F. Combining plant resistance and a natural enemy to control Amphorophora idaei. BioControl 2010, 55, 321–327. [Google Scholar] [CrossRef]
- Elmekabaty, M.R.; Hussain, M.A.; Ansari, M.A. Evaluation of commercial and non-commercial strains of entomopathogenic fungi against large raspberry aphid Amphorophora idaei. BioControl 2019, 65, 91–99. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Plaza, M.; Montserrat, M.; Marcos-García, M.Á.; Fereres, A. Effect of UV-absorbing nets on the performance of the aphid predator Sphaerophoria rueppellii (Diptera: Syrphidae). Insects 2020, 11, 166. [Google Scholar] [CrossRef] [Green Version]
- Behrens, N.S.; Zhu, J.; Coats, J.R. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants. J. Econ. Entomol. 2012, 105, 890–895. [Google Scholar] [CrossRef] [Green Version]
- George, D.R.; Banfield-Zanin, J.A.; Collier, R.; Cross, J.; Birch, A.N.E.; Gwynn, R.; O’Neill, T. Identification of novel pesticides for use against glasshouse invertebrate pests in UK tomatoes and peppers. Insects 2015, 6, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Hardie, J.; Isaacs, R.; Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. Methyl salicylate and (-)-(1R,5S)-myrtenal area plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 1994, 20, 2847–2855. [Google Scholar] [CrossRef] [PubMed]
- Hooks, C.R.R.; Fereres, A. Protecting crops from non-persistently aphid-transmitted viruses: A review on the use of barrier plants as a management tool. Virus Res. 2006, 120, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Milenković, S.N.; Marčić, D. Raspberry leaf and bud mite (Phyllocoptes gracilis) in Serbia: The pest status and control options. Acta Hortic. 2012, 946, 253–256. [Google Scholar] [CrossRef]
- Linder, C.; Baroffio, C.; Mittaz, C. Post harvest control of the eriophyoid mite Phyllocoptes gracilis on raspberries. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits 2008, 39, 85–87. [Google Scholar]
- Trandem, N.; Vereide, R.; Bøthun, M. Late autumn treatment with sulphur or rapeseed oil as part of a management strategy for the raspberry leaf and bud mite Phyllocoptes gracilis in ‘Glen Ample’. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits 2011, 70, 113–119. [Google Scholar]
- Irving, R.; Bennison, J.; Umpelby, R. Biocontrol in Soft Fruit; Horticultural Development Company: Warwickshire, UK, 2012. [Google Scholar]
- Tixier, M.-S. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: A review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front. Ecol. Evol. 2018, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Sengonca, C.; Khan, I.A.; Blaeser, P. The predatory mite Typhlodromus pyri (Acari: Phytoseiidae) causes feeding scars on leaves and fruits of apple. Exp. Appl. Acarol. 2004, 33, 45–53. [Google Scholar] [CrossRef]
- Zemek, R. The effect of powdery mildew on the number of prey consumed by Typhlodromus pyri (Acari: Phytoseiidae). J. Appl. Entomol. 2005, 129, 211–216. [Google Scholar] [CrossRef]
- Andika, I.B.; Wei, S.; Cao, C.; Salaipeth, L.; Kondo, H.; Sun, L. Phytopathogenic fungus hosts a plant virus: A naturally occuring cross-kingdom viral infection. Proc. Natl. Acad. Sci. USA 2017, 114, 12267–12272. [Google Scholar] [CrossRef] [Green Version]
- Minguely, C.; Norgrove, L.; Burren, A.; Christ, B. Biological control of the raspberry eriophyoid mite Phyllocoptes gracilis using entomopathogenic fungi. Horticulturae 2021, 7, 54. [Google Scholar] [CrossRef]
- López-Aranda, J.M.; Domínguez, P.; Miranda, L.; Santos, B.d.l.; Talavera, M.; Daugovish, O.; Soria, C.; Chamorro, M.; Medina, J.J. Fumigant use for strawberry production in Europe: The current landscape and solutions. Int. J. Fruit Sci. 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Bernard, G.C.; Egnin, M.; Bonsi, C. The impact of plant-parasitic nematodes on agriculture and methods of control. In Nematology: Concepts, Diagnosis and Control; Shah, M.M., Mahamood, M., Eds.; IntechOpen Limited: London, UK, 2017. [Google Scholar]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on control methods against plant parasitic nematodes applied in southern member states (C zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- Abd-Elgawad, M. Biological control agents of plant-parasitic nematodes. Egypt. J. Biol. Pest Control 2016, 26, 423–429. [Google Scholar]
- Kanwar, R.S.; Patil, J.A.; Yadav, S. Prospects of using predatory nematodes in biological control for plant parasitic nematodes—Review. Biol. Control 2021, 160, 104668. [Google Scholar] [CrossRef]
- Khan, A.; Saifullah; Iqbal, M.; Hussain, S. Organic control of phytonematodes with Pleurotus species. Pak. J. Nematol. 2014, 32, 155–161. [Google Scholar]
Virus Name | Family | Genus | MoT 1 | References |
---|---|---|---|---|
Apple mosaic virus (ApMV) | Bromoviridae | Ilarvirus | P, S | [28] |
Arabis mosaic virus (ArMV) | Secoviridae | Nepovirus | S, N | [29,30] |
Blackberry virus Y (BVY) | Potyviridae | Brambyvirus | U | [30] |
Black raspberry necrosis virus (BRNV) | Secoviridae | Sadwavirus | A | [31,32,33] |
Cherry leaf roll virus (CLRV) | Secoviridae | Nepovirus | P, S, N | [31,34] |
Cherry rasp leaf virus (CRLV) | Secoviridae | Cheravirus | N | [35,36] |
Cucumber mosaic virus (CMV) | Bromoviridae | Cucumovirus | A, S | [29,37,38] |
Raspberry bushy dwarf virus (RBDV) | unassigned | Idaeovirus | P, S | [29,31] |
Raspberry latent virus (RpLV) | unassigned | unassigned | A | [39,40] |
Raspberry leaf blotch virus (RLBV) | Fimoviridae | Emaravirus | M | [41,42] |
Raspberry leaf curl virus (RpLCV) | unassigned | unassigned | A | [30,43] |
Raspberry leaf mottle virus (RLMV) | Closteroviridae | Closterovirus | A | [31,40] |
Raspberry ringspot virus (RpRSV) | Secoviridae | Nepovirus | P, S, N | [30,44,45] |
Raspberry vein chlorosis virus (RVCV) | Rhabdoviridae | Cytorhabdovirus | A | [31,46] |
Rubus yellow net virus (RYNV) | Caulimoviridae | Badnavirus | A | [47,48] |
Sowbane mosaic virus (SoMV) | Solemoviridae | Sobemovirus | P, S | [30,49,50] |
Strawberry latent ringspot virus (SLRSV) | Secoviridae | Stralarivirus | N | [30,51,52] |
Strawberry necrotic shock virus (SNSV) | Bromoviridae | Ilarvirus | P, S | [36,53] |
Tobacco ringspot virus (TRSV) | Secoviridae | Nepovirus | S, N | [54,55] |
Tobacco streak virus (TSV) | Bromoviridae | Ilarvirus | P, S | [53,56,57] |
Tomato black ring virus (TBRV) | Secoviridae | Nepovirus | P, S, N | [30,44,58] |
Tomato ringspot virus (ToRSV) | Secoviridae | Nepovirus | P, S, N | [29,30,59] |
Vector Group | Family | Species | References |
---|---|---|---|
Aphids | Aphididae | Amphorophora idaei (Börner) Amphorophora rubi (Kaltenbach) Amphorophora agathonica Hottes Aphis idaei van der Goot Aphis rubicola Oestlund Macrosiphum euphorbiae (Thomas) Macrosiphum fragariae (syn. Sitobion fragariae) (Walker) Myzus ornatus Laing | [30,31,46,61,62,63,64,65,66] |
Mites | Eriophyidae | Phyllocoptes gracilis (Nalepa) 1 | [41,67] |
Nematodes | Longidoridae | Longidorus attenuatus Hooper Longidorus elongatus (de Man) Thorne & Swanger Longidorus macrosoma Hooper Xiphinema americanum Cobb Xiphinema bakeri Williams Xiphinema diversicaudatum (Micoletzky) Thorne Xiphinema vuittenezi Luc, Lima, Weischer & Flegg | [44,54,59,63,68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.L.; Trandem, N.; Fránová, J.; Hamborg, Z.; Blystad, D.-R.; Zemek, R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses 2022, 14, 571. https://doi.org/10.3390/v14030571
Tan JL, Trandem N, Fránová J, Hamborg Z, Blystad D-R, Zemek R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses. 2022; 14(3):571. https://doi.org/10.3390/v14030571
Chicago/Turabian StyleTan, Jiunn Luh, Nina Trandem, Jana Fránová, Zhibo Hamborg, Dag-Ragnar Blystad, and Rostislav Zemek. 2022. "Known and Potential Invertebrate Vectors of Raspberry Viruses" Viruses 14, no. 3: 571. https://doi.org/10.3390/v14030571