HIV and SARS-CoV-2 Pathogenesis and Vaccine Development
Conflicts of Interest
References
- Shapiro, S.Z. HIV Vaccine Development: 35 Years of Experimenting in the Funding of Biomedical Research. Viruses 2020, 12, 1469. [Google Scholar] [CrossRef]
- Trovato, M.; Ibrahim, H.; Isnard, S.; Le Grand, R.; Bosquet, N.; Borhis, G.; Richard, Y. Distinct Features of Germinal Center Reactions in Macaques Infected by SIV or Vaccinated with a T-Dependent Model Antigen. Viruses 2021, 13, 263. [Google Scholar] [CrossRef]
- Biswas, S.; Chen, E.; Gao, Y.; Lee, S.; Hewlett, I.; Devadas, K. Modulation of HIV Replication in Monocyte-Derived Macrophages (MDM) by Host Antiviral Factors Secretory Leukocyte Protease Inhibitor and Serpin Family C Member 1 Induced by Steroid Hormones. Viruses 2022, 14, 95. [Google Scholar] [CrossRef]
- Sealy, R.; Dayton, B.; Finkelstein, D.; Hurwitz, J. Harnessing Natural Mosaics: Antibody-Instructed, Multi-Envelope HIV-1 Vaccine Design. Viruses 2021, 13, 884. [Google Scholar] [CrossRef]
- Esteban, I.; Pastor-Quiñones, C.; Usero, L.; Plana, M.; García, F.; Leal, L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021, 13, 501. [Google Scholar] [CrossRef]
- Fleury, H.; Caldato, S.; Recordon-Pinson, P.; Thebault, P.; Guidicelli, G.-L.; Hessamfar, M.; Morlat, P.; Bonnet, F.; Visentin, J. ART-Treated Patients Exhibit an Adaptive Immune Response against the HFVAC Peptides, a Potential HIV-1 Therapeutic Vaccine (Provir/Latitude45 Study). Viruses 2020, 12, 1256. [Google Scholar] [CrossRef]
- Lapaillerie, D.; Charlier, C.; Fernandes, H.; Sousa, S.; Lesbats, P.; Weigel, P.; Favereaux, A.; Guyonnet-Duperat, V.; Parissi, V. In Silico, In Vitro and In Cellulo Models for Monitoring SARS-CoV-2 Spike/Human ACE2 Complex, Viral Entry and Cell Fusion. Viruses 2021, 13, 365. [Google Scholar] [CrossRef]
- Mamedov, T.; Yuksel, D.; Ilgın, M.; Gurbuzaslan, I.; Gulec, B.; Yetiskin, H.; Uygut, M.A.; Pavel, S.T.I.; Ozdarendeli, A.; Mammadova, G.; et al. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021, 13, 1595. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021, 13, 1687. [Google Scholar] [CrossRef]
- Jearanaiwitayakul, T.; Apichirapokey, S.; Chawengkirttikul, R.; Limthongkul, J.; Seesen, M.; Jakaew, P.; Trisiriwanich, S.; Sapsutthipas, S.; Sunintaboon, P.; Ubol, S. Peritoneal Administration of a Subunit Vaccine Encapsulated in a Nanodelivery System Not Only Augments Systemic Responses against SARS-CoV-2 but Also Stimulates Responses in the Respiratory Tract. Viruses 2021, 13, 2202. [Google Scholar] [CrossRef]
- Carossino, M.; Kenney, D.; O’Connell, A.K.; Montanaro, P.; Tseng, A.E.; Gertje, H.P.; Grosz, K.A.; Ericsson, M.; Huber, B.R.; Kurnick, S.A.; et al. Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses 2022, 14, 535. [Google Scholar] [CrossRef]
- Meekins, D.A.; Gaudreault, N.N.; Richt, J.A. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021, 13, 1993. [Google Scholar] [CrossRef]
- Tournier, J.-N.; Kononchik, J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021, 13, 569. [Google Scholar] [CrossRef]
- Cruz-Lemini, M.; Ferriols Perez, E.; de la Cruz Conty, M.L.; Caño Aguilar, A.; Encinas Pardilla, M.B.; Prats Rodríguez, P.; Muner Hernando, M.; Forcen Acebal, L.; Pintado Recarte, P.; Medina Mallen, M.D.C.; et al. Obstetric Outcomes of SARS-CoV-2 Infection in Asymptomatic Pregnant Women. Viruses 2021, 13, 112. [Google Scholar] [CrossRef]
- Plummer, M.M.; Pavia, C.S. COVID-19 Vaccines for HIV-Infected Patients. Viruses 2021, 13, 1890. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Trunfio, M.; Sasset, L.; Leoni, D.; Castelli, E.; Menzo, S.L.; Gardin, S.; Putaggio, C.; Brundu, M.; Garzotto, P.; et al. Factors Associated with Severe COVID-19 and Post-Acute COVID-19 Syndrome in a Cohort of People Living with HIV on Antiretroviral Treatment and with Undetectable HIV RNA. Viruses 2022, 14, 493. [Google Scholar] [CrossRef]
- Garbuglia, A.R.; Minosse, C.; Del Porto, P. mRNA- and Adenovirus-Based Vaccines against SARS-CoV-2 in HIV-Positive People. Viruses 2022, 14, 748. [Google Scholar] [CrossRef]
- González-Domenech, C.; Pérez-Hernández, I.; Gómez-Ayerbe, C.; Ramos, I.V.; Palacios-Muñoz, R.; Santos, J. A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis. Viruses 2021, 13, 931. [Google Scholar] [CrossRef]
- Royston, L.; Isnard, S.; Lin, J.; Routy, J.-P. Cytomegalovirus as an Uninvited Guest in the Response to Vaccines in People Living with HIV. Viruses 2021, 13, 1266. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleury, H. HIV and SARS-CoV-2 Pathogenesis and Vaccine Development. Viruses 2022, 14, 2598. https://doi.org/10.3390/v14122598
Fleury H. HIV and SARS-CoV-2 Pathogenesis and Vaccine Development. Viruses. 2022; 14(12):2598. https://doi.org/10.3390/v14122598
Chicago/Turabian StyleFleury, Herve. 2022. "HIV and SARS-CoV-2 Pathogenesis and Vaccine Development" Viruses 14, no. 12: 2598. https://doi.org/10.3390/v14122598
APA StyleFleury, H. (2022). HIV and SARS-CoV-2 Pathogenesis and Vaccine Development. Viruses, 14(12), 2598. https://doi.org/10.3390/v14122598