Concentration of SARS-CoV-2-Infected Cell Culture Supernatants for Detection of Virus-like Particles by Scanning Electron Microscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Production
2.2. Capture and Concentration of Viral Particles
2.3. Scanning Electron Microscopy
2.4. Immunocytochemistry and Fluorescence Confocal Laser Scanning Microscopy
2.5. SARS-CoV-2-like Particle Quantification and Image Processing of SEM and CLSM Images
3. Results
3.1. Scanning Electron Microscopy (SEM) of SARS-CoV-2-like Particles from SARS-CoV-2-Infected Cell Culture Supernatants
3.2. Testing of Different Coating Molecules for the Capture of SARS-CoV-2 Virus Particles on Lab-Tek
3.3. Testing of Centrifugation for SARS-CoV-2 Virus Particle Capture in Shell Vials
3.4. CLSM Microscopy of Fluorescently Stained SARS-CoV-2-Infected Cell Culture Supernatants after Concentration in Shell Vials
3.5. Perspectives for Automated Processing of SEM and CLSM Images of SARS-CoV-2-Infected Cell Culture Supernatants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Deroubaix, A.; Kramvis, A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front. Cell. Infect. Microbiol. 2022, 12, 794264. [Google Scholar] [CrossRef] [PubMed]
- Gelderblom, H.R.; Madeley, D. Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must? Viruses 2018, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Colson, P.; Lagier, J.-C.; Baudoin, J.-P.; Khalil, J.B.; La Scola, B.; Raoult, D. Ultrarapid diagnosis, microscope imaging, genome sequencing, and culture isolation of SARS-CoV-2. Eur. J. Clin. Microbiol. 2020, 39, 1601–1603. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S.; Horne, R. A negative staining method for high resolution electron microscopy of viruses. Biochim. et Biophys. Acta 1959, 34, 103–110. [Google Scholar] [CrossRef]
- Almeida, J.D.; Tyrrell, D.A.J. The Morphology of Three Previously Uncharacterized Human Respiratory Viruses that Grow in Organ Culture. J. Gen. Virol. 1967, 1, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.K. Electron microscopy for the rapid detection and identification of viruses from clinical specimens. Yale J. Boil. Med. 1989, 62, 115–130. [Google Scholar]
- Hazelton, P.R.; Gelderblom, H.R. Electron Microscopy for Rapid Diagnosis of Emerging Infectious Agents1. Emerg. Infect. Dis. 2003, 9, 294–303. [Google Scholar] [CrossRef]
- Roingeard, P. Viral detection by electron microscopy: Past, present and future. Biol. Cell 2008, 100, 491–501. [Google Scholar] [CrossRef]
- Goldsmith, C.S.; Miller, S.E. Modern Uses of Electron Microscopy for Detection of Viruses. Clin. Microbiol. Rev. 2009, 22, 552–563. [Google Scholar] [CrossRef]
- Laue, M. Electron Microscopy of Viruses. In Methods in cell biology; Academic Press: Cambridge, MA, USA, 2010; Volume 96, pp. 1–20. [Google Scholar] [CrossRef]
- Ackermann, H.-W.; Heldal, M. Basic electron microscopy of aquatic viruses. In Manual of Aquatic Viral Ecology; Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., Eds.; ASLO: Waco, TX, USA, 2010; pp. 182–192. [Google Scholar]
- Richert-Pöggeler, K.R.; Franzke, K.; Hipp, K.; Kleespies, R.G. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front. Microbiol. 2019, 9, 3255. [Google Scholar] [CrossRef] [PubMed]
- Leigh, K.E.; Modis, Y. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Interface Focus 2021, 11, 20210019. [Google Scholar] [CrossRef] [PubMed]
- Cortese, M.; Laketa, V. Advanced microscopy technologies enable rapid response to SARS-CoV -2 pandemic. Cell. Microbiol. 2021, 23, e13319. [Google Scholar] [CrossRef] [PubMed]
- Sukmana, N.C.; Sugiarto, S.; Shinogi, J.; Yamamoto, A.; Higashiura, A.; Sakaguchi, T.; Sadakane, M. Thermal Structure Transformation and Application as a Negative Staining Reagent for SARS-CoV-2 Observation of Methylammonium Vanadate. Eur. J. Inorg. Chem. 2022, 26, e202200322. [Google Scholar] [CrossRef]
- Ruska, H.; von Borries, B.; Ruska, E. Die Bedeutung der Übermikroskopie für die Virusforschung. Archiv f Virusforschung 1940, 1, 155–169. [Google Scholar] [CrossRef]
- Kruger, D.; Schneck, P.; Gelderblom, H. Helmut Ruska and the visualisation of viruses. Lancet 2000, 355, 1713–1717. [Google Scholar] [CrossRef]
- Goldsmith, C.S.; Ksiazek, T.G.; Rollin, P.; Comer, J.A.; Nicholson, W.L.; Peret, T.C.; Erdman, D.D.; Bellini, W.J.; Harcourt, B.H.; Rota, P.A.; et al. Cell Culture and Electron Microscopy for Identifying Viruses in Diseases of Unknown Cause. Emerg. Infect. Dis. 2013, 19, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Le Bideau, M.; Wurtz, N.; Baudoin, J.-P.; La Scola, B. Innovative Approach to Fast Electron Microscopy Using the Example of a Culture of Virus-Infected Cells: An Application to SARS-CoV-2. Microorganisms 2021, 9, 1194. [Google Scholar] [CrossRef]
- Petrova, I.D.; Zaitsev, B.N.; Taranov, O.S. Concentration of viruses and electron microscopy. Vavilov J. Genet. Breed. 2020, 24, 276–283. [Google Scholar] [CrossRef]
- Aebi, U.; Pollard, T.D. A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J. Electron Microsc. Tech. 1987, 7, 29–33. [Google Scholar] [CrossRef]
- Hammond, G.W.; Hazelton, P.R.; Chuang, I.; Klisko, B. Improved detection of viruses by electron microscopy after direct ultracentrifuge preparation of specimens. J. Clin. Microbiol. 1981, 14, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.; Kohn, A. Immunosorbent Electron Microscopy For Detection Of Viruses. Adv. Virus Res. 1984, 29, 169–194. [Google Scholar] [CrossRef] [PubMed]
- Barth, O.M. The use of polylysine during negative staining of viral suspensions. J. Virol. Methods 1985, 11, 23–27. [Google Scholar] [CrossRef]
- Lavazza, A.; Tittarelli, C.; Cerioli, M. The Use of Convalescent Sera in Immune-Electron Microscopy to Detect Non-Suspected/New Viral Agents. Viruses 2015, 7, 2683–2703. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, X.; Cao, W.; Wang, C.; Feng, J.; Duan, J.; Xie, S. Probing the Structure of the Sars Coronavirus Using Scanning Electron Microscopy. Antivir. Ther. 2004, 9, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Golding, C.G.; Lamboo, L.L.; Beniac, D.R.; Booth, T.F. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep. 2016, 6, 26516. [Google Scholar] [CrossRef] [PubMed]
- Caldas, L.A.; Carneiro, F.A.; Higa, L.M.; Monteiro, F.L.; da Silva, G.P.; da Costa, L.J.; Durigon, E.L.; Tanuri, A.; de Souza, W. Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy. Sci. Rep. 2020, 10, 16099. [Google Scholar] [CrossRef]
- Robinot, R.; Hubert, M.; de Melo, G.D.; Lazarini, F.; Bruel, T.; Smith, N.; Levallois, S.; Larrous, F.; Fernandes, J.; Gellenoncourt, S.; et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nat. Commun. 2021, 12, 4354. [Google Scholar] [CrossRef]
- Haddad, G.; Bellali, S.; Fontanini, A.; Francis, R.; La Scola, B.; Levasseur, A.; Bou Khalil, J.; Raoult, D. Rapid Scanning Electron Microscopy Detection and Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2 and Other Respiratory Viruses. Front. Microbiol. 2020, 11, 596180. [Google Scholar] [CrossRef]
- Brahim Belhaouari, D.; Fontanini, A.; Baudoin, J.P.; Haddad, G.; Le Bideau, M.; Bou Khalil, J.Y.; Raoult, D.; La Scola, B. The Strengths of Scanning Electron Microscopy in Deciphering SARS-CoV-2 Infectious Cycle. Front. Microbiol. 2020, 11, 2014. [Google Scholar] [CrossRef]
- Belhaouari, D.B.; Wurtz, N.; Grimaldier, C.; Lacoste, A.; de Souza, G.P.; Penant, G.; Hannat, S.; Baudoin, J.-P.; La Scola, B. Microscopic Observation of SARS-Like Particles in RT-qPCR SARS-CoV-2 Positive Sewage Samples. Pathogens 2021, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Laue, M.; Kauter, A.; Hoffmann, T.; Möller, L.; Michel, J.; Nitsche, A. Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Sci. Rep. 2021, 11, 3515. [Google Scholar] [CrossRef] [PubMed]
- Kandi, M.R.; Mohammadnejad, J.; Ardestani, M.S.; Zabihollahi, R.; Soleymani, S.; Aghasadeghi, M.R.; Baesi, K. Inherent anti-HIV activity of biocompatible anionic citrate-PEG-citrate dendrimer. Mol. Biol. Rep. 2019, 46, 143–149. [Google Scholar] [CrossRef] [PubMed]
- McAlarney, T.; Apostolski, S.; Lederman, S.; Latov, N. Characteristics of HIV-1 gp120 glycoprotein binding to glycolipids. J. Neurosci. Res. 1994, 37, 453–460. [Google Scholar] [CrossRef]
- Greig, A.S.; Bouillant, A.M. Binding effects of concanavalin A on a coronavirus. Can. J. Comp. Med. Rev. Can. Med. Comp. 1977, 41, 122–126. [Google Scholar]
- Jang, H.; Lee, D.-H.; Kang, H.G.; Lee, S.J. Concanavalin A targetingN-linked glycans in spike proteins influence viral interactions. Dalton Trans. 2020, 49, 13538–13543. [Google Scholar] [CrossRef]
- Davis, H.E.; Morgan, J.R.; Yarmush, M.L. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys. Chem. 2002, 97, 159–172. [Google Scholar] [CrossRef]
- Almand, E.A.; Goulter, R.M.; Jaykus, L.-A. Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H. J. Microbiol. Methods 2016, 128, 88–95. [Google Scholar] [CrossRef]
- Sanders, S.K.; Alexander, E.L.; Braylan, R.C. A high-yield technique for preparing cells fixed in suspension for scanning electron microscopy. J. Cell Biol. 1975, 67, 476–480. [Google Scholar] [CrossRef]
- Petersen, J.D.; Lu, J.; Fitzgerald, W.; Zhou, F.; Blank, P.S.; Matthies, D.; Zimmerberg, J. Unique Aggregation of Retroviral Particles Pseudotyped with the Delta Variant SARS-CoV-2 Spike Protein. Viruses 2022, 14, 1024. [Google Scholar] [CrossRef] [PubMed]
- Robb, N.C. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2022, 1868, 166347. [Google Scholar] [CrossRef]
- Baudoin, J.-P.; Hari, S.; Sahmi-Bounsiar, D.; Traore, S.; Bou-Khalil, J.; Andréani, J.; La Scola, B. Correlative light electron microscopy of giant viruses with the SECOM system. New Microbes New Infect. 2018, 26, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, D.J.; Sintorn, I.-M. TEM virus images: Benchmark dataset and deep learning classification. Comput. Methods Programs Biomed. 2021, 209, 106318. [Google Scholar] [CrossRef] [PubMed]
- Shiaelis, N.; Peto, L.; McMahon, A.; Hepp, C.; Bickerton, E.; Favard, C.; Muriaux, D.; Andersson, M.; Vaughan, A.; Matthews, P.; et al. Amplification-Free Detection of Viruses in Minutes using Single-Particle Imaging and Machine Learning. Biophys. J. 2021, 120, 195a. [Google Scholar] [CrossRef]
- Barre, A.; Van Damme, E.J.M.; Klonjkowski, B.; Simplicien, M.; Sudor, J.; Benoist, H.; Rougé, P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022, 11, 339. [Google Scholar] [CrossRef]
- Chan, J.F.-W.; Oh, Y.J.; Yuan, S.; Chu, H.; Yeung, M.-L.; Canena, D.; Chan, C.C.-S.; Poon, V.K.-M.; Zhang, A.J.; Cai, J.-P.; et al. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Rep. Med. 2022, 3(10), 100774. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Bideau, M.; Robresco, L.; Baudoin, J.-P.; La Scola, B. Concentration of SARS-CoV-2-Infected Cell Culture Supernatants for Detection of Virus-like Particles by Scanning Electron Microscopy. Viruses 2022, 14, 2388. https://doi.org/10.3390/v14112388
Le Bideau M, Robresco L, Baudoin J-P, La Scola B. Concentration of SARS-CoV-2-Infected Cell Culture Supernatants for Detection of Virus-like Particles by Scanning Electron Microscopy. Viruses. 2022; 14(11):2388. https://doi.org/10.3390/v14112388
Chicago/Turabian StyleLe Bideau, Marion, Lea Robresco, Jean-Pierre Baudoin, and Bernard La Scola. 2022. "Concentration of SARS-CoV-2-Infected Cell Culture Supernatants for Detection of Virus-like Particles by Scanning Electron Microscopy" Viruses 14, no. 11: 2388. https://doi.org/10.3390/v14112388
APA StyleLe Bideau, M., Robresco, L., Baudoin, J.-P., & La Scola, B. (2022). Concentration of SARS-CoV-2-Infected Cell Culture Supernatants for Detection of Virus-like Particles by Scanning Electron Microscopy. Viruses, 14(11), 2388. https://doi.org/10.3390/v14112388