Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Features
3.2. Long COVID Features
3.3. Risk Factors
3.4. Temporal Trend of Persistent Symptoms
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Weekly Epidemiological Update on COVID-19-8 June 2022, 95th ed.; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Smith, M.P. Estimating total morbidity burden of COVID-19: Relative importance of death and disability. J. Clin. Epidemiol. 2022, 142, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, N. Long COVID: How to define it and how to manage it. BMJ 2020, 370, m3489. [Google Scholar] [CrossRef] [PubMed]
- UK National Institute for Health and Care Excellence. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. 1 March 2022. Available online: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapidguideline-managing-the-longterm-effects-of-covid19-pdf-51035515742 (accessed on 14 February 2022).
- US Centers for Disease Control and Prevention. Evaluating and Caring for Patients with Post-COVID Conditions: Interim Guidance. 14 June 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covidindex.html (accessed on 14 February 2022).
- Shah, W.; Hillman, T.; Playford, E.D.; Hishmeh, L. Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021, 372, n136. [Google Scholar] [CrossRef]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Mehandru, S.; Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Ayoubkhani, D.; Pawelek, P. Prevalence of Ongoing Symptoms Following Coronavirus (COVID-19) Infection in the UK: 1 June 2022. UK Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/1june2022 (accessed on 1 October 2022).
- PHOSP-COVID Collaborative Group. Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir. Med. 2022, 10, 761–775. [Google Scholar] [CrossRef]
- Fumagalli, C.; Zocchi, C.; Tassetti, L.; Silverii, M.V.; Amato, C.; Livi, L.; Giovannoni, L.; Verrillo, F.; Bartoloni, A.; Marcucci, R.; et al. Factors associated with persistence of symptoms 1 year after COVID-19: A longitudinal, prospective phone-based interview follow-up cohort study. Eur. J. Intern. Med. 2022, 97, 36–41. [Google Scholar] [CrossRef]
- Spinicci, M.; Vellere, I.; Graziani, L.; Tilli, M.; Borchi, B.; Mencarini, J.; Campolmi, I.; Gori, L.; Rasero, L.; Fattirolli, F.; et al. Clinical and Laboratory Follow-up After Hospitalization for COVID-19 at an Italian Tertiary Care Center. Open Forum Infect. Dis. 2021, 8, ofab049. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19 Interim Guidance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Istituto Superiore di Sanità (Italian National Health Institute). Prevalenza e Distribuzione delle Varianti di SARSCoV2 di Interesse per la Sanità Pubblica in Italia Rapporto n. 21 (Dati Aggiornati al del 1 Luglio 27 Giugno 2022); Istituto Superiore di Sanità: Rome, Italy, 2022; Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-rapporti-periodici-1-luglio-2022.pdf (accessed on 1 October 2022).
- Carfì, A.; Bernabei, R.; Landi, F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Choutka, J.; Jansari, V.; Hornig, M.; Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 2022, 28, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Wong, T.L.; Weitzer, D.J. Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-A Systemic Review and Comparison of Clinical Presentation and Symptomatology. Medicina 2021, 57, 418. [Google Scholar] [CrossRef] [PubMed]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef]
- Torjesen, I. COVID-19: Middle aged women face greater risk of debilitating long term symptoms. BMJ 2021, 372, n829. [Google Scholar] [CrossRef]
- Sigfrid, L.; Drake, T.M.; Pauley, E.; Jesudason, E.C.; Olliaro, P.; Lim, W.S.; Gillesen, A.; Berry, C.; Lowe, D.J.; McPeake, J.; et al. Long COVID in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Health Eur. 2021, 8, 100186. [Google Scholar] [CrossRef]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611.e9–611.e16. [Google Scholar] [CrossRef]
- Stewart, S.; Newson, L.; Briggs, T.A.; Grammatopoulos, D.; Young, L.; Gill, P. Long COVID risk—A signal to address sex hormones and women’s health. Lancet Reg. Health Eur. 2021, 11, 100242. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Bin Huang, B.; Cai, Y.; Li, N.; Li, K.; Wang, Z.; Li, L.; Wu, L.; Zhu, M.; Li, J.; Wang, Z.; et al. Sex-based clinical and immunological differences in COVID-19. BMC Infect. Dis. 2021, 21, 647. [Google Scholar]
- Wenham, C.; Smith, J.; Morgan, R. Gender and COVID-19 Working Group. COVID-19: The gendered impacts of the outbreak. Lancet 2020, 395, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Ortona, E.; Buonsenso, D.; Carfi, A.; Malorni, W. Long COVID Kids study group. Long COVID: An estrogen-associated autoimmune disease? Cell Death Discov. 2021, 7, 77. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.G.; Jarvis, C.I.; Edmunds, W.J.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H.; CMMID COVID-19 Working Group. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef]
- Elliott, J.; Whitaker, M.; Bodinier, B.; Eales, O.; Riley, S.; Ward, H.; Cooke, G.; Darzi, A.; Chadeau-Hyam, M.; Elliott, P. Predictive symptoms for COVID-19 in the community: REACT-1 study of over 1 million people. PLoS Med. 2021, 18, e1003777. [Google Scholar] [CrossRef]
- Klimek, L.; Hagemann, J.; Hummel, T.; Altundag, A.; Hintschich, C.; Stielow, S.; Bousquet, J. Olfactory dysfunction is more severe in wild-type SARS-CoV-2 infection than in the Delta variant (B.1.617.2). World Allergy Organ. J. 2022, 15, 100653. [Google Scholar] [CrossRef]
- Butowt, R.; Bilińska, K.; von Bartheld, C. Why does the Omicron Variant Largely Spare Olfactory Function? Implications for the Pathogenesis of Anosmia in COVID-19. J. Infect. Dis. 2022, 226, 1304–1308. [Google Scholar] [CrossRef]
- Rodriguez-Sevilla, J.J.; Güerri-Fernádez, R.; Bertran Recasens, B. Is There Less Alteration of Smell Sensation in Patients with Omicron SARS-CoV-2 Variant Infection? Front. Med. 2022, 9, 852998. [Google Scholar] [CrossRef] [PubMed]
- von Bartheld, C.S.; Hagen, M.M.; Butowt, R. The D614G virus mutation enhances anosmia in COVID-19 patients: Evidence from a systematic review and meta-analysis of studies from South Asia. ACS Chem. Neurosci. 2021, 12, 3535–3549. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Luciano, S.; Geddes, J.R.; Harrison, P.J. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021, 8, 130–140. [Google Scholar] [CrossRef]
- UK Health Security Agency. UKHSA Review Shows Vaccinated Less Likely to Have Long COVID Than Unvaccinated. Press Release. Published 15 February 2022. Available online: https://www.gov.uk/government/news/ukhsa-review-shows-vaccinated-less-likely-to-have-long-covid-than-unvaccinated (accessed on 1 October 2022).
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Ayoubkhani, D.; Bermingham, C.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; A Alwan, N.; Walker, A.S. Trajectory of long COVID symptoms after COVID-19 vaccination: Community based cohort study. BMJ 2022, 377, e069676. [Google Scholar] [CrossRef]
- Munblit, D.; O’Hara, M.E.; Akrami, A.; Perego, E.; Olliaro, P.; Needham, D.M. Long COVID: Aiming for a consensus. Lancet Respir. Med. 2022, 10, 632–634. [Google Scholar] [CrossRef]
- Munblit, D.; Nicholson, T.; Akrami, A.; Apfelbacher, C.; Chen, J.; De Groote, W.; Diaz, J.V.; Gorst, S.L.; Harman, N.; Kokorina, A.; et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: An international Delphi consensus study. Lancet Respir. Med. 2022, 10, 715–724. [Google Scholar] [CrossRef]
Sex | n | % |
Male | 254 | 59% |
Female | 174 | 41% |
Age | Years | IQR |
Median | 64 | 54–76 |
Range | 20–93 | |
Comorbidities | n | % |
Hypertension | 185 | 43% |
COPD | 17 | 4% |
CHD | 83 | 19% |
Diabetes | 83 | 19% |
CKD | 18 | 4% |
Obesity | 53 | 13% |
Days | IQR | |
Hospital stay | 10 | 6.5–18 |
Time discharge to visit | 53 | 40–64 |
Time diagnosis to visit | 68.5 | 55–82 |
ICU admission | n | % |
64 | 15% | |
COVID-19 therapies | n | % |
Remdesivir | 92 | 22% |
Antiretrovirals (LPV/r, DRV/c) | 76 | 18% |
Hydroxychloroquine | 88 | 21% |
Steroids | 297 | 69% |
Tocilizumab | 35 | 8% |
Ruxolitinib | 13 | 3% |
Convalescent plasma | 34 | 8% |
Monoclonal antibodies | 1 | 0.2% |
Oxygen Support | n | % |
None | 40 | 9% |
Low flow | 234 | 55% |
HFNC | 33 | 8% |
NIV | 100 | 23% |
MV | 20 | 5% |
ECMO | 1 | 0.2% |
WHO severity scale [15] | n | % |
Asymptomatic | 25 | 6% |
Mild | 62 | 14% |
Moderate | 163 | 38% |
Severe | 97 | 23% |
Critical | 81 | 19% |
Variable | Persistent Symptoms | Univariable | Multivariable | |
---|---|---|---|---|
No (N = 103) | Yes (N = 325) | p-Value | OR (95% CI) | |
Sex n (%) | ||||
M | 70 (28) | 184 (72) | ||
F | 33 (19) | 141 (81) | 0.041 | 1.8 (1.1–3.0) |
Median age (years, IQR) | 62 (52–76) | 64 (54–76) | 0.551 | |
Hospital stay (median days, IQR) Time diagnosis to visit (days) Time discharge to visit (days) | 8 (5–13) | 11 (7–20) | <0.001 | |
64 (51–81) | 69 (56–83) | 0.051 | ||
52 (37–65) | 53 (40–64) | 0.773 | ||
ICU admission | ||||
No | 95 (26) | 269 (74) | ||
Yes | 8 (12.5) | 56 (87.5) | 0.019 | |
Comorbidities | ||||
Arterial hypertension | 46 (25) | 139 (75) | 0.736 | |
COPD | 2 (12) | 15 (88) | 0.383 | |
CHD | 26 (31) | 57 (69) | 0.085 | |
Diabetes | 30 (36) | 53 (64) | 0.004 | 0.4 (0.3–0.8) |
CKD | 4 (22) | 14 (78) | 0.852 | |
Obesity | 10 (19) | 43 (81) | 0.301 | |
COVID-19 therapies | ||||
Remdesivir | 26 (28) | 66 (72) | 0.288 | |
Steroids | 78 (26) | 219 (74) | 0.109 | |
Immunosuppressant drugs | 1 (3) | 34 (97) | 0.001 | 6.6 (1.5–28.5) |
Convalescent plasma | 11 (32) | 23 (68) | 0.239 | |
Advanced oxygen support * | ||||
No | 78 (28) | 196 (71) | ||
Yes | 25 (16) | 129 (84) | 0.004 | 1.9 (1.1–3.3) |
WHO severity scale | ||||
Asymptomatic | 10 (40) | 15 (60) | ||
Mild | 12 (19) | 50 (81) | ||
Moderate | 42 (26) | 121 (74) | ||
Severe | 33 (34) | 64 (66) | ||
Critical | 6 (7) | 75 (93) | <0.001 |
Total n (%) N = 428 | March–December 2020 n (%) N = 245 | January–June 2021 n (%) N = 183 | OR (95% CI) 1 | p-Value | |
---|---|---|---|---|---|
Total symptoms | 325 (76) | 192 (78) | 133 (72) | 0.7 (0.5–1.2) | 0.182 |
fatigue | 156 (37) | 92 (38) | 64 (35) | 0.9 (0.6–1.3) | 0.594 |
fever | 12 (3) | 6 (2) | 6 (3) | 1.3 (0.4–4.1) | 0.656 |
shortness of breath | 157 (37) | 81 (33) | 76 (42) | 1.4 (0.9–2.1) | 0.071 |
palpitation | 40 (9) | 22 (9) | 18 (10) | 1.1 (0.6–2.1) | 0.782 |
cough | 47 (11) | 28 (11) | 19 (10) | 0.9 (0.5–1.7) | 0.731 |
chest pain | 40 (9) | 21 (9) | 19 (11) | 1.2 (0.6–2.3) | 0.589 |
insomnia | 68 (16) | 41 (17) | 27 (15) | 0.8 (0.5–1.4) | 0.535 |
headache | 10 (2) | 5 (2) | 5 (3) | 1.3 (0.4–4.6) | 0.693 |
brain fog | 54 (13) | 24 (10) | 30 (16) | 1.8 (1.1–3.3) | 0.039 |
dysgeusia | 34 (8) | 26 (11) | 8 (4) | 0.4 (0.2–0.9) | 0.025 |
anosmia | 34 (8) | 30 (12) | 4 (2) | 0.2 (0.1–0.5) | 0.001 |
gastrointestinal | 28 (7) | 15 (6) | 13 (7) | 1.2 (0.5–2.6) | 0.663 |
visual disorders | 55 (13) | 32 (13) | 23 (13) | 0.9 (0.5–1.7) | 0.830 |
myalgia | 28 (7) | 10 (4) | 18 (10) | 2.5 (1.2–5.7) | 0.021 |
hair loss | 42 (10) | 24 (10) | 18 (10) | 1.0 (0.5–2.0) | 0.961 |
vertigo | 11 (3) | 7 (3) | 4 (2) | 0.8 (0.2–2.7) | 0.671 |
impaired hearing | 15 (4) | 12 (5) | 3 (2) | 0.3 (0.1–1.2) | 0.098 |
tremors/paraesthesia | 21(5) | 13 (5) | 8 (4) | 0.8 (0.3–2.0) | 0.618 |
anxiety/depression | 39 (9) | 15 (6) | 24 (13) | 2.4 (1.2–4.7) | 0.013 |
dermatological | 24 (6) | 14 (6) | 10 (5) | 1.0 (0.4–2.2) | 0.941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinicci, M.; Graziani, L.; Tilli, M.; Nkurunziza, J.; Vellere, I.; Borchi, B.; Mencarini, J.; Campolmi, I.; Gori, L.; Giovannoni, L.; et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses 2022, 14, 2367. https://doi.org/10.3390/v14112367
Spinicci M, Graziani L, Tilli M, Nkurunziza J, Vellere I, Borchi B, Mencarini J, Campolmi I, Gori L, Giovannoni L, et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses. 2022; 14(11):2367. https://doi.org/10.3390/v14112367
Chicago/Turabian StyleSpinicci, Michele, Lucia Graziani, Marta Tilli, Jerusalem Nkurunziza, Iacopo Vellere, Beatrice Borchi, Jessica Mencarini, Irene Campolmi, Leonardo Gori, Lorenzo Giovannoni, and et al. 2022. "Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes" Viruses 14, no. 11: 2367. https://doi.org/10.3390/v14112367
APA StyleSpinicci, M., Graziani, L., Tilli, M., Nkurunziza, J., Vellere, I., Borchi, B., Mencarini, J., Campolmi, I., Gori, L., Giovannoni, L., Amato, C., Livi, L., Rasero, L., Fattirolli, F., Marcucci, R., Giusti, B., Olivotto, I., Tomassetti, S., Lavorini, F., ... Bartoloni, A. (2022). Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses, 14(11), 2367. https://doi.org/10.3390/v14112367