A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, RNA Isolation and High-Throughput Sequencing
2.2. Bioinformatics Analysis
2.3. RT-PCR, Cloning and Sequencing
2.4. Northern Blot Hybridization Assays
2.5. In Vitro Transcription, Self-Cleavage and 5′ Rapid Amplification of cDNA Ends (RACE) Analysis
3. Results and Discussion
3.1. Identification of an RNA Containing HHRzs by In Silico Search
3.2. Circular Forms of Both Polarity Strands of CtaHVd-LR1 Do Exist
3.3. The Sequence Variability Detected in CtaHVd-LR1 Populations Preserves a Rod-Like Secondary Structure of Minimal Free Energy
3.4. HHRzs Embedded in CtaHVd-LR1 Are Active during Transcription and in the Absence of Proteins
3.5. CtaHVd-LR1 Is Not Associated with a DNA Counterpart
3.6. Assessment of the Biological Nature of CtaHVd-LR1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, B.; Flores, R.; Di Serio, F. Advances in Viroid-Host Interactions. Annu. Rev. Virol. 2021, 8, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Rubino, L.; Di Serio, F. Small circular satellite RNAs. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, UK, 2017; pp. 659–669. [Google Scholar]
- Gago-Zachert, S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res. 2016, 212, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, K.; Rao, A.L.; Tsagris, M.; Kalantidis, K. Infectious long non-coding RNAs. Biochimie 2015, 117, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Daròs, J.A.; Flores, R. Identification of a retroviroid-like element from plants. Proc. Natl. Acad. Sci. USA 1995, 92, 6856–6860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, A.; Daròs, J.A.; Flores, R.; Hernández, C. The DNA of a plant retroviroid-like element is fused to different sites in the genome of a plant pararetrovirus and shows multiple forms with sequence deletions. J. Virol. 2000, 74, 10390–10400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegedus, K.; Dallmann, G.; Balazs, E. The DNA form of a retroviroidlike element is involved in recombination events with itself and with the plant genome. Virology 2004, 325, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervera, A.; Urbina, D.; de la Peña, M. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biol. 2016, 17, 135. [Google Scholar] [CrossRef] [Green Version]
- Di Serio, F.; Owens, R.A.; Li, S.F.; Matoušek, J.; Pallás, V.; Randles, J.W.; Sano, T.; Verhoeven, J.; Vidalakis, G.; Flores, R.; et al. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Pospiviroidae. J. Gen. Virol. 2021, 102, 001543. [Google Scholar] [CrossRef] [PubMed]
- Branch, A.D.; Robertson, H.D.; Dickson, E. Longer-than-unit-length viroid minus strands are present in RNA from infected plants. Proc. Natl. Acad. Sci. USA 1981, 78, 6381–6385. [Google Scholar] [CrossRef] [Green Version]
- Di Serio, F.; Li, S.F.; Matoušek, J.; Owens, R.A.; Pallás, V.; Randles, J.W.; Sano, T.; Verhoeven, J.; Vidalakis, G.; Flores, R. ICTV Report Consortium. ICTV Virus Taxonomy Profile: Avsunviroidae. J. Gen. Virol. 2018, 99, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Branch, A.D.; Robertson, H.D.A. replication cycle for viroids and other small infectious RNAs. Science 1984, 223, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Gago-Zachert, S.; Serra, P.; Sanjuán, R.; Elena, S.F. Viroids: Survivors from the RNA world? Annu. Rev. Microbiol. 2014, 68, 395–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codoñer, F.M.; Darós, J.A.; Solé, R.V.; Elena, S.F. The fittest versus the flattest: Experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog. 2006, 2, e136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andino, R.; Domingo, E. Viral Quasispecies. Virology 2015, 479–480, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steger, G.; Perreault, J.P. Structure and Associated Biological Functions of Viroids. Adv. Virus Res. 2016, 94, 141–172. [Google Scholar] [CrossRef]
- Di Serio, F.; Darós, J.A.; Ragozzino, A.; Flores, R. A 451-nt circular RNA from cherry with hammerhead ribozymes in its strands of both polarities. J. Virol. 1997, 71, 6603–6610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Serio, F.; Darós, J.A.; Ragozzino, A.; Flores, R. Close structural relationship between two hammerhead viroid-like RNAs associated with cherry chlorotic rusty spot disease. Arch. Virol. 2006, 151, 1539–1549. [Google Scholar] [CrossRef]
- Coutts, R.H.A.; Covelli, L.; Di Serio, F.; Citir, A.; Açıkgöz, S.; Hernández, C.; Ragozzino, A.; Flores, R. Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double stranded RNAs. II. Characterization of a new species in the genus Partitivirus. J. Gen. Virol. 2004, 85, 3399–3403. [Google Scholar] [CrossRef] [PubMed]
- Covelli, L.; Coutts, R.H.A.; Di Serio, F.; Citir, A.; Açıkgöz, S.; Hernández, C.; Ragozzino, A.; Flores, R. Cherry chlorotic rustyspot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. I. Characterization of a new species in the genus Chrysovirus. J. Gen. Virol. 2004, 85, 3389–3397. [Google Scholar] [CrossRef] [PubMed]
- Kozlakidis, Z.; Covelli, L.; Di Serio, F.; Citir, A.; Açıkgöz, S.; Hernández, C.; Ragozzino, A.; Flores, R.; Coutts, R.H.A. Molecular characterization of the largest mycoviral-like double-stranded RNAs associated with Amasya cherry disease, a disease of presumed fungal aetiology. J. Gen. Virol. 2006, 87, 3113–3137. [Google Scholar] [CrossRef]
- Covelli, L.; Kozlakidis, Z.; Di Serio, F.; Citir, A.; Açikgöz, S.; Hernández, C.; Ragozzino, A.; Coutts, R.H.; Flores, R. Sequences of the smallest double-stranded RNAs associated with cherry chlorotic rusty spot and Amasya cherry diseases. Arch. Virol. 2008, 153, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Carrieri, R.; Barone, M.; Di Serio, F.; Abagnale, A.; Covelli, L.; García-Becedas, M.T.; Ragozzino, A.; Alioto, D. Cherry chlorotic rusty spot and cherry leaf scorch: Two similar diseases associated with mycoviruses and double stranded RNAs. J. Plant Pathol. 2011, 93, 485–489. [Google Scholar]
- Minoia, S.; Navarro, B.; Covelli, L.; Barone, M.; García-Becedas, M.T.; Ragozzino, A.; Alioto, D.; Flores, R.; Di Serio, F. Viroid-like RNAs from cherry trees affected by leaf scorch disease: Further data supporting their association with mycoviral double-stranded RNAs. Arch. Virol. 2014, 159, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Velarde, A.; Navarro, B.; Hu, J.S.; Melzer, M.J.; Di Serio, F. Novel fig-associated viroid-like RNAs containing hammerhead ribozymes in both polarity strands identified by high-throughput sequencing. Front. Microbiol. 2020, 11, 1903. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Hu, B.; Hu, G.; Wang, H.; Faure, C.; Marais, A.; Candresse, T.; Li, S. Identification of a viroid-like RNA in a Lychee transcriptome shotgun assembly. Virus Res. 2017, 240, 1–7. [Google Scholar] [CrossRef]
- Leichtfried, T.; Dobrovolny, S.; Reisenzein, H.; Steinkellner, S.; Gottsberger, R.A. Apple chlorotic fruit spot viroid: A putative new pathogenic viroid on apple characterized by next-generation sequencing. Arch. Virol. 2019, 164, 3137–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bester, R.; Malan, S.S.; Maree, H.J. A plum marbling conundrum: Identification of a new viroid associated with marbling and corky fesh in Japanese plums. Phytopathology 2020, 110, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xing, F.; Li, S.; Che, H.Y.; Wu, Z.G.; Candresse, T.; Li, S.F. Dendrobium viroid, a new monocot-infecting apscaviroid. Virus Res. 2020, 282, 197958. [Google Scholar] [CrossRef]
- Chiaki, Y.; Ito, T. Characterization of a distinct variant of hop stunt viroid and a new apscaviroid detected in grapevines. Virus Genes 2020, 56, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Cao, M.; Pantaleo, V.; Burgyan, J.; Li, W.X.; Ding, S.W. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc. Natl. Acad. Sci. USA 2012, 109, 3938–3943. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Qi, S.; Tang, N.; Zhang, X.; Chen, S.; Zhu, P.; Ma, L.; Cheng, J.; Xu, Y.; Lu, M.; et al. Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog. 2014, 10, e1004553. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Di Serio, F. Double-Stranded RNA-Enriched Preparations to Identify Viroids by Next-Generation Sequencing. In Viral Metagenomics: Methods and Protocols. Methods in Molecular Biology; Pantaleo, V., Chiumenti, M., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1746, pp. 37–43. [Google Scholar] [CrossRef]
- Pallás, V.; Navarro, A.; Flores, R. Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. J. Gen. Virol. 1987, 68, 3201–3205. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvor-kin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, G.; Licciulli, F.; Liuni, S.; Sbisà, E.; Pesole, G. PatSearch: A program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res. 2003, 31, 3608–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bernhart, S.H.; Höner Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. Vienna RNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2020, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh, M.; Navarro, B.; Bashir, N.S.; Torchetti, E.M.; Di Serio, F. Development and validation of a multiplex RT-PCR method for the simultaneous detection of five grapevine viroids. J. Virol. Met. 2012, 179, 62–69. [Google Scholar] [CrossRef]
- Navarro, B.; Zicca, S.; Minutolo, M.; Saponari, M.; Alioto, D.; Di Serio, F. A negative-stranded RNA virus infecting citrus trees: The second member of a new genus within the order Bunyavirales. Front. Microbiol. 2018, 9, 2340. [Google Scholar] [CrossRef] [PubMed]
- Hanold, D.; Vadalamai, G. Gel Electrophoresis. In Viroids and Satellites; Hadidi, A., Flores, R., Randles, J.W., Palukaitis, P., Eds.; Academic Press: Cambridge, UK, 2017; pp. 357–367. [Google Scholar]
- Flores, R.; Daròs, J.A.; Hernández, C. Avsunviroidae family: Viroids containing hammerhead ribozymes. Adv. Virus Res. 2000, 55, 271–323. [Google Scholar] [CrossRef] [PubMed]
- Haseloff, J.; Symons, R.H. Comparative sequence and structure of viroid-like RNAs of two plant viruses. Nucleic Acids Res. 1982, 10, 3681–3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keese, P.; Bruening, G.; Symons, R.H. Comparative sequence and structure of circular RNAs from two isolates of lucerne transient streak virus. FEBS Lett. 1983, 159, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.A.; Hercus, T.; Waterhouse, P.M.; Gerlach, W.L. A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleavage domain. Virology 1991, 18, 711–720. [Google Scholar] [CrossRef]
- Babalola, B.M.; Schönegger, D.; Faure, C.; Marais, A.; Fraile, A.; Garcia-Arenal, F.; Candresse, T. Identification of two novel putative satellite RNAs with hammerhead structures in the virome of French and Spanish carrot samples. Arch. Virol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ambrós, S.; Flores, R. In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Res. 1998, 26, 1877–1883. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Patton, J.T. Reverse transcriptase adds nontemplated nucleotides to cDNAs during 5′-RACE and primer extension. Biotechniques 2001, 30, 574–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hily, J.M.; Candresse, T.; Garcia, S.; Vigne, E.; Tannière, M.; Komar, V.; Barnabé, G.; Alliaume, A.; Gilg, S.; Hommay, G.; et al. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Front. Microbiol. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fort, T.; Marais, A.; Lefebvre, M.; Theil, S.; Vacher, C.; Candresse, T. Leaf-associated fungal and viral communities of wild plant populations differ between cultivated and natural ecosystems. Plant-Environ. Interact. 2021, 2, 87–99. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, B.; Li, S.; Gisel, A.; Chiumenti, M.; Minutolo, M.; Alioto, D.; Di Serio, F. A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant. Viruses 2022, 14, 2265. https://doi.org/10.3390/v14102265
Navarro B, Li S, Gisel A, Chiumenti M, Minutolo M, Alioto D, Di Serio F. A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant. Viruses. 2022; 14(10):2265. https://doi.org/10.3390/v14102265
Chicago/Turabian StyleNavarro, Beatriz, Shuai Li, Andreas Gisel, Michela Chiumenti, Maria Minutolo, Daniela Alioto, and Francesco Di Serio. 2022. "A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant" Viruses 14, no. 10: 2265. https://doi.org/10.3390/v14102265
APA StyleNavarro, B., Li, S., Gisel, A., Chiumenti, M., Minutolo, M., Alioto, D., & Di Serio, F. (2022). A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant. Viruses, 14(10), 2265. https://doi.org/10.3390/v14102265