A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Summary of Literature Search and Selection
3.2. Case Reports of Triple Infection with HIV, TB and SARS-CoV-2
3.3. Narrative Review Findings
3.3.1. General Overview
3.3.2. Dual Infection Scenario (Either HIV or MTB with SARS-CoV-2)
3.3.3. Social and Public Health Implications in the Context of the COVID-19 Pandemic
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- UNAIDS. Global HIV & AIDS Statistics—2020 Fact Sheet. Global HIV Statistics. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 21 January 2021).
- Doitsh, G.; Galloway, N.L.K.; Geng, X.; Yang, Z.; Monroe, K.M.; Zepeda, O.; Hunt, P.W.; Hatano, H.; Sowinski, S.; Muñoz-Arias, I.; et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014, 505, 509–514. [Google Scholar] [CrossRef]
- Zhang, Q.; Frange, P.; Blanche, S.; Casanova, J.L. Pathogenesis of infections in HIV-infected individuals: Insights from primary immunodeficiencies. Curr. Opin. Immunol. 2017, 48, 122–133. [Google Scholar] [CrossRef]
- Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. HIV. Lancet 2018, 392, 685–697. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Epidemiology of HIV/AIDS–United States, 1981–2005. MMWR Morb. Mortal Wkly. Rep. 2006, 55, 589–592. [Google Scholar]
- Marcus, J.L.; Chao, C.R.; Leyden, W.A.; Xu, L.; Quesenberry, C.P., Jr.; Klein, D.B.; Towner, W.J.; Horberg, M.A.; Silverberg, M.J. Narrowing the Gap in Life Expectancy Between HIV-Infected and HIV-Uninfected Individuals with Access to Care. J. Acquir. Immune Defic. Syndr. 2016, 73, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.L.; Leyden, W.A.; Alexeeff, S.E.; Anderson, A.N.; Hechter, R.C.; Hu, H.; Lam, J.O.; Towner, W.J.; Yuan, Q.; Horberg, M.A.; et al. Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults with and without HIV Infection, 2000–2016. JAMA Netw. Open. 2020, 3, e207954. [Google Scholar] [CrossRef]
- Teeraananchai, S.; Kerr, S.J.; Amin, J.; Ruxrungtham, K.; Law, M.G. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: A meta-analysis. HIV Med. 2017, 18, 256–266. [Google Scholar] [CrossRef]
- Ruelas, D.S.; Greene, W.C. An integrated overview of HIV-1 latency. Cell 2013, 155, 519–529. [Google Scholar] [CrossRef]
- Romani, B.; Allahbakhshi, E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017, 53, 329–339. [Google Scholar] [CrossRef]
- Ventura, J.D. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. Yale J. Biol Med. 2020, 93, 549–560. [Google Scholar]
- Cribbs, S.K.; Crothers, K.; Morris, A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol. Rev. 2020, 100, 603–632. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Barry, C.E.; Maartens, G. Tuberculosis. Lancet 2016, 387, 1211–1226. [Google Scholar] [CrossRef]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis Primers 2016, 2, 16076. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Tuberculosis; 14 October 2020: World Health Organization. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 12 March 2021).
- Sotgiu, G.; Falzon, D.; Hollo, V.; Ködmön, C.; Lefebvre, N.; Dadu, A.; van der Merf, M. Determinants of site of tuberculosis disease: An analysis of European surveillance data from 2003 to 2014. PLoS ONE 2017, 12, e0186499. [Google Scholar] [CrossRef] [PubMed]
- Eddabra, R.; Neffa, M. Epidemiological profile among pulmonary and extrapulmonary tuberculosis patients in Laayoune, Morocco. Pan. Afr. Med. J. 2020, 37, 56. [Google Scholar] [CrossRef]
- Ossalé Abacka, K.B.; Koné, A.; Akoli Ekoya, O.; Bopaka, R.G.; Lankoandé Siri, H.; Horo, K. Extrapulmonary tuberculosis versus pulmonary tuberculosis: Epidemiological, diagnosis and evolutive aspects. Rev. Pneumol. Clin. 2018, 74, 452–457. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Vivanti, A.J.; Vauloup-Fellous, C.; Prevot, S.; Zupan, V.; Suffee, C.; Do Cao, J.; Benachi, A.; de Luca, D. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020, 11, 3572. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Long, W.; Tu, M.; Chen, S.; Huang, Y.; Wang, S.; Zhou, W.; Chen, D.; Zhou, L.; Wang, M.; et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal. Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Xu, B.; Fan, C.Y.; Wang, A.L.; Zou, Y.L.; Yu, Y.H.; He, C.; Xia, W.-G.; Zhang, J.-X.; Miao, Q. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. J. Infect. 2020, 81, e51–e60. [Google Scholar] [CrossRef]
- Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br. J. Haematol. 2020, 189, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 2020, 221, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Z.; Tian, J.; Xiong, S. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel coronavirus. Ann. Palliat. Med. 2020, 9, 428–436. [Google Scholar] [CrossRef]
- Peng, X.; Ouyang, J.; Isnard, S.; Lin, J.; Fombuena, B.; Zhu, B.; Routy, J.-P. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front. Immunol. 2020, 11, 596631. [Google Scholar] [CrossRef]
- Karim, Q.A.; Karim, S.S.A. COVID-19 affects HIV and tuberculosis care. Science 2020, 369, 366–368. [Google Scholar] [CrossRef]
- Adepoju, P. Tuberculosis and HIV responses threatened by COVID-19. Lancet HIV 2020, 7, e319–e320. [Google Scholar] [CrossRef]
- Boffa, J.; Mhlaba, T.; Sulis, G.; Moyo, S.; Sifumba, Z.; Pai, M.; Daftary, A. COVID-19 and tuberculosis in South Africa: A dangerous combination. S. Afr. Med. J. 2020, 110, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Nordling, L. Tested by HIV and TB, South Africa confronts new pandemic. Science 2020, 368, 117. [Google Scholar] [CrossRef] [PubMed]
- Bouaré, F.; Laghmari, M.; Etouche, F.N.; Arjdal, B.; Saidi, I.; Hajhouji, F.; Ghannane, H.; Amro, L.; Tassi, N.; Benali, S.A. Unusual association of COVID-19, pulmonary tuberculosis and human immunodeficiency virus, having progressed favorably under treatment with chloroquine and rifampin. Pan. Afr. Med. J. 2020, 35 (Suppl. S2), 110. [Google Scholar] [CrossRef]
- Farias, L.A.B.G.; Moreira, A.L.G.; Corrêa, E.A.; de Oliveira Lima, C.A.L.; Lopes, I.M.P.; de Holanda, P.E.L.; Nunes, F.R.; Neto, R.D.J.P. Case Report: Coronavirus Disease and Pulmonary Tuberculosis in Patients with Human Immunodeficiency Virus: Report of Two Cases. Am. J. Trop. Med. Hyg. 2020, 103, 1593–1596. [Google Scholar] [CrossRef]
- Rivas, N.; Espinoza, M.; Loban, A.; Luque, O.; Jurado, J.; Henry-Hurtado, N.; Goodridge, A. Case Report: COVID-19 Recovery from Triple Infection with Mycobacterium tuberculosis, HIV, and SARS-CoV-2. Am. J. Trop. Med. Hyg. 2020, 103, 1597–1599. [Google Scholar] [CrossRef]
- Chen, Y.; Klein, S.L.; Garibaldi, B.T.; Li, H.; Wu, C.; Osevala, N.M.; Li, T.; Margolick, J.B.; Pawelec, G.; Leng, S.X. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res. Rev. 2021, 65, 101205. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, F.; Hu, W.; Chen, Q.; Li, C.; Wu, L.; Zhang, Z.; Li, B.; Ye, Q.; Mei, J.; et al. Laboratory markers associated with COVID-19 progression in patients with or without comorbidity: A retrospective study. J. Clin. Lab. Anal. 2021, 35, e23644. [Google Scholar] [CrossRef]
- Ramadan, H.K.; Mahmoud, M.A.; Aburahma, M.Z.; Elkhawaga, A.A.; El-Mokhtar, M.A.; Sayed, I.M.; Hosni, A.; Hassany, S.M.; Medhat, M.A. Predictors of Severity and Co-Infection Resistance Profile in COVID-19 Patients: First Report from Upper Egypt. Infect. Drug Resist. 2020, 13, 3409–3422. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Weng, D.; Wu, Q.; Chen, X.Q.; Du, Y.K.; Chen, T.; Li, H.; Tang, D.-L.; Li, Q.-H.; Zhang, Y.; Lu, L.-Q.; et al. Azithromycin treats diffuse panbronchiolitis by targeting T cells via inhibition of mTOR pathway. Biomed. Pharmacother. 2019, 110, 440–448. [Google Scholar] [CrossRef]
- Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Alemany, A.; Suñer, C.; Tebé, C.; Tobias, A.; Peñafiel, J.; Ballana, E.; Pérez, C.A.; et al. A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of Covid-19. N. Engl. J. Med. 2021, 384, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Mafham, M.; Linsell, L.; Bell, J.L.; Staplin, N.; Emberson, J.R.; Wiselka, M.; Ustianowski, A.; Elmahi, E.; Prudon, B.; et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar]
- RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 605–612. [Google Scholar] [CrossRef]
- Billett, H.H.; Reyes-Gil, M.; Szymanski, J.; Ikemura, K.; Stahl, L.R.; Lo, Y.; Rahman, S.; Gonzalez-Lugo, J.D.; Kushnir, M.; Barouqa, M.; et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin, and Apixaban on Mortality. Thromb. Haemost. 2020, 120, 1691–1699. [Google Scholar] [PubMed]
- Rentsch, C.T.; Beckman, J.A.; Tomlinson, L.; Gellad, W.F.; Alcorn, C.; Kidwai-Khan, F.; Skanderson, M.; Brittain, E.; King, J.T.; Ho, Y.-L.; et al. Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: Cohort study. BMJ 2021, 372, n311. [Google Scholar] [CrossRef]
- Kay, A.W.; Ness, T.E.; Martinez, L.; Mandalakas, A.M. It Ain’t Over Till It’s Over: The Triple Threat of COVID-19, TB, and HIV. Am. J. Trop. Med. Hyg. 2020, 103, 1348–1349. [Google Scholar] [CrossRef]
- Hogan, A.B.; Jewell, B.L.; Sherrard-Smith, E.; Vesga, J.F.; Watson, O.J.; Whittaker, C.; Hamlet, A.; Smith, J.A.; Winskill, P.; Verity, R.; et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e1132–e1141. [Google Scholar] [CrossRef]
- Boulle, A.; Davies, M.A.; Hussey, H.; Ismail, M.; Morden, E.; Vundle, Z.; Zweingethal, V.; Mahomed, H.; Paleker, M.; Pienaar, D.; et al. Risk factors for COVID-19 death in a population cohort study from the Western Cape Province, South Africa. Clin. Infect. Dis. 2020, ciaa1198. [Google Scholar] [CrossRef]
- Rossouw, T.M.; Boswell, M.T.; Nienaber, A.G.; Moodley, K. Comorbidity in context: Part 1. Medical considerations around HIV and tuberculosis during the COVID-19 pandemic in South Africa. S. Afr. Med. J. 2020, 110, 621–624. [Google Scholar]
- Van der Zalm, M.M.; Lishman, J.; Verhagen, L.M.; Redfern, A.; Smit, L.; Barday, M.; Ruttens, D.; Da Costa, A.; van Jaarsveld, S.; Itana, J.; et al. Clinical experience with SARS CoV-2 related illness in children-hospital experience in Cape Town, South Africa. Clin. Infect. Dis. 2020, ciaa1666. [Google Scholar] [CrossRef] [PubMed]
- Siedner, M.J.; Harling, G.; Derache, A.; Smit, T.; Khoza, T.; Gunda, R.; Mngomezulu, T.; Gareta, D.; Majozi, N.; Ehlers, E.; et al. Protocol: Leveraging a demographic and health surveillance system for Covid-19 Surveillance in rural KwaZulu-Natal. Wellcome Open Res. 2020, 5, 109. [Google Scholar] [CrossRef]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035. [Google Scholar] [CrossRef]
- Chao, Y.K.; Chang, S.Y.; Grimm, C. Endo-Lysosomal Cation Channels and Infectious Diseases. Rev. Physiol. Biochem. Pharmacol. 2020, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Bi, L.; Chen, Y.; Wang, Y.; Fleming, J.; Yu, Y.; Gu, Y.; Liu, C.; Fan, L.; Wang, X.; et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. medRxiv 2020. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Zhang, M.; Yang, C.X.; Zhang, N.; Wang, X.C.; Yang, X.P.; Dong, X.Q.; Zheng, Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol. Immunol. 2020, 17, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, S.; Fu, Y.; Gao, Z.; Long, H.; Ren, H.W.; Zuo, Y.; Wang, J.; Li, H.; Xu, Q.B.; et al. Risk Factors Associated with Clinical Outcomes in 323 Coronavirus Disease 2019 (COVID-19) Hospitalized Patients in Wuhan, China. Clin. Infect. Dis. 2020, 71, 2089–2098. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Yan, S.; Yang, F.; Xiang, L.; Zhu, J.; Shen, B.; Gong, Z. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int. J. Infect. Dis. 2020, 94, 128–132. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 27 May 2020; World Health Organization: Genève, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/clinical-management-of-covid-19 (accessed on 17 February 2021).
- Jiang, C.; Chen, Q.; Xie, M. Smoking increases the risk of infectious diseases: A narrative review. Tob. Induc. Dis. 2020, 18, 60. [Google Scholar] [CrossRef]
- Lauc, G.; Sinclair, D. Biomarkers of biological age as predictors of COVID-19 disease severity. Aging 2020, 12, 6490–6491. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, J.; Polo, R.; Moreno, S.; Díaz, A.; Martínez, E.; Arribas, J.R.; Jarrín, I.; Hernán, M.A.; The Spanish HIV/COVID-19 Collaboration. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. Ann. Intern. Med. 2020, 173, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.L.; Ambrosioni, J.; Garcia, F.; Martínez, E.; Soriano, A.; Mallolas, J.; Miro, J.M.; COVID-19 in HIV Investigators. COVID-19 in patients with HIV: Clinical case series. Lancet HIV 2020, 7, e314–e316. [Google Scholar] [CrossRef]
- Cabello, A.; Zamarro, B.; Nistal, S.; Victor, V.; Hernández, J.; Prieto-Pérez, L.; Carrillo, I.; Álvarez, B.; Fernández-Roblas, R.; Hernández-Segurado, M.; et al. COVID-19 in people living with HIV: A multicenter case-series study. Int. J. Infect. Dis. 2020, 102, 310–315. [Google Scholar] [CrossRef]
- Gervasoni, C.; Meraviglia, P.; Riva, A.; Giacomelli, A.; Oreni, L.; Minisci, D.; Atzori, C.; Ridolfo, A.; Cattaneo, D. Clinical features and outcomes of HIV patients with coronavirus disease 2019. Clin. Infect Dis. 2020, 71, 2276–2278. [Google Scholar] [CrossRef] [PubMed]
- Inciarte, A.; Gonzalez-Cordon, A.; Rojas, J.; Torres, B.; de Lazzari, E.; de la Mora, L.; Martinez-Rebollar, M.; Laguno, M.; Callau, P.; Gonzalez-Navarro, A.; et al. Clinical characteristics, risk factors, and incidence of symptomatic coronavirus disease 2019 in a large cohort of adults living with HIV: A single-center, prospective observational study. AIDS 2020, 34, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Karmen-Tuohy, S.; Carlucci, P.M.; Zacharioudakis, I.M.; Zervou, F.N.; Rebick, G.; Klein, E.; Reich, J.; Jones, S.; Rahimian, J. Outcomes among HIV-positive patients hospitalized with COVID-19. J. Acquir. Immune Defic. Syndr. 2020, 85, 6–10. [Google Scholar] [CrossRef]
- Nagarakanti, S.R.; Okoh, A.K.; Grinberg, S.; Bishburg, E. Clinical outcomes of patients with COVID-19 and HIV coinfection. J. Med. Virol. 2021, 93, 1687–1693. [Google Scholar] [CrossRef]
- Parker, A.; Koegelenberg, C.F.N.; Moolla, M.S.; Louw, E.H.; Mowlana, A.; Nortjé, A.; Ahmed, R.; Brittain, N.; Lalla, U.; Allwood, B.W.; et al. High HIV prevalence in an early cohort of hospital admissions with COVID-19 in Cape Town, South Africa. S. Afr. Med. J. 2020, 110, 982–987. [Google Scholar] [CrossRef]
- Shalev, N.; Scherer, M.; LaSota, E.D.; Antoniou, P.; Yin, M.T.; Zucker, J.; Sobieszczyk, M.E. Clinical Characteristics and Outcomes in People Living with Human Immunodeficiency Virus Hospitalized for Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2294–2297. [Google Scholar] [CrossRef]
- Sigel, K.; Swartz, T.; Golden, E.; Paranjpe, I.; Somani, S.; Richter, F.; De Freitas, J.K.; Miotto, R.; Zhao, S.; Polak, P.; et al. Coronavirus 2019 and People Living with Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City. Clin. Infect. Dis. 2020, 71, 2933–2938. [Google Scholar] [CrossRef] [PubMed]
- Stoeckle, K.; Johnston, C.D.; Jannat-Khah, D.P.; Williams, S.C.; Ellman, T.M.; Vogler, M.A.; Gulick, R.M.; Glesby, M.J.; Choi, J.J. COVID-19 in Hospitalized Adults with HIV. Open Forum Infect. Dis. 2020, 7, ofaa327. [Google Scholar] [CrossRef]
- Vizcarra, P.; Pérez-Elías, M.J.; Quereda, C.; Moreno, A.; Vivancos, M.J.; Dronda, F.; Casado, J.L.; COVID-19 ID Team. Description of COVID-19 in HIV-infected individuals: A single-centre, prospective cohort. Lancet HIV 2020, 7, e554–e564. [Google Scholar] [CrossRef]
- Hoffmann, C.; Casado, J.L.; Härter, G.; Vizcarra, P.; Moreno, A.; Cattaneo, D.; Meraviglia, P.; Spinner, C.D.; Schabaz, F.; Grunwald, S.; et al. Immune deficiency is a risk factor for severe COVID-19 in people living with HIV. HIV Med. 2021, 22, 372–378. [Google Scholar] [CrossRef]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Lau, C.C.Y.; Chan, K.H.; Li, C.P.Y.; Chen, H.; Jin, D.Y.; Chan, J.F.W.; Woo, P.C.Y.; Yuen, K.Y. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment. J. Gen. Virol. 2013, 94, 2679–2690. [Google Scholar] [CrossRef]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Safari, S.; Salimi, A.; Zali, A.; Jahangirifard, A.; Bastanhagh, E.; Aminnejad, R.; Dabbagh, A.; Lotfi, A.H.; Saeidi, M. Extracorporeal Hemoperfusion as a Potential Therapeutic Option for Severe COVID-19 patients; a Narrative Review. Arch. Acad. Emerg. Med. 2020, 8, e67. [Google Scholar]
- Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef]
- Guo, W.; Ming, F.; Dong, Y.; Zhang, Q.; Zhang, X.; Mo, P.; Feng, Y.; Liang, K. A Survey for COVID-19 Among HIV/AIDS Patients in Two Districts of Wuhan, China (3/4/2020). Available online: https://ssrn.com/abstract=3550029 (accessed on 3 March 2021). [CrossRef]
- Minotti, C.; Tirelli, F.; Barbieri, E.; Giaquinto, C.; Donà, D. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J. Infect. 2020, 81, e61–e66. [Google Scholar] [CrossRef] [PubMed]
- Härter, G.; Spinner, C.D.; Roider, J.; Bickel, M.; Krznaric, I.; Grunwald, S.; Schabaz, F.; Gillor, D.; Postel, N.; Mueller, M.C.; et al. COVID-19 in people living with human immunodeficiency virus: A case series of 33 patients. Infection 2020, 48, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Childs, K.; Post, F.A.; Norcross, C.; Ottaway, Z.; Hamlyn, E.; Quinn, K.; Juniper, T.; Taylor, C. Hospitalized Patients with COVID-19 and Human Immunodeficiency Virus: A Case Series. Clin. Infect. Dis. 2020, 71, 2021–2022. [Google Scholar] [CrossRef]
- Etienne, N.; Karmochkine, M.; Slama, L.; Pavie, J.; Batisse, D.; Usubillaga, R.; Letembet, V.A.; Brazille, P.; Canouï, E.; Slama, D.; et al. HIV infection and COVID-19: Risk factors for severe disease. AIDS 2020, 34, 1771–1774. [Google Scholar] [CrossRef]
- Tesoriero, J.M.; Swain, C.E.; Pierce, J.L.; Zamboni, L.; Wu, M.; Holtgrave, D.R.; Gonzalez, C.J.; Udo, T.; Morne, J.E.; Hart-Malloy, R.; et al. COVID-19 Outcomes Among Persons Living with or Without Diagnosed HIV Infection in New York State. JAMA Netw. Open 2021, 4, e2037069. [Google Scholar] [CrossRef]
- BHIVA; DAIG; EACS; GESIDA; Polish Scientific AIDS Society and Portuguese Association for the Clinical Study of AIDS (APECS). Statement on Risk of COVID-19 for People Living with HIV (PLWH) and SARS-CoV-2 Vaccine Advice for Adults Living with HIV. 15 January 2021. Available online: https://www.eacsociety.org/home/bhiva-daig-eacs-gesida-polish-scientific-aids-society-and-portuguese-association-for-the-clinical-study-of-aids-apecs-statement-on-risk-of-covid-19-for-people-living-with-hiv-plwh-and-sars-cov-2-vaccine-advice-for-adults-living-with-hiv.html (accessed on 16 January 2021).
- Pillay-van Wyk, V.; Bradshaw, D.; Groenewald, P.; Seocharan, I.; Manda, S.; Roomaney, R.A.; Awotiwon, O.; Nkwenika, T.; Gray, G.; Buthelezi, S.S.; et al. COVID deaths in South Africa: 99 days since South Africa’s first death. S. Afr. Med. J. 2020, 110, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Lakner, C.; Yonzan, N.N.; Gerszon Mahler, D.; Castaneda Aguilar, R.A.; Wu, H.; Fleury, M. Updated Estimates of the Impact of COVID-19 on Global Poverty: The Effect of New Data; World Bank: Washington, DC, USA, 2020; Available online: https://blogs.worldbank.org/opendata/updated-estimates-impact-covid-19-global-poverty-effect-new-data (accessed on 24 February 2021).
- Tamuzi, J.L.; Ayele, B.T.; Shumba, C.S.; Adetokunboh, O.O.; Uwimana-Nicol, J.; Haile, Z.T.; Inugu, J.; Nyasulu, P.S. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect. Dis. 2020, 20, 744. [Google Scholar] [CrossRef] [PubMed]
- Tadolini, M.; Codecasa, L.R.; García-García, J.M.; Blanc, F.X.; Borisov, S.; Alffenaar, J.W.; Andréjak, C.; Bachez, P.; Bart, P.A.; Belilovski, E.; et al. Active tuberculosis, sequelae and COVID-19 co-infection: First cohort of 49 cases. Eur. Respir. J. 2020, 56, 2001398. [Google Scholar] [CrossRef] [PubMed]
- Tadolini, M.; García-García, J.M.; Blanc, F.X.; Borisov, S.; Goletti, D.; Motta, I.; Codecasa, L.R.; Tiberi, S.; Sotgiu, G.; Migliori, G.B.; et al. On tuberculosis and COVID-19 co-infection. Eur. Respir. J. 2020, 56, 2002328. [Google Scholar] [CrossRef]
- Hsu, D.; Irfan, M.; Jabeen, K.; Iqbal, N.; Hasan, R.; Migliori, G.B.; Zumla, A.; Visca, D.; Centis, R.; Tiberi, S. Post tuberculosis treatment infectious complications. Int. J. Infect. Dis. 2020, 92S, S41–S45. [Google Scholar] [CrossRef]
- Sarkar, S.; Khanna, P.; Singh, A.K. Impact of COVID-19 in patients with concurrent co-infections: A systematic review and meta-analyses. J. Med. Virol. 2021, 93, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Hashim, M.J.; Khan, G. Population risk factors for COVID-19 deaths in Nigeria at sub-national level. Pan. Afr. Med. J. 2020, 35 (Suppl. S2), 131. [Google Scholar]
- Gray, D.M.; Davies, M.A.; Githinji, L.; Levin, M.; Mapani, M.; Nowalaza, Z.; Washaya, N.; Yassin, A.; Zampoli, M.; Zar, H.J. COVID-19 and Pediatric Lung Disease: A South African Tertiary Center Experience. Front. Pediatr. 2021, 8, 614076. [Google Scholar] [CrossRef] [PubMed]
- Allwood, B.W.; Koegelenberg, C.F.; Irusen, E.; Lalla, U.; Davids, R.; Chothia, Y.; Davids, R.; Prozesky, H.; Taljaard, J.; Parker, A.; et al. Clinical evolution, management and outcomes of patients with COVID-19 admitted at Tygerberg Hospital, Cape Town, South Africa: A research protocol. BMJ Open 2020, 10, e039455. [Google Scholar] [CrossRef]
- Nachega, J.B.; Sam-Agudu, N.A.; Budhram, S.; Taha, T.E.; Vannevel, V.; Somapillay, P.; Ishoso, D.K.; Tshiasuma Pipo, M.; Bongo-Pasi Nswe, C.; Ditekemena, J.; et al. Effect of SARS-CoV-2 Infection in Pregnancy on Maternal and Neonatal Outcomes in Africa: An AFREhealth Call for Evidence through Multicountry Research Collaboration. Am. J. Trop. Med. Hyg. 2020, 104, 461–465. [Google Scholar]
- Pai, M. Covidization of research: What are the risks? Nat. Med. 2020, 26, 1159. [Google Scholar] [CrossRef]
- Baral, S.; Rao, A.; Rwema, J.O.T.; Lyons, C.; Cevik, M.; Kågesten, A.E.; Diouf, D.; Sohn, A.H.; Phaswana-Mafuya, R.; Kamarulzaman, A.; et al. Competing Health Risks Associated with the COVID-19 Pandemic and Response: A Scoping Review. medRxiv 2021. [Google Scholar] [CrossRef]
- Coker, M.; Folayan, M.O.; Michelow, I.C.; Oladokun, R.E.; Torbunde, N.; Sam-Agudu, N.A. Things must not fall apart: The ripple effects of the COVID-19 pandemic on children in sub-Saharan Africa. Pediatr. Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Lebina, L.; Dube, M.; Hlongwane, K.; Brahmbatt, H.; Lala, S.G.; Reubenson, G.; Martinson, N. Trends in paediatric tuberculosis diagnoses in two South African hospitals early in the COVID-19 pandemic. S. Afr. Med. J. 2020, 110, 1149–1150. [Google Scholar] [CrossRef]
- Schultz, J.; Hyson, P.; Chastain, D.B.; Gharamti, A.A.; Franco-Paredes, C.; Henao-Martínez, A.F. COVID-19 epidemic in the US-A gateway to screen for tuberculosis, HIV, viral hepatitides, Chagas disease, and other neglected tropical diseases among Hispanics. PLoS Negl. Trop. Dis. 2020, 14, e0008953. [Google Scholar] [CrossRef]
- Johnson, S.B. Advancing Global Health Equity in the COVID-19 Response: Beyond Solidarity. J. Bioeth. Inq. 2020, 17, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Margolin, E.; Burgers, W.A.; Sturrock, E.D.; Mendelson, M.; Chapman, R.; Douglass, N.; Williamson, A.L.; Rybicki, E.P. Prospects for SARS-CoV-2 diagnostics, therapeutics and vaccines in Africa. Nat. Rev. Microbiol. 2020, 1–15. [Google Scholar] [CrossRef]
- Gupta, N.; Bhatnagar, T.; Rade, K.; Murhekar, M.; Gangakhedkar, R.R.; Nagar, A.; ICMR COVID Team. Strategic planning to augment the testing capacity for COVID-19 in India. Indian J. Med. Res. 2020, 151, 210–215. [Google Scholar]
- Nachega, J.B.; Grimwood, A.; Mahomed, H.; Fatti, G.; Preiser, W.; Kallay, O.; Mbala, P.K.; Muyembe, J.T.; Rwagasore, E.; Nsanzimana, S.; et al. From Easing Lockdowns to Scaling Up Community-based Coronavirus Disease 2019 Screening, Testing, and Contact Tracing in Africa-Shared Approaches, Innovations, and Challenges to Minimize Morbidity and Mortality. Clin. Infect. Dis. 2021, 72, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Bulled, N.; Singer, M. In the shadow of HIV & TB: A commentary on the COVID epidemic in South Africa. Glob. Public Health 2020, 15, 1231–1243. [Google Scholar] [PubMed]
- World Health Organization (WHO). The Cost of Inaction: COVID-19-Related Service Disruptions Could Cause Hundreds of Thousands of Extra Deaths from HIV (2020), 11 May 2020. World Health Organization. 2020. Available online: https://www.unaids.org/en/resources/presscentre/pressreleaseandstatementarchive/2020/may/20200511_PR_HIV_modelling (accessed on 9 March 2021).
- Rademeyer, A. The Ask Afrika COVID-19 Tracker: Unpacking the Significant Social Change Brought on by the COVID-19 Pandemic; Ask Africa: Pretoria, South Africa, 2020. [Google Scholar]
- Cox, V.; Wilkinson, L.; Grimsrud, A.; Hughes, J.; Reuter, A.; Conradie, F.; Nel, J.; Boyles, T. Critical changes to services for TB patients during the COVID-19 pandemic. Int. J. Tuberc. Lung Dis. 2020, 24, 542–544. [Google Scholar] [CrossRef]
- Enane, L.A.; Christenson, J.C. Global emerging resistance in pediatric infections with TB, HIV, and gram-negative pathogens. Paediatr. Int. Child. Health 2021, 41, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Dharmadhikari, A.S.; Mphahlele, M.; Stoltz, A.; Venter, K.; Mathebula, R.; Masotla, T.; Lubbe, W.; Pagano, M.; First, M.; Jensen, P.A.; et al. Surgical face masks worn by patients with multidrug-resistant tuberculosis: Impact on infectivity of air on a hospital ward. Am. J. Respir. Crit. Care Med. 2012, 185, 1104–1109. [Google Scholar] [CrossRef]
- Mejia, R.; Hotez, P.; Bottazzi, M.E. Global COVID-19 Efforts as the Platform to Achieving the Sustainable Development Goals. Curr. Trop. Med. Rep. 2020, 1–5. [Google Scholar] [CrossRef]
- Mitsuya, H. Fight against COVID-19 but avoid disruption of services for other communicable diseases (CDs) and noncommunicable diseases (NCDs). Glob. Health Med. 2020, 2, 343–345. [Google Scholar] [CrossRef]
Cases | Origin | Age (Years) | Gender | HIV and SARS-CoV-2 Coincident Diagnosis? (Yes/No) | AIDS-Defining Condition | TB and SARS-CoV-2 Coincident Diagnosis? (Yes/No) | Haematological Abnormalities | Biochemical Assessment | Exertional Dyspnea | Fever | Respiratory Therapy (Yes/No) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Morocco | 32 | Female | Yes | No | Yes | Thrombocytopenia and leucopenia | Anemia, hyper-ferritinemia | Yes | Yes | No | [37] |
2 | Brazil | 43 | Male | No a | Yes | Yes | Lymphopenia, low haemoglobin and haematocrit levels | Increase of LDH and CRP | No | No | Not stated | [38] |
3 | Brazil | 39 | Male | No a | Yes | No | Lymphopenia, low haemoglobin and haematocrit levels | Increase of CRP | Mild | Yes | No b | [38] |
4 | Panama | 53 | Male | Yes | No | No | Not stated | Mild anemia | Moderate | Yes | Yes c | [39] |
5 | Panama | 29 | Male | Yes | No | Yes | Neutrophilia and lymphopenia | Mild anemia, elevation of CRP, ferritin, D-dimer and procalcitonin | Moderate | No | Yes | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Domenech, C.M.; Pérez-Hernández, I.; Gómez-Ayerbe, C.; Viciana Ramos, I.; Palacios-Muñoz, R.; Santos, J. A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis. Viruses 2021, 13, 931. https://doi.org/10.3390/v13050931
González-Domenech CM, Pérez-Hernández I, Gómez-Ayerbe C, Viciana Ramos I, Palacios-Muñoz R, Santos J. A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis. Viruses. 2021; 13(5):931. https://doi.org/10.3390/v13050931
Chicago/Turabian StyleGonzález-Domenech, Carmen María, Isabel Pérez-Hernández, Cristina Gómez-Ayerbe, Isabel Viciana Ramos, Rosario Palacios-Muñoz, and Jesús Santos. 2021. "A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis" Viruses 13, no. 5: 931. https://doi.org/10.3390/v13050931
APA StyleGonzález-Domenech, C. M., Pérez-Hernández, I., Gómez-Ayerbe, C., Viciana Ramos, I., Palacios-Muñoz, R., & Santos, J. (2021). A Pandemic within Other Pandemics. When a Multiple Infection of a Host Occurs: SARS-CoV-2, HIV and Mycobacterium tuberculosis. Viruses, 13(5), 931. https://doi.org/10.3390/v13050931