Nebulized CLODOS Technology Shows Clear Virucidal Properties against the Human Coronavirus HCoV-229E at Non-Cytotoxic Doses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Viruses
2.3. Reagents
2.4. Quality and Concentration Control of CLODOS Technology®
2.5. Cell Viability Assay
2.6. Virucidal Effect of CLODOS Technology®
2.7. Endpoint Dilution Assay
2.8. Statistics
3. Results
3.1. CLODOS Technology® Is Non-Toxic in Huh-7 Cells at 225 ppm
3.2. Virucidal Effect of CLODOS Technology®
3.2.1. Directly Sprayed CLODOS Technology® Shows Virucidal Activity against HCoV-229E
3.2.2. Virucidal Effect of Nebulized CLODOS Technology® at Different Conditions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Carrasco, L.; Almendral, J.M. Virus Patógenos; Editorial Hélice, Fundación BBVA: Madrid, Spain, 2006; pp. 347–364. [Google Scholar]
- Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis. 2020, 94, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Zarbock, A. Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth. Analg. 2020, 131, 93–96. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus Disease (COVID19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub (accessed on 11 December 2020).
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K.Y. Coronaviruses-drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016, 15, 327–347. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions Scientific Brief 9 July COVID-19: Infection Prevention and Control/WASH. Available online: https://www.who.int/publications/i/item/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed on 10 January 2020).
- Tellier, R.; Li, Y.; Cowling, B.J.; Tang, J.W. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 2019, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef]
- Verreault, D.; Moineau, S.; Duchaine, C. Methods for Sampling of Airborne Viruses. Microbiol. Mol. Biol. Rev. 2008, 72, 413–444. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, M.C. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications. Front. Public Health 2020, 8, 813. [Google Scholar] [CrossRef]
- Anderson, E.L.; Turnham, P.; Griffin, J.R.; Clarke, C.C. Consideration of the Aerosol Transmission for COVID-19 and Public Health. Risk Anal. 2020, 40, 902–907. [Google Scholar] [CrossRef]
- Belío Aragón, F. Subproductos generados con el uso de dióxido de cloro en el tratamiento de aguas potables y en la industria alimentaria. Química e Ind. 2015, 612, 36–39. [Google Scholar]
- Gordo, D.M. Dióxido de cloro puro y estable: Estudio de las características fisicoquímicas y análisis de viabilidad técnico-económico de sus aplicaciones industriales; ICAI: Delhi, India, 2017. [Google Scholar]
- Ogata, N. Denaturation of protein by chlorine dioxide: Oxidative modification of tryptophan and tyrosine residues. Biochemistry 2007, 46, 4898–4911. [Google Scholar] [CrossRef]
- Ogata, N. Inactivation of influenza virus haemagglutinin by chlorine dioxide: Oxidation of the conserved tryptophan 153 residue in the receptor-binding site. J. Gen. Virol. 2012, 93, 2558–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kály-Kullai, K.; Wittmann, M.; Noszticzius, Z.; Rosivall, L. Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Medical hypotheses. Physiol. Int. 2020, 107, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-López, V.M. Chlorine Dioxide. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 864–866. ISBN 9780123864543. [Google Scholar]
- Gordon, G.; Rosenblatt, A.A. Chlorine dioxide: The current state of the art. Ozone Sci. Eng. 2005, 27, 203–207. [Google Scholar] [CrossRef]
- Nakabayashi, H.; Taketa, K.; Miyano, K.; Yamane, T.; Sato, J. Growth of Human Hepatoma Cell Lines with Differentiated Functions in Chemically Defined Medium. Cancer Res. 1982, 42, 3858–3863. [Google Scholar] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Cristiano, L. Could ozone be an effective disinfection measure against the novel coronavirus (SARS-CoV-2)? J. Prev. Med. Hyg. 2020, 61, E301–E303. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Huang, Y.W. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS ONE 2020, 15, e0241539. [Google Scholar] [CrossRef]
- Stadnytskyi, V.; Bax, C.E.; Bax, A.; Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 11875–11877. [Google Scholar] [CrossRef]
- Jones, N.R.; Qureshi, Z.U.; Temple, R.J.; Larwood, J.P.J.; Greenhalgh, T.; Bourouiba, L. Two metres or one: What is the evidence for physical distancing in covid-19? BMJ 2020, 370, m3223. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol. 2020, 244, 108693. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu, S.; Ripa, I.; Bello-Morales, R.; López-Guerrero, J.A. Nebulized CLODOS Technology Shows Clear Virucidal Properties against the Human Coronavirus HCoV-229E at Non-Cytotoxic Doses. Viruses 2021, 13, 531. https://doi.org/10.3390/v13030531
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Nebulized CLODOS Technology Shows Clear Virucidal Properties against the Human Coronavirus HCoV-229E at Non-Cytotoxic Doses. Viruses. 2021; 13(3):531. https://doi.org/10.3390/v13030531
Chicago/Turabian StyleAndreu, Sabina, Inés Ripa, Raquel Bello-Morales, and José Antonio López-Guerrero. 2021. "Nebulized CLODOS Technology Shows Clear Virucidal Properties against the Human Coronavirus HCoV-229E at Non-Cytotoxic Doses" Viruses 13, no. 3: 531. https://doi.org/10.3390/v13030531
APA StyleAndreu, S., Ripa, I., Bello-Morales, R., & López-Guerrero, J. A. (2021). Nebulized CLODOS Technology Shows Clear Virucidal Properties against the Human Coronavirus HCoV-229E at Non-Cytotoxic Doses. Viruses, 13(3), 531. https://doi.org/10.3390/v13030531