Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses
Abstract
:1. Introduction
2. Material and Methods
2.1. Cells and Viruses
2.2. Construction of Recombinant Plasmids
2.3. Transient Expression, Immunoprecipitation, and Quantification of Proteins
2.4. Gel Electrophoresis, Detection, and Quantification of Precipitated Proteins
2.5. Recovery and Analysis of Mutant Viruses from Cloned Sequences
3. Results
3.1. Mutations Interfering with the Putative Charge Zipper Formation Have Inconsistent Effects on Erns Processing
3.2. Major Effects Are Observed with Alterations Affecting Only the Inner Six Charged Amino Acids of the Putative Charge Zipper
3.3. Effects of Less Invasive Alterations
3.4. Exchange of Charged Residues in Its Membrane Anchor Can Lead to Increased Erns Secretion
3.5. The Principles of Erns-E1 Processing and Secretion Are Conserved between Mammalian and Avian Cells
3.6. Effects on the Recovery and Viability of Infectious Viruses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Scott Muerhoff, A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar]
- Thiel, H.J.; Stark, R.; Weiland, E.; Rümenapf, T.; Meyers, G. Hog cholera virus: Molecular composition of virions from a pestivirus. J. Virol. 1991, 65, 4705–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiland, F.; Weiland, E.; Unger, G.; Saalmüller, A.; Thiel, H.J. Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J. Gen. Virol. 1999, 80 Pt 5, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Hulst, M.M.; Moormann, R.J. Erns protein of pestiviruses. Methods Enzymol. 2001, 342, 431–440. [Google Scholar]
- Reimann, I.; Meyers, G.; Beer, M. Trans-complementation of autonomously replicating Bovine viral diarrhea virus replicons with deletions in the E2 coding region. Virology 2003, 307, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Sainz, I.F.; Holinka, L.G.; Lu, Z.; Risatti, G.R.; Borca, M.V. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 2008, 370, 122–129. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, H.J. Classical swine fever virus: Independent induction of protective immunity by two structural glycoproteins. J. Virol. 1995, 69, 6479–6486. [Google Scholar] [CrossRef] [Green Version]
- Rümenapf, T.; Unger, G.; Strauss, J.H.; Thiel, H.J. Processing of the envelope glycoproteins of pestiviruses. J. Virol. 1993, 67, 3288–3295. [Google Scholar] [CrossRef] [Green Version]
- Tews, B.A.; Schürmann, E.M.; Meyers, G. Mutation of cysteine 171 of pestivirus Erns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. J. Virol. 2009, 83, 4823–4834. [Google Scholar] [CrossRef] [Green Version]
- Tucakov, A.K.; Yavuz, S.; Schurmann, E.M.; Mischler, M.; Klingebeil, A.; Meyers, G. Restoration of glycoprotein E(rns) dimerization via pseudoreversion partially restores virulence of classical swine fever virus. J. Gen. Virol. 2018, 99, 86–96. [Google Scholar] [CrossRef]
- Horiuchi, H.; Yanai, K.; Takagi, M.; Yano, K.; Wakabayashi, E.; Sanda, A.; Mine, S.; Ohgi, K.; Irie, M. Primary structure of a base non-specific ribonuclease from Rhizopus niveus. J. Biochem. 1988, 103, 408–418. [Google Scholar] [CrossRef]
- Schneider, R.; Unger, G.; Stark, R.; Schneider-Scherzer, E.; Thiel, H.J. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 1993, 261, 1169–1171. [Google Scholar] [CrossRef]
- Krey, T.; Bontems, F.; Vonrhein, C.; Vaney, M.C.; Bricogne, G.; Rümenapf, T.; Rey, F.A. Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity. Structure 2012, 20, 862–873. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Von Freyburg, M.; Elbers, K.; Meyers, G. Recovery of virulent and RNase-negative attenuated type 2 bovine viral diarrhea viruses from infectious cDNA clones. J. Virol. 2002, 76, 8494–8503. [Google Scholar] [CrossRef] [Green Version]
- Meyers, G.; Saalmüller, A.; Büttner, M. Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. J. Virol. 1999, 73, 10224–10235. [Google Scholar] [CrossRef] [Green Version]
- Meyers, G.; Ege, A.; Fetzer, C.; von, F.M.; Elbers, K.; Carr, V.; Prentice, H.; Charleston, B.; Schürmann, E.M. Bovine viral diarrhoea virus: Prevention of persistent foetal infection by a combination of two mutations affecting the Erns RNase and the Npro protease. J. Virol. 2007, 81, 3327–3338. [Google Scholar] [CrossRef] [Green Version]
- Magkouras, I.; Mätzener, P.; Rümenapf, T.; Peterhans, E.; Schweizer, M. RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses. J. Gen. Virol. 2008, 89, 2501–2506. [Google Scholar] [CrossRef]
- Mätzener, P.; Magkouras, I.; Rümenapf, T.; Peterhans, E.; Schweizer, M. The viral RNase Erns prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res. 2009, 140, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Poole, E.; Goodbourn, S.; McCauley, J.W. Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J. Virol. 2004, 78, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Zürcher, C.; Sauter, K.S.; Mathys, V.; Wyss, F.; Schweizer, M. Prolonged activity of the pestiviral RNase Erns as an interferon antagonist after uptake by clathrin-mediated endocytosis. J. Virol. 2014, 88, 7235–7243. [Google Scholar] [CrossRef] [Green Version]
- Zürcher, C.; Sauter, K.S.; Schweizer, M. Pestiviral E(rns) blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA. Vet. Microbiol. 2014, 174, 399–408. [Google Scholar] [CrossRef]
- Reid, E.; Juleff, N.; Windsor, M.; Gubbins, S.; Roberts, L.; Morgan, S.; Meyers, G.; Perez-Martin, E.; Tchilian, E.; Charleston, B.; et al. Type I and III IFNs Produced by Plasmacytoid Dendritic Cells in Response to a Member of the Flaviviridae Suppress Cellular Immune Responses. J. Immunol. 2016, 196, 4214–4226. [Google Scholar] [CrossRef] [Green Version]
- Aberle, D.; Muhle-Goll, C.; Bürck, J.; Wolf, M.; Reisser, S.; Luy, B.; Wenzel, W.; Ulrich, A.S.; Meyers, G. Structure of the membrane anchor of pestivirus glycoprotein Erns, a long tilted amphipathic helix. PLoS Pathog. 2014, 10, e1003973. [Google Scholar] [CrossRef] [PubMed]
- Fetzer, C.; Tews, B.A.; Meyers, G. The carboxy-terminal sequence of the pestivirus glycoprotein E(rns) represents an unusual type of membrane anchor. J. Virol. 2005, 79, 11901–11913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tews, B.A.; Meyers, G. The Pestivirus Glycoprotein Erns Is Anchored in Plane in the Membrane via an Amphipathic Helix. J. Biol. Chem. 2007, 282, 32730–32741. [Google Scholar] [CrossRef] [Green Version]
- Aberle, D.; Oetter, K.M.; Meyers, G. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. PLoS ONE 2015, 10, e0135680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Krabben, L.; Wang, F.; Veit, M. Glycoprotein 3 of Porcine Reproductive and Respiratory Syndrome Virus Exhibits an Unusual Hairpin-Like Membrane Topology. J. Virol. 2018, 92, e00660-18. [Google Scholar] [CrossRef] [Green Version]
- Heimann, M.; Roman-Sosa, G.; Martoglio, B.; Thiel, H.J.; Rümenapf, T. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J. Virol. 2006, 80, 1915–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, I.; Johnson, A.E.; von Heijne, G. Cleavage of a tail-anchored protein by signal peptidase. FEBS Lett. 2002, 516, 106–108. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, I.; Whitley, P.; von Heijne, G. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell Biol. 1994, 126, 1127–1132. [Google Scholar] [CrossRef]
- von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986, 14, 4683–4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Heijne, G. The signal peptide. J. Membr. Biol. 1990, 115, 195–201. [Google Scholar] [CrossRef]
- Elbers, K.; Tautz, N.; Becher, P.; Rümenapf, T.; Thiel, H.J. Processing in the Pestivirus E2-NS2 region: Identification of the nonstructural proteins p7 and E2p7. J. Virol. 1996, 70, 4131–4135. [Google Scholar] [CrossRef] [Green Version]
- Harada, T.; Tautz, N.; Thiel, H.J. E2-p7 region of the bovine viral diarrhea virus polyprotein: Processing and functional studies. J. Virol. 2000, 74, 9498–9506. [Google Scholar] [CrossRef] [Green Version]
- Bintintan, I.; Meyers, G. A new type of signal peptidase cleavage site identified in an RNA virus polyprotein. J. Biol. Chem. 2010, 285, 8572–8584. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Bintintan, I.; Meyers, G. Downstream Sequences Control the Processing of the Pestivirus E(rns)-E1 Precursor. J. Virol. 2020, 95. [Google Scholar] [CrossRef]
- Walther, T.H.; Gottselig, C.; Grage, S.L.; Wolf, M.; Vargiu, A.V.; Klein, M.J.; Vollmer, S.; Prock, S.; Hartmann, M.; Afonin, S.; et al. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 2013, 152, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Sutter, G.; Ohlmann, M.; Erfle, V. Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett. 1995, 371, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, L.S.; Moss, B.; Rozenblatt, S. Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology 1995, 210, 202–205. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Weiland, E.; Ahl, R.; Stark, R.; Weiland, F.; Thiel, H.J. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J. Virol. 1992, 66, 3677–3682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schägger, H.; Jagow, G. Tricine- sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef]
- Meyers, G.; Thiel, H.J.; Rümenapf, T. Classical swine fever virus: Recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J. Virol. 1996, 70, 1588–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiland, E.; Stark, R.; Haas, B.; Rümenapf, T.; Meyers, G.; Thiel, H.J. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide linked heterodimer. J. Virol. 1990, 64, 3563–3569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, T.H.; Ulrich, A.S. Transmembrane helix assembly and the role of salt bridges. Curr. Opin. Struct. Biol. 2014, 27, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Burrack, S.; Aberle, D.; Bürck, J.; Ulrich, A.S.; Meyers, G. A new type of intracellular retention signal identified in a pestivirus structural glycoprotein. FASEB J. 2012, 26, 3292–3305. [Google Scholar] [CrossRef]
- Lively, M.O. Signal peptidases in protein biosynthesis and intracellular transport. Curr. Opin. Struct. Biol. 1989, 1, 1188–1193. [Google Scholar] [CrossRef]
- Lively, M.O.; Newsome, A.L.; Nusier, M. Eukaryote microsomal signal peptidases. Methods Enzymol. 1994, 244, 301–314. [Google Scholar] [PubMed]
- Baker, R.K.; Bentivoglio, G.P.; Lively, M.O. Partial purification of microsomal signal peptidase from hen oviduct. J. Cell Biochem. 1986, 32, 193–200. [Google Scholar] [CrossRef]
- Baker, R.K.; Lively, M.O. Purification and characterization of hen oviduct microsomal signal peptidase. Biochemistry 1987, 26, 8561–8567. [Google Scholar] [CrossRef]
- Drin, G.; Antonny, B. Amphipathic helices and membrane curvature. FEBS Lett. 2010, 584, 1840–1847. [Google Scholar] [CrossRef]
- Prevost, C.; Sharp, M.E.; Kory, N.; Lin, Q.; Voth, G.A.; Farese, R.V., Jr.; Walther, T.C. Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets. Dev. Cell 2018, 44, 73–86.e4. [Google Scholar] [CrossRef]
- Zhukovsky, M.A.; Filograna, A.; Luini, A.; Corda, D.; Valente, C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front. Cell Dev. Biol. 2019, 7, 291. [Google Scholar] [CrossRef]
- Drin, G.; Antonny, B. Cell biology: Helices sculpt membrane. Nature 2005, 437, 1247–1249. [Google Scholar] [CrossRef]
- Gimenez-Andres, M.; Copic, A.; Antonny, B. The Many Faces of Amphipathic Helices. Biomolecules 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Ahola, T.; Lampio, A.; Auvinen, P.; Kaariainen, L. Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 1999, 18, 3164–3172. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Treadaway, J.; Tellinghuisen, T.L. Interaction between Nonstructural Proteins NS4B and NS5A Is Essential for Proper NS5A Localization and Hepatitis C Virus RNA Replication. J. Virol. 2016, 90, 7205–7218. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Westler, W.M.; den Boon, J.A.; Wang, X.; Diaz, A.; Steinberg, H.A.; Ahlquist, P. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathog. 2009, 5, e1000351. [Google Scholar] [CrossRef]
- Moradpour, D.; Brass, V.; Penin, F. Function follows form: The structure of the N-terminal domain of HCV NS5A. Hepatology 2005, 42, 732–735. [Google Scholar] [CrossRef]
- Penin, F.; Brass, V.; Appel, N.; Ramboarina, S.; Montserret, R.; Ficheux, D.; Blum, H.E.; Bartenschlager, R.; Moradpour, D. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J. Biol. Chem. 2004, 279, 40835–40843. [Google Scholar] [CrossRef] [Green Version]
- Sapay, N.; Montserret, R.; Chipot, C.; Brass, V.; Moradpour, D.; Deleage, G.; Penin, F. NMR structure and molecular dynamics of the in-plane membrane anchor of nonstructural protein 5A from bovine viral diarrhea virus. Biochemistry 2006, 45, 2221–2233. [Google Scholar] [CrossRef]
- Spuul, P.; Salonen, A.; Merits, A.; Jokitalo, E.; Kaariainen, L.; Ahola, T. Role of the amphipathic peptide of Semliki forest virus replicase protein nsP1 in membrane association and virus replication. J. Virol. 2007, 81, 872–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teterina, N.L.; Gorbalenya, A.E.; Egger, D.; Bienz, K.; Ehrenfeld, E. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J. Virol. 1997, 71, 8962–8972. [Google Scholar] [CrossRef] [Green Version]
- Teterina, N.L.; Levenson, E.; Rinaudo, M.S.; Egger, D.; Bienz, K.; Gorbalenya, A.E.; Ehrenfeld, E. Evidence for functional protein interactions required for poliovirus RNA replication. J. Virol. 2006, 80, 5327–5337. [Google Scholar] [CrossRef] [Green Version]
(A) | ||
Name | Charge Distribution | Exchanges |
wt | − − − − − − − / +++ | |
1 | ++++ +++ / +++ | E2R/D3R/D8R/E0R/D7R/D4R/E1R |
2 | ++++ − − − / − − − | E2R/D3R/D8R/E0R/R4E/R9E/R6E |
3 | ++ − − +++ / +++ | E2R/D3R/D7R/D4R/E1R |
4 | − − ++ +++ / +++ | D8R/E0R/D7R/D4R/E1R |
5 | ++− − − − − / − − − | E2R/D3R/R4E/R9E/R6E |
6 | − −++ − − − / − − − | D8R/E0R/R4E/R9E/R6E |
7 | ++− − − − − / +++ | E2R/D3R |
8 | − − ++ − − − / +++ | D8R/E0R |
9 | ++++ − − − / +++ | E2R/D3R/D8R/E0R |
10 | − − − − +++ / +++ | D7R/D4R/E1R |
11 | − − − − − − − / − − − | R4E/R9E/R6E |
(B) | ||
Name | Charge Distribution | Exchanges |
wt | − − − / + + + | |
10 | + + + / + + + | D7R/D4R/E1R |
11 | − − − / − − − | R4E/R9E/R6E |
12 | + + − / + − + | D7R/D4R/R9E |
13 | + + − / + + − | D7R/D4R/R6E |
14 | + + − / + − − | D7R/D4R/R9E/R6E |
15 | + − + / − + − | D7R/E1R/R4E/R6E |
16 | + + + / + − − | D7R/D4R/E1R/R9E/R6E |
17 | + + − / − − − | D7R/D4R/R4E/R9E/R6E |
18 | + + + / − − − | D7R/D4R/E1R/R4E/R9E/R6E |
19 | + + − / + + + | D7R/D4R |
20 | + − + / + + + | D7R/E1R |
21 | − + − / − + + | D4R/R4E |
22 | − − + / − + + | E1R/R4E |
23 | + − − / + + − | D7R/R6E |
24 | − − + / + − + | E1R/R9E |
25 | − − + / + + − | E1R/R6E |
26 | − − − / + − + | R9E/R6E |
27 | − − − / − − + | R4E/R9E |
28 | − − − / − + − | R4E/R6E |
29 | + − − / + + + | D7R |
30 | − + − / + + + | D4R |
31 | − − + / + + + | E1R |
32 | − − − / − + + | R4E |
33 | − − − / + − + | R9E |
34 | − − − / + + − | R6E |
(C) | ||
Name | Charge Distribution | Exchanges |
wt | − − − / + + + | |
35 | − − a / + + + | E1a |
36 | − − − / a + + | R4a |
37 | a − a / + + + | D7a/E1a |
38 | a − − / a + + | D7a/R4a |
39 | − a − / a + + | D4a/R4a |
40 | − − a / a + + | E1a/R4a |
41 | − − a / + a + | E1a/R9a |
42 | − − − / a a + | R4a/R9a |
43 | − − − / a + a | R4a /R6a |
44 | − a a / a + + | D4a/E1a/R4a |
45 | − − a / a a + | E1a/R4a/R9a |
46 | a a a / + + + | D7a/ D4a/E1a |
47 | − − − / a a a | R4a/R9a/R6a |
48 | − − − / − + + | R4D |
49 | − − − / + + + | R4K |
50 | a − − / + + + | D7a |
51 | − a − / + + + | D4a |
52 | − − − / + a + | R9a |
53 | − − − / + + a | R6a |
Construct | Mutation | Charge | Precursor | Secretion | Replicon | Inf. Virus | Seq | Charge Rec. Virus |
---|---|---|---|---|---|---|---|---|
wt | - | − − −/+ + + | 14% | 7% | yes | yes | wt | − − −/+ + + |
ΔErns | deletion of Erns gene | n.a. | n.a. | n.a. | yes | no | n.a. | n.a. |
12 | D7R/D4R/R9E | + + −/+ − + | 19% | 29% | yes | no | n.a. | n.a. |
18 | D7R/D4R/E1R/R4E/R9E/R6E | + + +/− − − | 30% | 43% | yes | no | n.a. | n.a. |
27 | R4E/R9E | − − −/− −+ | 44% | 63% | yes | yes | 4K/9R | − − −/+ + + |
29 | D7R | + − −/+ + + | 24% | 5% | yes | yes | 7R | + − −/+ + + |
30 | D4R | − + −/+ + + | 23% | 26% | yes | no | n.a. | n.a. |
31 | E1R | − − +/+ + + | 16% | 28% | yes | no | n.a. | n.a. |
32 | R4E | − − −/− + + | 41% | 26% | yes | yes | 4K or 4R | − − −/+ + + |
33 | R9E | − − −/+ − + | 21% | 29% | yes | yes | 9E | − − −/+ − + |
34 | R6E | − − −/+ + − | 22% | 28% | yes | yes | 6K | − − −/+ + − |
50 | D7a | a − −/+ + + | 14% | n.t. | yes | yes | 7a | a − −/+ + + |
51 | D4a | − a −/+ + + | 16% | n.t. | yes | yes | 4D | − − −/+ + + |
35 | E1a | − − a/+ + + | 12% | n.t. | yes | yes | 1E | − − −/+ + + |
36 | R4a | − − −/a + + | 19% | n.t. | yes | yes | 4R | − − −/+ + + |
52 | R9a | − − −/+ a + | 16% | n.t. | yes | yes | 9a | − − −/+ a + |
53 | R6a | − − −/+ + a | n.t. | n.t. | yes | yes | 6a | − − −/+ + a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oetter, K.-M.; Kühn, J.; Meyers, G. Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses. Viruses 2021, 13, 444. https://doi.org/10.3390/v13030444
Oetter K-M, Kühn J, Meyers G. Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses. Viruses. 2021; 13(3):444. https://doi.org/10.3390/v13030444
Chicago/Turabian StyleOetter, Kay-Marcus, Juliane Kühn, and Gregor Meyers. 2021. "Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses" Viruses 13, no. 3: 444. https://doi.org/10.3390/v13030444
APA StyleOetter, K.-M., Kühn, J., & Meyers, G. (2021). Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses. Viruses, 13(3), 444. https://doi.org/10.3390/v13030444