Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Cytokine Panel
2.3. Analysis
3. Results
3.1. Patient Population
3.2. Cytokine Profiles
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronca, S.E.; Murray, K.O.; Nolan, M.S. Cumulative Incidence of West Nile Virus Infection, Continental United States, 1999–2016. Emerg. Infect. Dis. 2019, 25, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.E.; Shankar, M.B.; Fischer, M.; Meltzer, M.I.; Sejvar, J.J. Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease. Am. J. Trop. Med. Hyg. 2014, 90, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Vanichanan, J.; Salazar, L.; Wootton, S.H.; Aguilera, E.; Garcia, M.N.; Murray, K.O.; Hasbun, R. Use of Testing for West Nile Virus and Other Arboviruses. Emerg. Infect. Dis. 2016, 22. [Google Scholar] [CrossRef]
- Garcia, M.N.; Hause, A.M.; Walker, C.M.; Orange, J.S.; Hasbun, R.; Murray, K.O. Evaluation of Prolonged Fatigue Post–West Nile Virus Infection and Association of Fatigue with Elevated Antiviral and Proinflammatory Cytokines. Viral Immunol. 2014, 27, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Weatherhead, J.E.; Miller, V.E.; Garcia, M.N.; Hasbun, R.; Salazar, L.; Dimachkie, M.M.; Murray, K.O. Long-Term Neurological Outcomes in West Nile Virus–Infected Patients: An Observational Study. Am. J. Trop. Med. Hyg. 2015, 92, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Koraka, P.; Osterhaus, A.; Martina, B. West Nile Virus: Immunity and Pathogenesis. Viruses 2011, 3, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.S.; Podoll, A.S.; Hause, A.M.; Akers, K.M.; Finkel, K.W.; Murray, K.O. Prevalence of Chronic Kidney Disease and Progression of Disease Over Time among Patients Enrolled in the Houston West Nile Virus Cohort. PLoS ONE 2012, 7, e40374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philpott, D.C.; Nolan, M.S.; Evert, N.; Mayes, B.; Hesalroad, D.; Fonken, E.; Murray, K.O. Acute and Delayed Deaths after West Nile Virus Infection, Texas, USA, 2002. Emerg. Infect. Dis. 2019, 25, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.O.; Kolodziej, S.; Ronca, S.E.; Gorchakov, R.; Navarro, P.; Nolan, M.S.; Podoll, A.; Finkel, K.; Mandayam, S. Visualization of West Nile Virus in Urine Sediment using Electron Microscopy and Immunogold up to Nine Years Postinfection. Am. J. Trop. Med. Hyg. 2017, 97, 1913–1919. [Google Scholar] [CrossRef] [Green Version]
- Schwandt, A.; Denkinger, M.; Fasching, P.; Pfeifer, M.; Wagner, C.; Weiland, J.; Zeyfang, A.; Holl, R.W. Comparison of MDRD, CKD-EPI, and Cockcroft-Gault equation in relation to measured glomerular filtration rate among a large cohort with diabetes. J. Diabetes Complicat. 2017, 31, 1376–1383. [Google Scholar] [CrossRef]
- Levey, A.S.; De Jong, P.E.; Coresh, J.; Nahas, M.E.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.-U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupuis-Maguiraga, L.; Noret, M.; Brun, S.; Le Grand, R.; Gras, G.; Roques, P. Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia. PLoS Neglected Trop. Dis. 2012, 6, e1446. [Google Scholar] [CrossRef] [Green Version]
- Khaiboullina, S.F.; Levis, S.; Morzunov, S.P.; Martynova, E.V.; Anokhin, V.A.; Gusev, O.A.; Jeor, S.C.S.; Lombardi, V.C.; Rizvanov, A.A. Serum Cytokine Profiles Differentiating Hemorrhagic Fever with Renal Syndrome and Hantavirus Pulmonary Syndrome. Front. Immunol. 2017, 8, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjona, A.; Wang, P.; Montgomery, R.R.; Fikrig, E. Innate immune control of West Nile virus infection. Cell. Microbiol. 2011, 13, 1648–1658. [Google Scholar] [CrossRef] [Green Version]
- Shin, O.S.; Song, G.S.; Kumar, M.; Yanagihara, R.; Lee, H.-W.; Song, J.-W. Hantaviruses Induce Antiviral and Pro-Inflammatory Innate Immune Responses in Astrocytic Cells and the Brain. Viral Immunol. 2014, 27, 256–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suthar, M.S., Diamond. West Nile virus infection and immunity. Nat. Rev. Microbiol. 2013, 11, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Trobaugh, D.W.; Green, S. Of Mice and Men: Protective and Pathogenic Immune Responses to West Nile Virus Infection. Curr. Trop. Med. Rep. 2015, 2, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, F.; Goel, G.; Meng, H.; Wang, X.; You, F.; Devine, L.; Raddassi, K.; Garcia, M.N.; Murray, K.O.; Bolen, C.R.; et al. Systems Immunology Reveals Markers of Susceptibility to West Nile Virus Infection. Clin. Vaccine Immunol. 2014, 22, 6–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Daniel, V.; Schnitzler, P.; Lahdou, I.; Naujokat, C.; Zeier, M.; Opelz, G. Urinary Proinflammatory Cytokine Response in Renal Transplant Recipients with Polyomavirus BK Viruria. Transplantation 2009, 88, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Quaresma, J.A.; Barros, V.L.; Pagliari, C.; Fernandes, E.R.; Guedes, F.; Takakura, C.F.; Andrade, H.F.; Vasconcelos, P.F.; Duarte, M.I. Revisiting the liver in human yellow fever: Virus-induced apoptosis in hepatocytes associated with TGF-β, TNF-α and NK cells activity. Virology 2006, 345, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douam, F.; Albrecht, Y.E.S.; Hrebikova, G.; Sadimin, E.; Davidson, C.; Kotenko, S.V.; Ploss, A. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo. mBio 2017, 8, e00819-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tappe, D.; Pérez-Girón, J.V.; Zammarchi, L.; Rissland, J.; Ferreira, D.F.; Jaenisch, T.; Gómez-Medina, S.; Günther, S.; Bartoloni, A.; Muñoz-Fontela, C.; et al. Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med. Microbiol. Immunol. 2016, 205, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Imig, J.D.; Ryan, M.J. Immune and Inflammatory Role in Renal Disease. Compr. Physiol. 2013, 3, 957–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akcay, A.; Nguyen, Q.; Edelstein, C.L. Mediators of Inflammation in Acute Kidney Injury. Mediat. Inflamm. 2009, 2009, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.M.; Ferenbach, D.A.; Isenberg, J.S.; Thomson, A.W.; Hughes, J. Dendritic cells and macrophages in the kidney: A spectrum of good and evil. Nat. Rev. Nephrol. 2014, 10, 625–643. [Google Scholar] [CrossRef] [PubMed]
- Herbert, F.; Tchitchek, N.; Bansal, D.; Jacques, J.; Pathak, S.; Becavin, C.; Fesel, C.; Dalko, E.; Cazenave, P.-A.; Preda, C.; et al. Evidence of IL-17, IP-10, and IL-10 involvement in multiple-organ dysfunction and IL-17 pathway in acute renal failure associated to Plasmodium falciparum malaria. J. Transl. Med. 2015, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C.; Galluzzi, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 2013, 59, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Szabo, G.; Petrasek, J. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 387–400. [Google Scholar] [CrossRef]
- Vezzani, A.; Fujinami, R.S.; White, H.S.; Preux, P.-M.; Blümcke, I.; Sander, J.W.; Löscher, W. Infections, inflammation and epilepsy. Acta Neuropathol. 2016, 131, 211–234. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Duan, Y.; Grady, J. Unconditional or Conditional Logistic Regression Model for Age-Matched Case–Control Data? Front. Public Heal. 2018, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RStudio Team. RStudio: Integrated Development for R. [Internet]; RStudio, Inc.: Boston, MA, USA, 2016; Available online: http://www.rstudio.com/ (accessed on 10 February 2021).
- Shahinian, V.B.; Hedgeman, E.; Gillespie, B.W.; Young, E.W.; Robinson, B.; Hsu, C.-Y.; Plantinga, L.C.; Burrows, N.R.; Eggers, P.; Saydah, S.; et al. Estimating Prevalence of CKD Stages 3-5 Using Health System Data. Am. J. Kidney Dis. 2013, 61, 930–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brien, J.D.; Uhrlaub, J.L.; Nikolich-Zugich, J. West Nile virus-specific CD4 T cells exhibit direct anti-viral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 2008, 181, 8568–8575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quicke, K.M.; Suthar, M.S. The Innate Immune Playbook for Restricting West Nile Virus Infection. Viruses 2013, 5, 2643–2658. [Google Scholar] [CrossRef] [Green Version]
- Szretter, K.J.; Daffis, S.; Patel, J.; Suthar, M.S.; Klein, R.S.; Gale, M.; Diamond, M.S. The Innate Immune Adaptor Molecule MyD88 Restricts West Nile Virus Replication and Spread in Neurons of the Central Nervous System. J. Virol. 2010, 84, 12125–12138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, K.; Askarieh, G.; Weis, N.; Hellstrand, K.; Alaeus, A.; Lagging, M.; For the Dico Study Group. IP-10 predicts the first phase decline of HCV RNA and overall viral response to therapy in patients co-infected with chronic hepatitis C virus infection and HIV. Scand. J. Infect. Dis. 2010, 42, 896–901. [Google Scholar] [CrossRef]
- Heutinck, K.M.; Rowshani, A.T.; Kassies, J.; Claessen, N.; Pant, K.A.M.I.V.D.-V.D.; Bemelman, F.J.; Eldering, E.; Van Lier, R.A.W.; Florquin, S.; Berge, I.J.M.T.; et al. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells. Kidney Int. 2012, 82, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Pogodina, V.V.; Frolova, M.P.; Malenko, G.V.; Fokina, G.I.; Koreshkova, G.V.; Kiseleva, L.L.; Bochkova, N.G.; Ralph, N.M. Study on West Nile virus persistence in monkeys. Arch. Virol. 1983, 75, 71–86. [Google Scholar] [CrossRef]
- Stewart, B.S.; Demarest, V.L.; Wong, S.J.; Green, S.; A Bernard, K. Persistence of virus-specific immune responses in the central nervous system of mice after West Nile virus infection. BMC Immunol. 2011, 12, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Thakar, J.; Yuan, X.; Nolan, M.; Murray, K.O.; Lee, W.T.; Wong, S.J.; Meng, H.; Fikrig, E.; Kleinstein, S.H.; et al. Immune Markers Associated with Host Susceptibility to Infection with West Nile Virus. Viral Immunol. 2014, 27, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, Y.; Liang, C.; Bo, Z.; Rajapakse, J.C.; Ooi, E.E.; Tannenbaum, S.R. Serum Proteome and Cytokine Analysis in a Longitudinal Cohort of Adults with Primary Dengue Infection Reveals Predictive Markers of DHF. PLoS Neglected Trop. Dis. 2012, 6, e1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.-J.; Lee, J.K.; Shin, O.S. Aging and the Immune System: The Impact of Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity. Immune Netw. 2019, 19, e37. [Google Scholar] [CrossRef] [PubMed]
Patient Demographics | WNV-Negative Controls n = 127 | WNV-Positive Cases n = 89 | p-Value |
---|---|---|---|
Sex | |||
Male, n (%) | 68 (53.5%) | 54 (61.3%) | 0.37 |
Age, mean (std. dev.) | 55.61 (14.8) | 58.84 (16.4%) | 0.13 |
Race, n (%) | |||
Caucasian | 116 (91.3%) | 81 (91.0%) | 0.99 |
African American | 8 (6.3%) | 6 (6.8%) | 0.99 |
Asian/Pacific Islander | 3 (2.4%) | 1 (1.1%) | 0.88 |
Ethnicity, n (%) | |||
Hispanic | 12 (9.5%) | 3 (3.4%) | 0.15 |
CKD Risk Factors, n (%) | |||
Obesity | 46 (36.2%) | 22 (31.9%) | 0.10 |
Diabetes Mellitus | 23 (18.1%) | 16 (18.0%) | 0.99 |
Hypertension | 61 (48.0%) | 33 (37.1%) | 0.14 |
Heart Disease | 5 (3.9%) | 13 (14.6%) | 0.01 |
Renal Involvement, n (%) | |||
CKD * | 16 (12.6%) | 21 (23.6%) | 0.13 |
Risk Factor | Adjusted Risk Ratio (95% CI) |
---|---|
Hypertension | 3.13 (1.26–7.77) * |
Age ≥ 65 | 2.46 (1.18–5.09) * |
History of WNV | 1.91 (1.13–3.25) * |
Diabetes mellitus | 1.63 (0.89–3.04) |
Obesity (BMI > 30) | 1.43 (0.71–2.87) |
History of heart disease | 0.78 (0.43–1.41) |
Cytokine/Chemokine | WNV-Negative Controls (n = 12) Mean (std. dev.) | WNV No CKD (n = 68) Mean (std. dev.) | WNV w/ CKD (n = 21) Mean (std. dev.) | Kruskal–Wallis H-Test p-Value |
---|---|---|---|---|
Eotaxin | 93.42 (47.55) | 173.78 (83.35) | 189.96 (82.84) | p = 0.0011 |
G-CSF | 27.20 (20.64) | 41.34 (37.88) | 32.17 (20.07) | p = 0.5148 |
GM-CSF | 3.31 (2.07) | 7.68 (11.99) | 6.25 (7.35) | p = 0.2438 |
INF-α2 | 14.45 (12.23) | 24.20 (24.40) | 18.08 (15.36) | p = 0.4642 |
INF-γ | 4.47 (4.07) | 17.21 (29.59) | 8.02 (7.14) | p = 0.4483 |
IL1α | 6.42 (12.21) | 30.45 (48.58) | 40.50 (85.01) | p = 0.0369 |
IL1β | 5.16 (4.01) | 7.52 (11.33) | 6.10 (16.43) | p = 0.2930 |
IL2 | 1.65 (0.12) | 2.30 (1.70) | 2.82 (3.85) | p = 0.2890 |
IL3 | 1.65 (0.28) | 1.68 (0.50) | 1.56 (0.00) | p = 0.2228 |
IL4 | 9.53 (8.96) | 34.23 (30.88) | 32.31 (29.37) | p = 0.0054 |
IL5 | 1.98 (1.24) | 1.78 (1.25) | 1.38 (0.65) | p = 0.2867 |
IL6 | 2.24 (1.37) | 5.66 (5.52) | 6.73 (7.77) | p = 0.0891 |
IL7 | 6.05 (3.94) | 7.42 (6.16) | 4.58 (3.41) | p = 0.1693 |
IL8 | 9.68 (7.61) | 25.44 (21.40) | 40.76 (41.16) | p = 0.0014 |
IL10 | 6.26 (5.23) | 6.77 (5.57) | 7.37 (5.42) | p = 0.6938 |
IL12p40 | 25.80 (24.05) | 37.41 (41.20) | 18.41 (22.53) | p = 0.1230 |
IL12p70 | 3.02 (0.39) | 12.76 (21.50) | 13.65 (25.52) | p = 0.0003 |
IL13 | 4.99 (6.49) | 6.49 (10.46) | 2.45 (2.77) | p = 0.2990 |
IL15 | 3.83 (2.11) | 3.76 (2.14) | 3.00 (1.07) | p = 0.5175 |
IL17α | 3.23 (3.63) | 8.8 (18.41) | 19.04 (65.53) | p = 0.0834 |
IP-10 | 447.45 (420.73) | 363.15 (158.05) | 556.67 (241.53) | p = 0.0018 |
MCP1 | 398.58 (207.15) | 534.87 (194.63) | 563.20 (205.88) | p = 0.0749 |
MIP1α | 3.05 (0.96) | 11.73 (12.02) | 12.77 (13.43) | p = 0.0242 |
MIP1β | 38.80 (27.90) | 60.43 (33.73) | 86.62 (43.96) | p = 0.0028 |
TNFα | 7.29 (3.71) | 11.91 (4.76) | 16.44 (6.70) | p < 0.0001 |
TNFβ | 6.99 (5.71) | 11.29 (14.84) | 5.38 (4.46) | p = 0.1351 |
Cytokine | Healthy Controls vs. WNV no CKD | Healthy Controls vs. WNV w/CKD | WNV no CKD vs. WNV w/CKD |
---|---|---|---|
Eotaxin | 93.42 (47.55) vs. 173.78 (83.35) p = 0.0013 | 93.42 (47.55) vs. 189.96 (82.84) p = 0.0026 | 173.78 (83.35) vs. 189.96 (82.84) p = 0.9999 |
IL-8 | 9.68 (7.61) vs. 25.44 (21.40) p = 0.0035 | 9.68 (7.61) vs. 40.76 (41.16) p = 0.0001 | 25.44 (21.40) vs. 40.76 (41.16) p = 0.9347 |
IL-12p70 | 3.02 (0.39) vs. 12.76 (21.50) p = 0.0002 | 3.02 (0.39) vs. 13.65 (25.52) p = 0.0068 | 12.76 (21.50) vs. 13.65 (25.52) p = 0.9999 |
IP-10 | 447.45 (420.73) vs. 363.15 (158.05) p = 0.9999 | 447.45 (420.73) vs. 556.67 (241.53) p = 0.0416 | 363.15 (158.05) vs. 556.67 (241.53) p = 0.0017 |
TNFα | 7.29 (3.71) vs. 11.91 (4.76) p = 0.0112 | 7.29 (3.71) vs. 16.44 (6.70) p < 0.0001 | 11.91 (4.76) vs. 16.44 (6.70) p = 0.0169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, M.; Nolan, M.S.; Gorchakov, R.; Hasbun, R.; Murray, K.O.; Ronca, S.E. Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study. Viruses 2021, 13, 311. https://doi.org/10.3390/v13020311
Hansen M, Nolan MS, Gorchakov R, Hasbun R, Murray KO, Ronca SE. Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study. Viruses. 2021; 13(2):311. https://doi.org/10.3390/v13020311
Chicago/Turabian StyleHansen, Michael, Melissa S. Nolan, Rodion Gorchakov, Rodrigo Hasbun, Kristy O. Murray, and Shannon E. Ronca. 2021. "Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study" Viruses 13, no. 2: 311. https://doi.org/10.3390/v13020311