Anti-SU Antibody Responses in Client-Owned Cats Following Vaccination against Feline Leukaemia Virus with Two Inactivated Whole-Virus Vaccines (Fel-O-Vax® Lv-K and Fel-O-Vax® 5)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Vaccination History
2.3. Determination of FeLV Exposure/Infection Status
2.4. FeLV NAb Testing
2.5. FeLV Anti-SU Antibody ELISA Testing
2.6. Determination of FIV Status
2.7. Statistical Analysis
3. Results
3.1. Sample Population (n = 470)
3.2. FeLV NAb Testing
3.3. FeLV Anti-SU Antibody ELISA Testing by NAb Result
3.4. FeLV Anti-SU Antibody ELISA Testing in Unvaccinated Cats and Abortive Infections
3.5. FeLV Anti-SU Antibody ELISA Testing in Vaccinated Cats
3.6. Comparing FeLV Anti-SU Antibody Responses between Fel-O-Vax® Lv-K and Fel-O-Vax® 5
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jarrett, W.F.H.; Crawford, E.M.; Martin, W.B.; Davie, F. Leukaemia in the cat: A virus-like particle associated with leukaemia (lymphosarcoma). Nature 1964, 202, 567–568. [Google Scholar] [CrossRef] [PubMed]
- Shelton, G.H.; Grant, C.K.; Cotter, S.M.; Gardner, M.B.; Hardy, W.D., Jr.; DiGiacomo, R.F. Feline immunodeficiency virus and feline leukemia virus infections and their relationships to lymphoid malignancies in cats: A retrospective study (1968–1988). J. Acquir. Immune. Defic. Syndr. 1990, 3, 623–630. [Google Scholar] [PubMed]
- Cristo, T.G.; Biezus, G.; Noronha, L.F.; Pereira, L.; Withoeft, J.A.; Furlan, L.V.; Costa, L.S.; Traverso, S.D.; Casagrande, R.A. Feline lymphoma and a high correlation with feline leukaemia virus infection in Brazil. J. Comp. Pathol. 2019, 166, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Gabor, L.J.; Jackson, M.L.; Trask, B.; Malik, R.; Canfield, P.J. Feline leukaemia virus status of Australian cats with lymphosarcoma. Aust. Vet. J. 2001, 79, 476–481. [Google Scholar] [CrossRef]
- Jackson, M.L.; Haines, D.M.; Meric, S.M.; Misra, V. Feline leukemia virus detection by immunohistochemistry and polymerase chain reaction in formalin-fixed, paraffin-embedded tumor tissue from cats with lymphosarcoma. Can. J. Vet. Res. 1993, 57, 269–276. [Google Scholar]
- McLuckie, A.J.; Barrs, V.R.; Lindsay, S.; Aghazadeh, M.; Sangster, C.; Beatty, J.A. Molecular diagnosis of Felis catus Gammaherpesvirus 1 (FcaGHV1) infection in cats of known retrovirus status with and without lymphoma. Viruses 2018, 10, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLachlan, N.; Dubovi, E. Fenner’s Veterinary Virology, 5th ed.; Retroviridae; Elsevier: Cambridge, MA, USA, 2017. [Google Scholar]
- Sparkes, A.H. Feline leukaemia virus and vaccination. J. Feline Med. Surg. 2003, 5, 97–100. [Google Scholar] [CrossRef]
- Patel, M.; Carritt, K.; Lane, J.; Jayappa, H.; Stahl, M.; Bourgeois, M. Comparative efficacy of feline leukemia virus (FeLV) inactivated whole-virus vaccine and canarypox virus-vectored vaccine during virulent FeLV challenge and immunosuppression. Clin. Vaccine Immunol. 2015, 22, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Jirjis, F.F.; Davis, T.; Lane, J.; Carritt, K.; Sweeney, D.; Williams, J.; Wasmoen, T. Protection against feline leukemia virus challenge for at least 2 years after vaccination with an inactivated feline leukemia virus vaccine. Vet. Ther. 2010, 11, 2. [Google Scholar]
- Torres, A.N.; O’Halloran, K.P.; Larson, L.J.; Schultz, R.D.; Hoover, E.A. Feline leukemia virus immunity induced by whole inactivated virus vaccination. Vet. Immunol. Immunopathol. 2010, 134, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Hofmann-Lehmann, R.; Cattori, V.; Tandon, R.; Boretti, F.S.; Meli, M.L.; Riond, B.; Pepin, A.C.; Willi, B.; Ossent, P.; Lutz, H. Vaccination against the feline leukaemia virus: Outcome and response categories and long-term follow-up. Vaccine 2007, 25, 5531–5539. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.K.; Pu, R.Y.; Sato, E.; Hohdatsu, T. Feline immunodeficiency virus pathogenesis and development of a dual-subtype feline-immunodeficiency-virus vaccine. AIDS 2007, 21, 547–563. [Google Scholar] [CrossRef]
- Westman, M.E.; Malik, R.; Hall, E.; Norris, J.M. The protective rate of the feline immunodeficiency virus vaccine: An Australian field study. Vaccine 2016, 34, 4752–4758. [Google Scholar] [CrossRef]
- Hartaningsih, N.; Dharma, D.M.N.; Soeharsono, S.; Wilcox, G.E. The induction of a protective immunity against Jembrana disease in cattle by vaccination with inactivated tissue-derived virus antigens. Vet. Immunol. Immunopathol. 2001, 78, 163–176. [Google Scholar] [CrossRef]
- Ditcham, W.G.; Lewis, J.R.; Dobson, R.J.; Hartaningsih, N.; Wilcox, G.E.; Desport, M. Vaccination reduces the viral load and the risk of transmission of Jembrana disease virus in Bali cattle. Virology 2009, 386, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Sahay, B.; Yamamoto, J.K. Lessons learned in developing a commercial FIV vaccine: The immunity required for an effective HIV-1 vaccine. Viruses 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.K.; Sanou, M.P.; Abbott, J.R.; Coleman, J.K. Feline immunodeficiency virus model for designing HIV/AIDS vaccines. Curr. HIV Res. 2010, 8, 14–25. [Google Scholar] [CrossRef]
- Willett, B.J.; Hosie, M.J. Feline leukaemia virus: Half a century since its discovery. Vet. J. 2013, 195, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, K. Clinical aspects of feline retroviruses: A review. Viruses 2012, 4, 2684–2710. [Google Scholar] [CrossRef] [Green Version]
- Westman, M.; Norris, J.; Malik, R.; Hofmann-Lehmann, R.; Harvey, A.; McLuckie, A.; Perkins, M.; Schofield, D.; Marcus, A.; McDonald, M.; et al. The diagnosis of feline leukaemia virus (FeLV) infection in owned and group-housed rescue cats in Australia. Viruses 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, K.; Hofmann-Lehmann, R. What’s new in feline leukemia virus infection. Vet. Clin. Small Anim. 2020, 50, 1013–1036. [Google Scholar] [CrossRef]
- Flynn, J.N.; Dunham, S.P.; Watson, V.; Jarrett, O. Longitudinal analysis of feline leukemia virus-specific cytotoxic T lymphocytes: Correlation with recovery from infection. J. Virol. 2002, 76, 2306–2315. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.N.; Hanlon, L.; Jarrett, O. Feline leukaemia virus: Protective immunity is mediated by virus-specific cytotoxic T lymphocytes. Immunology 2000, 101, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hoover, E.A.; Mullins, J.I. Feline leukemia virus infection and diseases. J. Am. Vet. Med. Assoc. 1991, 199, 1287–1297. [Google Scholar]
- Hoover, E.A.; Schaller, J.P.; Mathes, L.E.; Olsen, R.G. Passive immunity to feline leukemia: Evaluation of immunity from dams naturally infected and experimentally vaccinated. Infect. Immun. 1977, 16, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.N.; Mathiason, C.K.; Hoover, E.A. Re-examination of feline leukemia virus: Host relationships using real-time PCR. Virology 2005, 332, 272–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann-Lehmann, R.; Tandon, R.; Boretti, F.S.; Meli, M.L.; Willi, B.; Cattori, V.; Gomes-Keller, M.A.; Ossent, P.; Golder, M.C.; Flynn, J.N.; et al. Reassessment of feline leukaemia virus (FeLV) vaccines with novel sensitive molecular assays. Vaccine 2006, 24, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, O.; Ganiere, J.P. Comparative studies of the efficacy of a recombinant feline leukaemia virus vaccine. Vet. Rec. 1996, 138, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Hoover, E.A.; Mullins, J.I.; Chu, H.J.; Wasmoen, T.L. Efficacy of an inactivated feline leukemia virus vaccine. AIDS Res. Hum. Retroviruses 1996, 12, 379–383. [Google Scholar] [CrossRef]
- Hofmann-Lehmann, R.; Holznagel, E.; Aubert, A.; Ossent, P.; Reinacher, M.; Lutz, H. Recombinant FeLV vaccine: Long-term protection and effect on course and outcome of FIV infection. Vet. Immunol. Immunopathol. 1995, 46, 127–137. [Google Scholar] [CrossRef]
- Lutz, H.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Hosie, M.J.; Lloret, A.; et al. Feline leukaemia: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 565–574. [Google Scholar] [CrossRef]
- Scherk, M.A.; Ford, R.B.; Gaskell, R.M.; Hartmann, K.; Hurley, K.F.; Lappin, M.R.; Levy, J.K.; Little, S.E.; Nordone, S.K.; Sparkes, A.H. 2013 AAFP feline vaccination advisory panel report. J. Feline Med. Surg. 2013, 15, 785–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbour, D.A.; Gunn-Moore, D.A.; Gruffydd-Jones, T.J.; Caney, S.M.A.; Bradshaw, J.; Jarrett, O.; Wiseman, A. Protection against oronasal challenge with virulent feline leukaemia virus lasts for at least 12 months following a primary course of immunisation with Leukocell (TM) 2 vaccine. Vaccine 2002, 20, 2866–2872. [Google Scholar] [CrossRef]
- Westman, M.E.; Malik, R.; Hall, E.; Sheehy, P.A.; Norris, J.M. Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva. Comp. Immun. Microbiol. Infect. Dis. 2017, 50, 88–96. [Google Scholar] [CrossRef]
- Tandon, R.; Cattori, V.; Gomes-Keller, M.A.; Meli, M.L.; Golder, M.C.; Lutz, H.; Hofmann-Lehmann, R. Quantitation of feline leukaemia virus viral and proviral loads by TaqMan (R) real-time polymerase chain reaction. J. Virol. Methods 2005, 130, 124–132. [Google Scholar] [CrossRef]
- Boenzli, E.; Hadorn, M.; Hartnack, S.; Huder, J.; Hofmann-Lehmann, R.; Lutz, H. Detection of antibodies to the feline leukemia virus (FeLV) transmembrane protein p15E: An alternative approach for serological FeLV detection based on antibodies to p15E. J. Clin. Microbiol. 2014, 52, 2046–2052. [Google Scholar] [CrossRef] [Green Version]
- Parr, Y.A.; Beall, M.J.; Leutenegger, C.; Levy, J.K.; Willett, B.J.; Hosie, M.J. Investigating the Biology Underlying Discordancy in FeLV Diagnostics; International Society for Companion Animal Infectious Diseases: Bristol, UK, 2016. [Google Scholar]
- Westman, M.E.; Malik, R.; Hall, E.; Sheehy, P.A.; Norris, J.M. Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits. Comp. Immun. Microbiol. Infect. Dis. 2015, 42, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Crawford, P.C.; Levy, J.K. New challenges for the diagnosis of feline immunodeficiency virus infection. Vet. Clin. N. Am. Small Anim. Pract. 2007, 37, 335–350. [Google Scholar] [CrossRef]
- Sebring, R.W.; Chu, H.J.; Chavez, L.G.; Sandblom, D.S.; Hustead, D.R.; Dale, B.; Wolf, D.; Acree, W.M. Feline leukemia virus vaccine development. J. Am. Vet. Med. Assoc. 1991, 199, 1413–1419. [Google Scholar] [PubMed]
- Lehmann, R.; Franchini, M.; Aubert, A.; Wolfensberger, C.; Cronier, J.; Lutz, H. Vaccination of cats experimentally infected with feline immunodeficiency virus, using a recombinant feline leukemia virus vaccine. J. Am. Vet. Med. Assoc. 1991, 199, 1446–1452. [Google Scholar] [PubMed]
- Legendre, A.M.; Hawks, D.M.; Sebring, R.; Rohrbach, B.; Chavez, L.; Chu, H.J.; Acree, W.M. Comparison of the efficacy of three commercial feline leukemia virus vaccines in a natural challenge exposure. J. Am. Vet. Med. Assoc. 1991, 199, 1456–1462. [Google Scholar]
- Hofmann-Lehmann, R.; Hartmann, K. Feline leukaemia virus infection: A practical approach to diagnosis. J. Feline Med. Surg. 2020, 22, 831–846. [Google Scholar] [CrossRef]
- Lutz, H.; Pedersen, N.; Higgins, J.; Hubscher, U.; Troy, F.A.; Theilen, G.H. Humoral immune reactivity to feline leukemia virus and associated antigens in cats naturally infected with feline leukemia virus. Cancer Res. 1980, 40, 3642–3651. [Google Scholar] [PubMed]
- Little, S.; Levy, J.; Hartmann, K.; Hofmann-Lehmann, R.; Hosie, M.; Olah, G.; Denis, K.S. 2020 AAFP Feline Retrovirus Testing and Management Guidelines. J. Feline Med. Surg. 2020, 22, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Brunner, C.; Kanellos, T.; Meli, M.L.; Sutton, D.J.; Gisler, R.; Gomes-Keller, M.A.; Hofmann-Lehmann, R.; Lutz, H. Antibody induction after combined application of an adjuvanted recombinant FeLV vaccine and a multivalent modified live virus vaccine with a chlamydial component. Vaccine 2006, 24, 1838–1846. [Google Scholar] [CrossRef]
- Shaw, F.E.; Guess, H.A.; Roets, J.M.; Mohr, F.E.; Coleman, P.J.; Mandel, E.J.; Roehm, R.R.; Talley, W.S.; Hadler, S.C. Effect of anatomic injection site, age and smoking on the immune response to hepatitis B vaccination. Vaccine 1989, 7, 425–430. [Google Scholar] [CrossRef]
- Jin, H.; Xu, Y.; Shi, F.; Hu, S. Vaccination at different anatomic sites induces different levels of the immune responses. Res. Vet. Sci. 2019, 122, 50–55. [Google Scholar] [CrossRef]
- Jin, H.; Wu, Y.; Bi, S.; Xu, Y.; Shi, F.; Li, X.; Ma, X.; Hu, S. Higher immune response induced by vaccination in Houhai acupoint relates to the lymphatic drainage of the injection site. Res. Vet. Sci. 2020, 130, 230–236. [Google Scholar] [CrossRef]
- Hartmann, K.; Day, M.J.; Thiry, E.; Lloret, A.; Frymus, T.; Addie, D.; Boucraut-Baralon, C.; Egberink, H.; Gruffydd-Jones, T.; Horzinek, M.C.; et al. Feline injection site sarcoma: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2015, 17, 606–613. [Google Scholar] [CrossRef]
- Hendricks, C.G.; Levy, J.K.; Tucker, S.J.; Olmstead, S.M.; Crawford, P.C.; Dubovi, E.J.; Hanlon, C.A. Tail vaccination in cats: A pilot study. J. Feline Med. Surg. 2014, 16, 275–280. [Google Scholar] [CrossRef]
- Grosenbaugh, D.A.; Leard, T.; Pardo, M.C. Protection from challenge following administration of a canarypox virus–vectored recombinant feline leukemia virus vaccine in cats previously vaccinated with a killed virus vaccine. J. Am. Vet. Med. Assoc. 2006, 228, 726–727. [Google Scholar] [CrossRef]
- Grosenbaugh, D.A.; Leard, T.; Pardo, M.C.; Motes-Kreimeyer, L.; Royston, M. Comparison of the safety and efficacy of a recombinant feline leukemia virus (FeLV) vaccine delivered transdermally and an inactivated FeLV vaccine delivered subcutaneously. Vet. Ther. 2004, 5, 258–262. [Google Scholar] [PubMed]
- Schwartzkoff, C.L.; Egerton, J.R.; Stewart, D.J.; Lehrbach, P.R.; Elleman, T.C.; Hoyne, P.A. The effects of antigenic competition on the efficacy of multivalent footrot vaccines. Aust. Vet. J. 1993, 70, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Offit, P.A.; Quarles, J.; Gerber, M.A.; Hackett, C.J.; Marcuse, E.K.; Kollman, T.R.; Gellin, B.G.; Landry, S. Addressing parents’ concerns: Do multiple vaccines overwhelm or weaken the infant’s immune system? Pediatrics 2002, 109, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, S.; Saunders, G.; Stoeva, M.; Ludlow, D.; Von Reitzenstein, M.; Sture, G.; Salt, J.; Thompson, J. Co-administration of an adjuvanted FeLV vaccine together with a multivalent feline vaccine to cats is protective against virulent challenge with feline leukaemia virus, calicivirus, herpes virus and panleukopenia virus. Trials Vaccinol. 2014, 3, 26–32. [Google Scholar] [CrossRef]
- Poulet, H.; Brunet, S.; Boularand, C.; Guiot, A.L.; Leroy, V.; Tartaglia, J.; Minke, J.; Audonnet, J.C.; Desmettre, P. Efficacy of a canarypox virus-vectored vaccine against feline leukaemia. Vet. Rec. 2003, 153, 141–145. [Google Scholar] [CrossRef]
- Stickney, A.; Ghosh, S.; Cave, N.; Dunowska, M. Lack of protection against feline immunodeficiency virus infection among domestic cats in New Zealand vaccinated with the Fel-O-Vax® FIV vaccine. Vet. Microbiol. 2020, 250, 108865. [Google Scholar] [CrossRef]
FeLV Infection Status | Category | FeLV Vaccination Status | ||||
---|---|---|---|---|---|---|
FeLV-Unvaccinated | On-Time Fel-O-Vax® Lv-K | On-Time Fel-O-Vax® 5 | Overdue Fel-O-Vax® Lv-K | Overdue Fel-O-Vax® 5 | ||
FeLV-uninfected (n = 428) | FeLV-unexposed (n = 378) (p27-negative, qPCR-negative, NAb-negative) | 303 | 10 | 40 | 4 | 21 |
FeLV-exposed (abortive infections) (n = 50) (p27-negative, qPCR-negative, NAb-positive) | 7 | 13 | 26 | 1 | 3 | |
FeLV-infected (n = 42) | Presumptively regressive infections (n = 28) (p27-negative, qPCR-positive) | 25 | 1 1 | 1 2 | 0 | 1 3 |
Presumptively progressive infections (n = 14) (p27-positive, qPCR-positive) | 13 | 0 | 1 4 | 0 | 0 |
NAb Result | ||||
---|---|---|---|---|
4 | 8 | 16 | ≥32 | |
Monovalent vaccine (Fel-O-Vax® Lv-K; n = 14) | 5 (36%) | 5 (36%) | 3 (21%) | 1 (7%) |
Polyvalent vaccine (Fel-O-Vax® 5; n = 29) | 8 (28%) | 10 (34%) | 6 (21%) | 5 (17%) |
Reference | Vaccine | How Vaccine Given | Challenge Information | Number of Cats Infected | Preventative Fraction | ||
---|---|---|---|---|---|---|---|
FeLV Strain | Route | Vaccinates | Controls | ||||
Torres et al. (2010) [11] | Fel-O-Vax® Lv-K | Not stated | FeLV-A/61E | IP (4 months after last vaccination) | 0/8 | 7/8 | 100% |
Grosenbaugh et al. (2006) [53] | Fel-O-Vax® Lv-K | SC, caudolateral thigh | FeLV-A/61E | ON (4 weeks after last vaccination, for 2 consecutive days) | 1/11 | 10/10 | 91% |
Torres et al. (2005) [27] | Fel-O-Vax® Lv-K | SC, location not stated | FeLV-A/61E | ON (3 weeks after last vaccination) | 1/10 | 7/10 | 86% |
Grosenbaugh et al. (2004) [54] | Fel-O-Vax® Lv-K | SC, caudolateral thigh | FeLV-A/61E | ON (4 weeks after last vaccination, for 2 consecutive days) | 0/10 | 9/10 | 100% |
Hoover et al. (1996) [30] | Fel-O-Vax® Lv-K | Not stated | FeLV-A/61E | Not stated | 13% 1 | 92% 1 | 86% 1 |
Legendre et al. (1991) [43] | Fel-O-Vax® Lv-K | SC in the flank | At least four different strains of FeLV-A (two laboratory strains and at least two field strains) | In-contact (2 weeks after last vaccination, for 31 weeks) | 0/12 | 7/11 | 100% |
Sebring et al. (1991) [41] | Fel-O-Vax® Lv-K | Not stated | Not stated | IP (2 weeks after last vaccination), then in-contact with challenged controls for 72 days) | 4/94 | 57/62 | 95% 2 |
Hofmann-Lehmann et al. (2006) [28] | Fel-O-Vax® Lv-K IV (Fel-O-Vax® 5) | SC, location not stated | FeLV subtype A/Glasgow-1 | IP (4 weeks after last vaccination) | 5/10 | 9/10 | 44% |
Hoover et al. (1996) [30] | Fel-O-Vax® Lv-K IV (Fel-O-Vax® 5) | SC (not stated where) | FeLV-A/61E | IN (one year after last vaccination) | 0/5 | 10/10 | 100% 3 |
Sebring et al. (1991) [41] | Fel-O-Vax® Lv-K IV (Fel-O-Vax® 5) | SC in the flank | At least four different strains of FeLV-A (two laboratory strains and at least two field strains) | In-contact (2 weeks after last vaccination, for 31 weeks) | 0/11 | 7/11 | 100% 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westman, M.; Norris, J.; Malik, R.; Hofmann-Lehmann, R.; Parr, Y.A.; Armstrong, E.; McDonald, M.; Hall, E.; Sheehy, P.; Hosie, M.J. Anti-SU Antibody Responses in Client-Owned Cats Following Vaccination against Feline Leukaemia Virus with Two Inactivated Whole-Virus Vaccines (Fel-O-Vax® Lv-K and Fel-O-Vax® 5). Viruses 2021, 13, 240. https://doi.org/10.3390/v13020240
Westman M, Norris J, Malik R, Hofmann-Lehmann R, Parr YA, Armstrong E, McDonald M, Hall E, Sheehy P, Hosie MJ. Anti-SU Antibody Responses in Client-Owned Cats Following Vaccination against Feline Leukaemia Virus with Two Inactivated Whole-Virus Vaccines (Fel-O-Vax® Lv-K and Fel-O-Vax® 5). Viruses. 2021; 13(2):240. https://doi.org/10.3390/v13020240
Chicago/Turabian StyleWestman, Mark, Jacqueline Norris, Richard Malik, Regina Hofmann-Lehmann, Yasmin A. Parr, Emma Armstrong, Mike McDonald, Evelyn Hall, Paul Sheehy, and Margaret J. Hosie. 2021. "Anti-SU Antibody Responses in Client-Owned Cats Following Vaccination against Feline Leukaemia Virus with Two Inactivated Whole-Virus Vaccines (Fel-O-Vax® Lv-K and Fel-O-Vax® 5)" Viruses 13, no. 2: 240. https://doi.org/10.3390/v13020240