Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Production
2.2. NMR Sample Preparation
2.3. NMR Data Collection
2.4. Chemical Shift Assignment
2.5. Xaa-Pro Peptide Bond Conformations
2.6. Protein Three-Dimensional Structure Determination
2.7. CDHR3 Model Building
3. Results
3.1. Chemical Shift Assignments
3.2. Cis-Proline Analysis
3.3. Structural Content Determined by Chemical Shift
3.4. Statistical Validity of Final Models
3.5. Bound Ca++ Ions
3.6. Comparison of Solution-Determined and Virus-Bound EC1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmenberg, A.C.; Gern, J.E. Classification and evolution of human rhinoviruses. Methods Mol. Biol. 2015, 1221, 1–10. [Google Scholar] [PubMed] [Green Version]
- Bochkov, Y.A.; Watters, K.; Ashraf, S.; Griggs, T.F.; Devries, M.K.; Jackson, D.J.; Palmenberg, A.C.; Gern, J.E. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc. Natl. Acad. Sci. USA 2015, 112, 5485–5490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnelykke, K.; Coleman, A.T.; Evans, M.D.; Thorsen, J.; Waage, J.; Vissing, N.H.; Carlsson, C.J.; Stokholm, J.; Chawes, B.L.; Jessen, L.E.; et al. Cadherin-related family member 3 genetics and rhinovirus C respiratory illnesses. Am. J. Respir. Crit. Care Med. 2018, 197, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Bonnelykke, K.; Sleiman, P.; Nielsen, K.; Kreiner-Moller, E.; Mercader, J.M.; Belgrave, D.; den Dekker, H.T.; Husby, A.; Sevelsted, A.; Faura-Tellez, G.; et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 2014, 46, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Palmenberg, A.C. Rhinovirus C, asthma, and cell surface expression of virus receptor CDHR3. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Niessen, C.M.; Leckband, D.; Yap, A.S. Tissue organization by cadherin adhesion molecules: Dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol. Rev. 2011, 91, 691–731. [Google Scholar] [CrossRef] [Green Version]
- Watters, K.; Palmenberg, A.C. CDHR3 extracellular domains EC1-3 mediate rhinovirus C interaction with cells and as recombinant derivatives, are inhibitory to virus infection. PLoS Pathog. 2018, 14, e1007477. [Google Scholar] [CrossRef]
- Sun, Y.; Watters, K.; Hill, M.G.; Fang, Q.; Liu, Y.; Kuhn, R.J.; Klose, T.; Rossmann, M.G.; Palmenberg, A.C. Cryo-EM structure of rhinovirus C15a bound to its cadherin related protein 3 receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 6784–6791. [Google Scholar] [CrossRef]
- Blommel, P.G.; Becker, K.J.; Duvnjak, P.; Fox, B.G. Enhanced bacterial protein expression during auto-induction obtained by alternation of Lac repressor dosage and medium composition. Biotech. Prog. 2008, 23, 585–598. [Google Scholar] [CrossRef]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef]
- Ying, J.; Delaglio, F.; Torchia, D.A.; Bax, A. Sparse multideimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J. Biomol. NMR 2016, 68, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-H.; Cornilescu, G.; Dashti, H.; Eghbalnia, H.R.; Tonelli, M.; Westler, W.M.; Butcher, W.E.; Henzler-Wildman, K.A.; Markley, J.L. Integrative NMR for biomolecular research. J. Biomol. NMR 2016, 64, 307–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.-H.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Lee, W.-H.; Lee, W.-T. Structural protemics by NMR spectroscopy. Expert Rev. Proteom. 2008, 5, 589–601. [Google Scholar] [CrossRef]
- Lee, W.-H.; Bahrami, A.; Dashti, H.T.; Eghbalnia, H.R.; Tonelli, M.; Westler, W.M.; Markley, J.L. I-PINE web server: An integrative probabilistic NMR assignment system for proteins. J. Biomol. NMR 2019, 73, 213–222. [Google Scholar] [CrossRef]
- Lee, W.-H.; Markley, J.L. PINE-SPAKRY.2 for automated NMR-based protein structure research. Bioinformatics 2018, 34, 1586–1588. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Westler, W.M.; Bahrami, A.; Eghbalnia, H.R.; Markley, J.L. PINE-SPARKY: Graphical interface for evaluating automated probabilistic peak assignments in protein NMR spectroscopy. Bioinformatics 2009, 25, 2085–2087. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, J.H.; Westler, W.M.; Markley, J.L. PONDEROSA, an automated 3D-NOESY peak picking protram, enables automated protein structure determination. Bioinformatics 2011, 27, 1727–1728. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Bax, A. Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts. J. Biomol. NMR 2010, 46, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Schwieters, C.D.; Kuszewski, J.J.; Tjandra, N.; Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Res. 2003, 160, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-H.; Petit, C.M.; Cornilescu, G.; Stark, J.L.; Markley, J.L. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data. J. Biomol. NMR 2016, 65, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwieters, C.D.; Bermejo, G.A.; Clore, G.M. Xplor-NIH for molecular structure detemination from NMR and other data sources. Protein Sci. 2017, 27, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Battacharya, A.; Tejero, R.; Montelione, G.T. Evaluating protein structures determined by structural genomics consortia. Proteins 2007, 66, 778–795. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single uniform archive of PDB data. Nuc. Acid. Res. 2006, 35, D301–D303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 2013, 56, 227–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berjanskii, M.V.; Wishart, D.S. A simple method to predict protein flexibility using secondary chemical shifts. Am. Chem. Soc. 2005, 127, 14970–14971. [Google Scholar] [CrossRef] [PubMed]
- Heinig, J.; Frishman, D. STRIDE: Web server for secondary structure assignment from known atomic coordinates of proteins. Nuc. Acid. Res. 2004, 32, W500–W502. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.B.; Arendall, W.B.I.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Cryst. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hill, M.G.; Klose, T.; Chen, Z.; Watters, K.E.; Bochkov, Y.A.; Jiang, W.; Palmenberg, A.C.; Rossmann, M.G. Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma. Proc. Nat. Acad. Sci. USA 2016, 113, 8997–9002. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.D.; Ciatto, C.; Chen, C.P.; Bahna, F.; Rajebhosale, M.; Arkus, N.; Schieren, I.; Jessell, T.M.; Honig, B.; Price, S.R.; et al. Type II cadherin ectodomain structures: Implications for classical cadherin specificity. Cell 2006, 124, 1255–1268. [Google Scholar] [CrossRef] [Green Version]
- Harrison, O.J.; Jin, X.; Hong, S.; Bahna, F.; Ahlsen, G.; Brasch, J.; Wu, Y.; Vendome, J.; Felsovalyi, K.; Hampton, C.M.; et al. The extracellular architecture of adherens junctions revealed by crystal structures of type 1 cadherins. Structure 2011, 19, 244–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Residue | δ13Cβ (ppm) | δ13Cγ (ppm) | Δδ(13Cβ–13Cγ) (ppm) | ω Dihedral Angles in the 20 Selected Models (°) |
---|---|---|---|---|
P26 | 36.00 | 24.70 | 11.30 | −1.98 (±0.51) |
P60 | 35.45 | 24.88 | 10.57 | −1.01 (±0.64) |
P67 | 34.37 | 25.83 | 8.54 | −0.45 (±0.47) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.; Frederick, R.O.; Tonelli, M.; Palmenberg, A.C. Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1. Viruses 2021, 13, 159. https://doi.org/10.3390/v13020159
Lee W, Frederick RO, Tonelli M, Palmenberg AC. Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1. Viruses. 2021; 13(2):159. https://doi.org/10.3390/v13020159
Chicago/Turabian StyleLee, Woonghee, Ronnie O. Frederick, Marco Tonelli, and Ann C. Palmenberg. 2021. "Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1" Viruses 13, no. 2: 159. https://doi.org/10.3390/v13020159