In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Control B-Cell Epitopes
- Epitopes of the alphavirus CHIKV or Sindbis virus structural proteins;
- Linear B-cell epitopes;
- Epitopes positive or highly positive by ELISA test using sera from humans infected with CHIKV (positive controls); and
- Epitopes negative by ELISA or another serological test using sera from humans or primates (negative controls).
2.2. Analysis of Specificity and Sensibility of the Control B-Cell Epitopes Prediction
2.3. Analysis of Specificity and Sensitivity of the Control B-Cell Epitopes Predictions from the Alphavirus Polyproteins
2.4. Selection of the Best Predictor Programs
2.5. Prediction and Selection of B-Cell Epitopes from a Mexican Strain of CHIKV
2.6. Prediction and Selection of T-Cell Epitopes from a Mexican Strain of CHIKV
2.7. Structural Localization of the Identified Peptides
2.8. Antigenicity Prediction
3. Results
3.1. Selection of Positive Control and Negative Control B-Cell Epitopes
3.2. Program Validation Based on Predictions of Control B-Cell Epitopes
3.3. Validation of Programs Based on Control B-Cell Epitopes Predicted in Alphavirus Polyproteins
3.4. Prediction and Selection of Novel B-Cell Epitopes of the Mexican CHIKV Strain
3.5. Prediction and Selection of Novel T-Cell Epitopes
3.6. Mapping of the Identified Peptides
3.7. Antigenicity Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higashi, N.; Matsumoto, A.; Tabata, K.; Nagatoma, Y. Electron microscope study of development of Chikungunya virus in green monkey kidney stable (VERO) cells. Virology 1967, 33, 55–69. [Google Scholar] [CrossRef]
- Powers, A.M.; Brault, A.C.; Shirako, Y.; Strauss, E.G.; Kang, W.; Strauss, J.H.; Weaver, S.C. Evolutionary relationships and systematics of the alphaviruses. J. Virol. 2001, 75, 10118–10131. [Google Scholar] [CrossRef] [Green Version]
- Simizu, B.; Yamamoto, K.; Hashimoto, K.; Ogata, T. Structural proteins of Chikungunya virus. J. Virol. 1984, 51, 254–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.H.; Morita, K.; Del Carmen Parquet, M.; Hasebe, F.; Mathenge, E.G.M.; Igarashi, A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 2002, 83, 3075–3084. [Google Scholar] [CrossRef] [PubMed]
- Quiroz, J.A.; Malonis, R.J.; Thackray, L.B.; Cohen, C.A.; Pallesen, J.; Jangra, R.K.; Brown, R.S.; Hofmann, D.; Holtsberg, F.W.; Shulenin, S.; et al. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathog. 2019, 15, e1008061. [Google Scholar] [CrossRef] [Green Version]
- Grandadam, M.; Caro, V.; Plumet, S.; Thiberge, J.M.; Souarès, Y.; Failloux, A.B.; Tolou, H.J.; Budelot, M.; Cosserat, D.; Leparc-Goffart, I.; et al. Chikungunya virus, Southeastern France. Emerg. Infect. Dis. 2011, 17, 910–913. [Google Scholar] [CrossRef]
- Sahadeo, N.S.D.; Allicock, O.M.; De Salazar, P.M.; Auguste, A.J.; Widen, S.; Olowokure, B.; Gutierrez, C.; Valadere, A.M.; Polson-Edwards, K.; Weaver, S.C.; et al. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017, 3, vex010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouquillard, E.; Combe, B. Rheumatoid arthritis after Chikungunya fever: A prospective follow-up study of 21 cases. Ann. Rheum. Dis. 2009, 68, 1505–1506. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chikungunya 12 April 2017. Disease Outbreaks. Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya (accessed on 6 June 2019).
- Secretaría de Salud/SINAVE/DGE. Boletín Epidemiológico. Semana 48; 2015, No 48 Volume 32. Available online: https://www.gob.mx/salud/acciones-y-programas/informacion-epidemiologica (accessed on 8 January 2020).
- Secretaría de Salud/SINAVE/DGE. Boletín Epidemiológico. Semana 50; 2016, No 50 Volume 33. Available online: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico (accessed on 8 January 2020).
- Fong, R.H.; Banik, S.S.R.; Mattia, K.; Barnes, T.; Tucker, D.; Liss, N.; Lu, K.; Selvarajah, S.; Srinivasan, S.; Mabila, M.; et al. Exposure of Epitope Residues on the Outer Face of the Chikungunya Virus Envelope Trimer Determines Antibody Neutralizing Efficacy. J. Virol. 2014, 88, 14364–14379. [Google Scholar] [CrossRef] [Green Version]
- Qamar, M.T.U.; Bari, A.; Adeel, M.M.; Maryam, A.; Ashfaq, U.A.; Du, X.; Muneer, I.; Ahmad, H.I.; Wang, J. Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach. J. Transl. Med. 2018, 16, 298. [Google Scholar] [CrossRef]
- Narula, A.; Pandey, R.K.; Khatoon, N.; Mishra, A.; Prajapati, V.K. Excavating chikungunya genome to design B and T cell multiepitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infect. Genet. Evol. 2018, 61, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Ansari, H.R.; Raghava, G.P.S. Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS ONE 2013, 8, e62216. Available online: http://crdd.osdd.net/raghava/lbtope/ (accessed on 8 September 2018). [CrossRef] [PubMed] [Green Version]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. Available online: http://crdd.osdd.net/raghava/abcpred (accessed on 8 September 2018). [CrossRef]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 4, 243–255. Available online: http://ailab.ist.psu.edu/bcpred/predict.html (accessed on 8 September 2018). [CrossRef] [PubMed] [Green Version]
- Potocnakova, L.; Bhide, M.; Pulzova, L.B. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J. Immunol. Res. 2016, 2016, 6760830. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H.; Yang, J.; Chou, K.C. Prediction of B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 2007, 3, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.W.; Lee, W.W.; Simarmata, D.; Harjanto, S.; Teng, T.S.; Tolou, H.; Chow, A.; Lin, R.T.; Leo, Y.S.; Rénia, L.; et al. Longitudinal Analysis of the Human Antibody Response to Chikungunya Virus Infection: Implications for Serodiagnosis and Vaccine Development. J. Virol. 2012, 86, 13005–13015. [Google Scholar] [CrossRef] [Green Version]
- Chua, C.L.; Sam, I.C.; Merits, A.; Chan, Y.F. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera. PLoS Negl. Trop. Dis. 2016, 8, e0004960. [Google Scholar] [CrossRef] [Green Version]
- Adouchief, S.; Smura, T.; Vapalahti, O.; Hepojoki, J. Mapping of human B-cell epitopes of Sindbis virus. J. Gen. Virol. 2016, 97, 2243–2254. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Kim, Y.; Sette, A.; Lund, O.; Nielsen, M.; Peters, B. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 2010, 11, 568. [Google Scholar] [CrossRef] [Green Version]
- Andreatta, M.; Karosiene, E.; Rasmussen, M.; Stryhn, A.; Buus, S.; Nielsen, M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015, 67, 641–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reche, P.A.; Glutting, J.P.; Zhang, H.; Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004, 56, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Oyarzún, P.; Ellis, J.J.; Bodén, M.; Kobe, B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinform. 2013, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2001, 17, 1236–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, I.; Garnev, P.; Flower, D.R.; Doytchinova, I. Peptide binding to the HLA-DRB1 supertype: A proteochemometrics analysis. Eur. J. Med. Chem. 2010, 45, 236–243. [Google Scholar] [CrossRef] [PubMed]
- PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. Available online: https://pymol.org/ (accessed on 28 October 2020).
- He, Y.; Xiang, Z.; Mobley, H.L.T. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J. Biomed. Biotechnol. 2010, 2010, 297505. [Google Scholar] [CrossRef]
- Lum, F.M.; Teo, T.H.; Lee, W.W.; Kam, Y.W.; Rénia, L.; Ng, L.F.P. An essential role of antibodies in the control of Chikungunya virus infection. J. Immunol. 2013, 190, 6295–6302. [Google Scholar] [CrossRef] [Green Version]
- Kam, Y.W.; Lee, W.W.; Simarmata, D.; Le Grand, R.; Tolou, H.; Merits, A.; Roques, P.; Ng, L.F.P. Unique Epitopes Recognized by Antibodies Induced in Chikungunya Virus-Infected Non-Human Primates: Implications for the Study of Immunopathology and Vaccine Development. PLoS ONE 2014, 9, e95647. [Google Scholar] [CrossRef]
- Kam, Y.W.; Lum, F.M.; Teo, T.H.; Lee, W.W.; Simarmata, D.; Harjanto, S.; Chua, C.L.; Chan, Y.F.; Wee, J.K.; Chow, A.; et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol. Med. 2012, 4, 330–343. [Google Scholar] [CrossRef]
- Zhao, L.; Wong, L.; Li, J. Antibody-specified B-cell epitope prediction in line with the principle of context-awareness. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1483–1494. [Google Scholar] [CrossRef] [Green Version]
Epitopes from the IEDB Databases | ||||
---|---|---|---|---|
No. | Negative Epitopes | Length in aa | Positive Epitopes | Length in aa |
1 | LAHCPDCGEGHSCHS | 15 | STKDNFNVYKATRPYLAHC | 19 |
2 | DCGEGHSCHSPVALE | 15 | PTEGLEVTWGNNEPYKYWPQLSTNGT | 26 |
3 | HSCHSPVALERIRNE | 15 | LLSMVGMAAGMCMCARRRCITPYELTPGATVPFL | 34 |
4 | PVALERIRNEATDGT | 15 | TDGTLKIQVSLQIGIKTDDSHDWTKLRYMDNHMPADAERAGL | 42 |
5 | RIRNEATDGTLKIQV | 15 | LTTTDKVINNCKVDQCHA | 18 |
6 | LKIQVSLQIGIKTDD | 15 | LTTTDKVINNCKVDQCHAAVTNHKKW | 26 |
7 | SLQIGIKTDDSHDWT | 15 | PTVTYGKNQVIMLLYPDHPTLLSYRN | 26 |
8 | IKTDDSHDWTKLRYM | 15 | STKDNFNVYKATRPY | 15 |
9 | SHDWTKLRYMDNHMP | 15 | CTITGTMGHFILARC | 15 |
10 | KLRYMDNHMPADAER | 15 | NHKKWQYNSPLVPRN | 15 |
11 | DNHMPADAERAGLFV | 15 | HIPFPLANVTCRVPK | 15 |
12 | ADAERAGLFVRTSAP | 15 | VTYGKNQVIMLLYPD | 15 |
13 | AGLFVRTSAPCTITG | 15 | LEVTWGNNEPYKYWP | 15 |
14 | RTSAPCTITGTMGHF | 15 | GTAHGHPHEIILYYY | 15 |
15 | ILARCPKGETLTVGF | 15 | HPHEIILYYYELYPT | 15 |
16 | TMGHFILARCPKGET | 15 | KDIVTKITPEGAEEW | 15 |
17 | PKGETLTVGFTDSRK | 15 | LLQASLTCSPHRQRR | 15 |
18 | LTVGFTDSRKISHSC | 15 | EITVMSSEVLPSTNQEYI | 18 |
19 | ISHSCTHPFHHDPPV | 15 | HVKGTIDHPVLSKLKFTK | 18 |
20 | EVVLTVPTEGLEVTW | 15 | KPGKRQRMALKLEADRLF | 18 |
21 | IGREKFHSRPQHGKE | 15 | NIPISIDIPNAAFIRTSD | 18 |
22 | FHSRPQHGKELPCST | 15 | PISASFTPFDHKVVIHRG | 18 |
23 | QHGKELPCSTYVQST | 15 | TWNSKGKTIKTTPEGTEE | 18 |
24 | LPCSTYVQSTAATTE | 15 | YNYDFPEYGAMKPGAFGD | 18 |
25 | YVQSTAATTEEIEVH | 15 | ||
26 | MPPDTPDRTLMSQQS | 15 | ||
27 | PDRTLMSQQSGNVKI | 15 | ||
28 | MSQQSGNVKITVNGQ | 15 | ||
29 | TVNGQTVRYKCNCGG | 15 | ||
30 | TVRYKCNCGGSNEGL | 15 | ||
31 | SNEGLTTTDKVINNC | 15 | ||
32 | TTTDKVINNCKVDQC | 15 | ||
33 | QYNSPLVPRNAELGD | 15 |
Program | ABCpred | FBCPred | LBTope | BCPred | AAP |
---|---|---|---|---|---|
Thresholds | 0.85 | 0.85 | 0.7 | 0.8 | 0.7 |
Sn | 0.208 | 0.458 | 0.167 | 0.417 | 0.500 |
Sp | 0.909 | 0.727 | 0.939 | 0.727 | 0.515 |
TP | 5 (20.8%) | 11 (45.8%) | 4 (16.7%) | 10 (41.7%) | 12 (50%) |
FN | 19 (79.2%) | 13 (54.2%) | 20 (83.3%) | 14 (58.3%) | 12 (50%) |
TN | 30 (90.9%) | 24 (72.7%) | 31 (93.9%) | 24 (72.7%) | 17 (51.5%) |
FP | 3 (9.1%) | 9 (27.3%) | 2 (6.1%) | 9 (27.3%) | 16 (48.5%) |
Program | ABCpred | FBCPred | LBTope | BCPred |
---|---|---|---|---|
Thresholds | 0.85 | 0.85 | 0.7 | 0.8 |
Sn | 0.458 | 0.667 | 0.208 | 0.542 |
Sp | 0.606 | 0.636 | 0.909 | 0.636 |
TP | 11 (45.8%) | 16 (66.7%) | 5 (20.8%) | 13 (54,2%) |
FN | 13 (54.2%) | 8 (33.3%) | 19 (79.2%) | 11 (45.8%) |
TN | 20 (60.6%) | 21 (63.6%) | 30 (90.9%) | 21 (63.6%) |
FP | 13 (39.4%) | 12 (36.4%) | 3 (9.1%) | 12 (36.4%) |
ID | Protein | Position (Start) | Position (End) | Sequence |
---|---|---|---|---|
pep2 | N/A | 61 | 83 | PRKNRKNKKQKQKQQAPRNNTNQ |
pep25 | Alpha E2 | 451 | 471 | THPFHHDPPVIGREKFHSRPQ |
pep157 | Alpha E2 | 618 | 643 | TLLSYRNMGEEPNYQEEWVTHKKEIR |
pep91 | Alpha E1 | 815 | 834 | VIPNTVGVPYKTLVNRPGYS |
pep107 | Alpha E1 | 999 | 1018 | PPFGAGRPGQFGDIQSRTPE |
pep114 | Alpha E2 | 646 | 665 | VPTEGLEVTWGNNEPYKYWPQ |
Epitope ID | Sequence | Position | Protein | Allele |
---|---|---|---|---|
EC12-PFM | PFMYNAMAGAYPSYST | 182–197 | nsP1 | HLA-DQA1*05:01/DQB1*03:01 |
EC6-CST | CSTYAQSTAATAEEIEVHM | 478–496 | E2 | HLA-DQA1*04:01/DQB1*04:02 HLA-DQA1*03:01/DQB1*03:02 |
EC2-LQA | LQAAQEDVQVEIDVEQLED | 513–531 | nsP1 | HLA-DQA1*03:01/DQB1*03:02 HLA-DQA1*04:01/DQB1*04:02 HLA-DQA10501-DQB10201 |
EC18-QPL | QPLFWMQALIPLAAL | 763–777 | E1 | HLA-DQA10501-DQB10201 |
EC17-RPG | RPGYSPMVLEMELLSVTLE | 830–848 | E1 | HLA-DQA10501-DQB10201 |
EC20-MVL | MVLEMELLSVTLEPTL | 836–850 | E1 | HLA-DQA10501-DQB10201 |
EC15-EFA | EFASAYRAHTASASAKLRV | 926–944 | E1 | HLA-DQA1*05:01/DQB1*03:01 |
EC38-MTN | MTNAVTIREAEIEVE | 1142–1156 | E1 | HLA-DQA1*03:01/DQB1*03:02 |
EC4-GVG | GVGLVVAVAALILIV | 1225–1239 | E1 | HLA-DQA1*05:01/DQB1*03:01 |
EC30-NQL | NQLNAAFVGQATRAG | 1317–1331 | nsP2 | HLA-DQA1*05:01/DQB1*03:01 |
EC31-PSD | PSDLDADAPALEPAL | 1689–1704 | nsP3 | HLA-DQA1*03:01/DQB1*03:02 |
EC27-VHT | VHTLFDMSAEDFDAI | 2200–2216 | nsP4 | HLA-DQA10501-DQB10201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Burgos, G.G.; Montalvo-Marin, N.M.; Díaz-Rosado, E.R.; Pérez-Rueda, E. In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development. Viruses 2021, 13, 2360. https://doi.org/10.3390/v13122360
Sánchez-Burgos GG, Montalvo-Marin NM, Díaz-Rosado ER, Pérez-Rueda E. In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development. Viruses. 2021; 13(12):2360. https://doi.org/10.3390/v13122360
Chicago/Turabian StyleSánchez-Burgos, Gilma G., Nallely M. Montalvo-Marin, Edgar R. Díaz-Rosado, and Ernesto Pérez-Rueda. 2021. "In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development" Viruses 13, no. 12: 2360. https://doi.org/10.3390/v13122360
APA StyleSánchez-Burgos, G. G., Montalvo-Marin, N. M., Díaz-Rosado, E. R., & Pérez-Rueda, E. (2021). In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development. Viruses, 13(12), 2360. https://doi.org/10.3390/v13122360