Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rodent Collection
2.2. Resource Augmentation
2.3. Indirect Immunofluorescence Screen for Antibodies to Hantavirus
2.4. Statistical Methods
3. Results
3.1. Cross-Sectional Sampling of the Mbaracayú Forest Biosphere Reserve (MFBR)
3.2. Population Size, Density, and Experimental Variables
3.3. Resource Augmentation and Community Composition
3.4. Statistical Classification of Antibody-Positive Rodents
3.5. Relationship between Species Diversity and Hantavirus Prevalence
3.6. Effect of Resource Augmentation and Habitat Degradation on Hantavirus Seroprevalence
3.7. Fine-Scale Association between Rodent Microhabitat and Hantavirus Prevalence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonsson, C.B.; Figueiredo, L.T.M.; Vapalahti, O. A Global Perspective on Hantavirus Ecology, Epidemiology, and Disease. Clin. Microbiol. Rev. 2010, 23, 412–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzán, G.; Marcé, E.; Giermakowski, J.T.; Mills, J.N.; Ceballos, G.; Ostfeld, R.S.; Armién, B.; Pascale, J.M.; Yates, T.L. Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence. PLoS ONE 2009, 4, e5461. [Google Scholar] [CrossRef] [PubMed]
- Rubio, A.V.; Castro-Arellano, I.; Mills, J.N.; List, R.; Ávila-Flores, R.; Suzán, G. Is species richness driving intra- and interspecific interactions and temporal activity overlap of a hantavirus host? An experimental test. PLoS ONE 2017, 12, e0188060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imholt, C.; Reil, D.; Eccard, J.A.; Jacob, D.; Hempelmann, N.; Jacob, J. Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus). Pest Manag. Sci. 2014, 71, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.C.; Gomulkiewicz, R.; Mack, R.N. Potential Role of Masting by Introduced Bamboos in Deer Mice (Peromyscus maniculatus) Population Irruptions Holds Public Health Consequences. PLoS ONE 2015, 10, e0124419. [Google Scholar]
- Swart, A.; Bekker, D.L.; Maas, M.; de Vries, A.; Pijnacker, R.; Reusken, C.B.E.M.; van der Giessen, J.W.B. Modelling human Puumala hantavirus infection in relation to bank vole abundance and masting intensity in the Netherlands. Infect. Ecol. Epidemiol. 2017, 7, 1287986. [Google Scholar] [CrossRef] [PubMed]
- Orrock, J.L.; Allan, B.F.; Drost, C.A. Biogeographic and Ecological Regulation of Disease: Prevalence of Sin Nombre Virus in Island Mice Is Related to Island Area, Precipitation, and Predator Richness. Am. Nat. 2011, 177, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Korpela, K.; Helle, P.; Henttonen, H.; Korpimäki, E.; Koskela, E.; Ovaskainen, O.; Pietiäinen, H.; Sundell, J.; Valkama, J.; Huitu, O. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Boil. Sci. 2014, 281, 20142119. [Google Scholar] [CrossRef] [Green Version]
- Korpimäki, E.; Norrdahl, K.; Huitu, O.; Klemola, T. Predator–induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Boil. Sci. 2005, 272, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Calisher, C.H.; Sweeney, W.; Mills, J.N.; Beaty, B.J. Natural History of Sin Nombre Virus in Western Colorado. Emerg. Infect. Dis. 1999, 5, 126–134. [Google Scholar] [CrossRef]
- Engelthaler, D.M.; Mosley, D.G.; Cheek, J.E.; Levy, C.E.; Komatsu, K.K.; Ettestad, P.; Davis, T.; Tanda, D.T.; Miller, L.; Frampton, J.W.; et al. Climatic and Environmental Patterns Associated with Hantavirus Pulmonary Syndrome, Four Corners Region, United States. Emerg. Infect. Dis. 1999, 5, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.; Yates, T.L.; Fine, J.B.; Shields, T.M.; Kendall, J.B.; Hope, A.G.; Parmenter, C.A.; Peters, C.J.; Ksiazek, T.G.; Li, C.-S.; et al. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc. Natl. Acad. Sci. USA 2002, 99, 16817–16822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Perspect. 2001, 109 (Suppl. 2), 223–233. [Google Scholar] [PubMed] [Green Version]
- Mills, J.N.; Childs, J.E.; Davis, T.; Engelthaler, D.M.; Gannon, W.L.; Peters, C.J.; Nichols, C.R.; Ellis, B.A.; Rollin, P.E.; Levy, C.E.; et al. Patterns of Association with Host and Habitat: Antibody Reactive with Sin Nombre Virus in Small Mammals in the Major Biotic Communities of the Southwestern United States. Am. J. Trop. Med. Hyg. 1997, 56, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.N.; Ksiazek, T.G.; Peters, C.; Childs, J.E. Long-Term Studies of Hantavirus Reservoir Populations in the Southwestern United States: A Synthesis. Emerg. Infect. Dis. 1999, 5, 135–142. [Google Scholar] [CrossRef]
- Suzán, G.; Marcé, E.; Giermakowski, J.T.; Armien, B.; Pascale, J.; Mills, J.; Ceballos, G.; Gomez, A.; Aguirre, A.A.; Salazar-Bravo, J.; et al. The Effect of Habitat Fragmentation and Species Diversity Loss on Hantavirus Prevalence in Panama. Ann. N. Y. Acad. Sci. 2008, 1149, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Goodin, D.G.; Koch, D.E.; Owen, R.D.; Chu, Y.-K.; Hutchinson, J.M.S.; Jonsson, C.B. Land cover associated with hantavirus presence in Paraguay. Glob. Ecol. Biogeogr. 2006, 15, 519–527. [Google Scholar] [CrossRef]
- Kallio, E.R.; Begon, M.; Henttonen, H.; Koskela, E.; Mappes, T.; Vaheri, A.; Vapalahti, O. Cyclic hantavirus epidemics in humans—Predicted by rodent host dynamics. Epidemics 2009, 1, 101–107. [Google Scholar] [CrossRef]
- Piovesan, G.; Adams, J.M. Masting behaviour in beech: Linking reproduction and climatic variation. Can. J. Bot. 2001, 79, 1039–1047. [Google Scholar]
- Barrios, J.; Verstraeten, W.W.; Maes, P.; Aerts, J.; Farifteh, J.; Coppin, P. Seasonal vegetation variables and their impact on the spatio-temporal patterns of nephropathia epidemica and Lyme borreliosis in Belgium. Appl. Geogr. 2013, 45, 230–240. [Google Scholar] [CrossRef]
- Clement, J.; Vercauteren, J.; Verstraeten, W.W.; Ducoffre, G.; Barrios, J.M.; Vandamme, A.-M.; Maes, P.; van Ranst, M. Relating increasing hantavirus incidences to the changing climate: The mast connection. Int. J. Health Geogr. 2009, 8, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyman, P.; Vaheri, A. Situation of hantavirus infections and haemorrhagic fever with renal syndrome in European countries as of December 2006. Eurosurveillance 2008, 13, 18925. [Google Scholar] [PubMed]
- Reil, D.; Imholt, C.; Drewes, S.; Ulrich, R.G.; Eccard, J.A.; Jacob, J. Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? Zoonoses Public Health 2015, 63, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Hjelle, B.; Glass, G.E. Outbreak of Hantavirus Infection in the Four Corners Region of the United States in the Wake of the 1997–1998 El Niño–Southern Oscillation. J. Infect. Dis. 2000, 181, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Parmenter, R.R.; Zlotin, R.I.; Moore, D.I.; Myers, O.B. Environmental and endogenous drivers of tree mast production and synchrony in piñon-juniper-oak woodlands of New Mexico. Ecosphere 2018, 9, e02360. [Google Scholar] [CrossRef] [Green Version]
- Voutilainen, L.; Kallio, E.R.; Niemimaa, J.; Vapalahti, O.; Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 2016, 6, 21323. [Google Scholar] [CrossRef] [Green Version]
- Andreo, V.; Provensal, C.; Levis, S.; Pini, N.; Enría, D.; Polop, J. Summer—Autumn distribution and abundance of the hantavirus host, Oligoryzomys longicaudatus, in northwestern Chubut, Argentina. J. Mammal. 2012, 93, 1559–1568. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, L.T.; Moreli, M.L.; de Sousa, R.L.M.; Borges, A.A.; de Figueiredo, G.G.; Machado, A.M.; Bisordi, I.; Nagasse-Sugahara, T.K.; Suzuki, A.; Pereira, L.E.; et al. Hantavirus Pulmonary Syndrome, Central Plateau, Southeastern, and Southern Brazil. Emerg. Infect. Dis. 2009, 15, 561–567. [Google Scholar] [CrossRef]
- Palma, R.E.; Polop, J.J.; Owen, R.D.; Mills, J.N. Ecology of rodent-associated hantaviruses in the Southern Cone of South America: Argentina, Chile, Paraguay, and Uruguay. J. Wildl. Dis. 2012, 48, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Suzán, G.; Marcé, E.; Yates, T.L.; Giermakowski, J.T.; Armién, B.; Suzán-Azpiri, H. Modeling hantavirus reservoir species dominance in high seroprevalence areas on the Azuero Peninsula of Panama. Am. J. Trop. Med. Hyg. 2006, 74, 1103–1110. [Google Scholar] [CrossRef]
- Yan, L.; Fang, L.-Q.; Huang, H.; Zhang, L.-Q.; Feng, D.; Zhao, W.-J.; Zhang, W.-Y.; Li, X.-W.; Cao, W.-C. Landscape Elements and Hantaan Virus–related Hemorrhagic Fever with Renal Syndrome, People’s Republic of China. Emerg. Infect. Dis. 2007, 13, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Muylaert, R.L.; Bovendorp, R.S.; Prist, P.R.; Melo, G.L.; Priante, C. Hantavirus host assemblages and human disease in the Atlantic Forest. PLoS Negl. Trop Dis. 2019, 13, e0007655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, A.; Bisordi, I.; Levis, S.; Garcia, J.; Pereira, L.E.; Souza, R.P.; Sugahara, T.K.; Pini, N.; Enria, D.; Souza, L.T. Identifying Rodent Hantavirus Reservoirs, Brazil. Emerg. Infect. Dis. 2004, 10, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.; Goodin, D.G.; Koch, D.E.; Chu, Y.-K.; Jonsson, C.B. Spatiotemporal variation in Akodon montensis (Cricetidae: Sigmodontinae) and hantaviral seroprevalence in a subtropical forest ecosystem. J. Mammal. 2010, 91, 467–481. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-K.; Goodin, U.; Owen, R.D.; Koch, D.; Jonsson, C.B. Sympatry of 2 Hantavirus Strains, Paraguay, 2003–2007. Emerg. Infect. Dis. 2009, 15, 1977–1980. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.D.; Camp, J.V.; Sage, R.; Rodríguez, L.; Bruyn, V.J.M.; McAllister, R.C.; Jonsson, C.B. Sympatry and habitat associations of sigmodontine rodents in a neotropical forest-savanna interface. Mammalia 2019, 84, 227–238. [Google Scholar] [CrossRef]
- Eastwood, G.; Camp, J.V.; Chu, Y.K.; Sawyer, A.; Owen, R.; Cao, X.; Taylor, M.K.; Valdivieso-Torres, L.; Sage, R.D.; Yu, A.; et al. Habitat, species richness and hantaviruses of sigmodontine rodents within the Interior Atlantic Forest, Paraguay. PLoS ONE 2018, 13, e0201307. [Google Scholar] [CrossRef]
- Goodin, D.; Jonsson, C.B.; Allen, L.J.S.; Owen, R. Integrating Landscape Hierarchies in the Discovery and Modeling of Ecological Drivers of Zoonotically Transmitted Disease from Wildlife. In The Mechanistic Benefits of Microbial Symbionts; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; Volume 5, pp. 299–317. [Google Scholar]
- Goodin, D.G.; Paige, R.; Owen, R.D.; Ghimire, K.; Koch, D.E.; Chu, Y.-K. Microhabitat characteristics of Akodon montensis, a reservoir for hantavirus, and hantaviral seroprevalence in an Atlantic forest site in eastern Paraguay. J. Vector Ecol. J. Soc. Vector Ecol. 2009, 34, 104–113. [Google Scholar] [CrossRef]
- Owen, R.D.; Camp, J.V.; Jonsson, C.B. Sigmodontine community and species responses to El Niño and precipitation in different levels of forest degradation. Therya 2019, 10, 255–265. [Google Scholar] [CrossRef]
- Chu, Y.K.; Milligan, B.; Goodin, D.G.; Owen, R.D.; Jonsson, C.B. Phylogenetic and geographical relationships of hantavirus strains in eastern and western Paraguay. Am. J. Trop. Med. Hyg. 2006, 75, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-K.; Jonsson, C.B.; Gonzalez, L.M.; Owen, R.D. The complex ecology of hantavirus in Paraguay. Am. J. Trop. Med. Hyg. 2003, 69, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, M.D.S.; Peres, C.A.; da Silva, D.J.; Sanaiotti, T.M. Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. Biodivers. Conserv. 2012, 21, 1127–1147. [Google Scholar] [CrossRef]
- de Lima, D.O.; Azambuja, B.O.; Camilotti, V.L.; Cáceres, N.C. Small mammal community structure and microhabitat use in the austral boundary of the Atlantic Forest, Brazil. Zool. Curitiba 2010, 27, 99–105. [Google Scholar]
- D’Elia, G.; Pardinas, F.J. Subfamily Sigmodontinae Wagner, 1843. In Mammals of South America; The University of Chicago Press: Chicago, IL, USA, 2015; pp. 63–687. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 November 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE Publishing: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Pinheiro, J.; Bates, D.; Deb-Roy, S.; Sarkar, D.; R Core Team. Linear and Nonlinear Mixed Effects Models. 2019. R package version 3.1-140. Available online: https://CRAN.R-project.org/package=nlme (accessed on 10 December 2020).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efford, M.G. Spatially Explicit Capture-Recapture Models. 2020. R package version 4.3.1. Available online: https://CRAN.R-project.org/package=secr (accessed on 11 December 2020).
- Hijmans, R.J. Geographic Data Analysis and Modeling. 2020. R package version 3.3-13. Available online: https://CRAN.R-project.org/package=raster (accessed on 14 November 2020).
- Oksanen, J.; Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D. Community Ecology Package. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 28 November 2020).
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- De la Sancha, N.U.; Boyle, S.A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS ONE 2019, 14, e0226529. [Google Scholar] [CrossRef]
- Morand, S.; Bordes, F.; Blasdell, K.; Pilosof, S.; Cornu, J.-F.; Chaisiri, K.; Chaval, Y.; Cosson, J.-F.; Claude, J.; Feyfant, T.; et al. Assessing the distribution of disease-bearing rodents in human-modified tropical landscapes. J. Appl. Ecol. 2015, 52, 784–794. [Google Scholar] [CrossRef]
- Antunes, P.C.; Campos, M.A.; Santos, L.G.R.O.; Graipel, M.E. Population dynamics of Akodon montensis (Rodentia, Cricetidae) in the Atlantic forest of Southern Brazil. Mamm. Biol. 2010, 75, 186–190. [Google Scholar] [CrossRef]
- Antunes, P.C.; Campos, M.A.A.; Oliveira-Santos, L.G.R.; Graipel, M.E. Population dynamics of Euryoryzomys russatus and Oligoryzomys nigripes (Rodentia, Cricetidae) in an Atlantic forest area, Santa Catarina Island, Southern Brazil. Biotemas 2011, 22, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Bergallo, H.G.; Magnusson, W.E. Effects of Climate and Food Availability on Four Rodent Species in Southeastern Brazil. J. Mammal. 1999, 80, 472–486. [Google Scholar] [CrossRef]
- Galiano, D.; Kubiak, B.B.; Marinho, J.R.; de Freitas, T.R.O. Population dynamics of Akodon montensis and Oligoryzomys nigripes in an Araucaria forest of Southern Brazil. Mammalia 2013, 77, 173–179. [Google Scholar] [CrossRef]
- Teixeira, B.R.; Oliveira, R.C.; Guterres, A.; Bonvicino, C.R.; Fernandes, J.; dos Santos, C.N.D.; de Lemos, E.R.S.; D’Andrea, P.S.; Loureiro, N.; Mattos, L.H.B.V.; et al. Population Ecology of Hantavirus Rodent Hosts in Southern Brazil. Am. J. Trop. Med. Hyg. 2014, 91, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madai, M.; Németh, V.; Oldal, M.; Horváth, G.; Herczeg, R.; Kelemen, K.; Kemenesi, G.; Jakab, F. Temporal Dynamics of Two Pathogenic Hantaviruses Among Rodents in Hungary. Vector-Borne Zoonotic Dis. 2020, 20, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Logiudice, K.; Ostfeld, R.S.; Schmidt, K.A.; Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 2003, 100, 567–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, S.; Kuenzi, A.; Bagamian, K.H.; Mills, J.N.; Rollin, P.E.; Zanto, S.N.; Douglass, R. A temporal dilution effect: Hantavirus infection in deer mice and the intermittent presence of voles in Montana. Oecologia 2010, 166, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Clay, C.A.; Lehmer, E.M.; Jeor, S.S.; Dearing, M.D. Testing Mechanisms of the Dilution Effect: Deer Mice Encounter Rates, Sin Nombre Virus Prevalence and Species Diversity. EcoHealth 2009, 6, 250–259. [Google Scholar] [CrossRef]
- Vadell, M.V.; Villafañe, I.E.G.; Carbajo, A.E. Hantavirus infection and biodiversity in the Americas. Oecologia 2019, 192, 169–177. [Google Scholar] [CrossRef]
- Magnusson, M.; Fischhoff, I.R.; Ecke, F.; Hörnfeldt, B.; Ostfeld, R.S. Effect of spatial scale and latitude on diversity–disease relationships. Ecology 2020, 101, e02955. [Google Scholar] [CrossRef] [Green Version]
- Melo, G.L.; Sponchiado, J.; Machado, A.F.; Cáceres, N.C. Small-mammal community structure in a South American deciduous Atlantic Forest. Community Ecol. 2011, 12, 58–66. [Google Scholar] [CrossRef]
- Püttker, T.; Pardini, R.; Meyer-Lucht, Y.; Sommer, S. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil. BMC Ecol. 2008, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto-Cáceres, M.B.; Owen, R.D. Relación de los pequeños mamíferos terrestres (Rodentia y Didelphimorphia) con la estructura de la vegetación en el Bosque Atlántico Interior un análisis multivariado. Therya 2019, 10, 359–369. [Google Scholar] [CrossRef]
- Young, H.S.; McCauley, D.J.; Dirzo, R.; Nunn, C.L.; Campana, M.G.; Agwanda, B.; Otarola-Castillo, E.R.; Castillo, E.R.; Pringle, R.M.; Veblen, K.E.; et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PreTrt | ND2015 | FM2016 | |||||
---|---|---|---|---|---|---|---|
Species | Males | Females | Males | Females | Males | Females | Total |
Akodon montensis a | 148 | 128 | 117 | 131 | 107 | 91 | 722 |
Calomys callosus | 1 | 3 | 4 | 3 | 6 | 4 | 21 |
Calomys tener | 0 | 0 | 0 | 2 | 0 | 0 | 2 |
Euryoryzomys russatus b | 0 | 0 | 7 | 1 | 0 | 0 | 8 |
Holochilus chacarius | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
Hylaeamys megacephalus c | 46 | 30 | 44 | 36 | 67 | 47 | 270 |
Nectomys squamipes | 0 | 0 | 0 | 1 | 0 | 1 | 2 |
Oligoryzomys flavescens | 0 | 0 | 1 | 4 | 14 | 7 | 26 |
Oligoryzomys mattogrossae | 4 | 6 | 10 | 6 | 14 | 6 | 46 |
Oligoryzomys nigripes | 23 | 15 | 33 | 28 | 34 | 21 | 154 |
Rattus rattus | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Sooretamys angouya | 0 | 0 | 1 | 0 | 0 | 1 | 2 |
TOTAL | 222 | 183 | 218 | 212 | 243 | 178 | 1256 |
Variable | Level | Sero+/Tested b | % Sero+ c |
---|---|---|---|
By Session a | PreTrt | 14/276 | 5.07% |
ND2015 | 12/266 | 4.51% | |
FM2016 | 15/402 | 3.73% | |
By Species | Akodon montensis | 24/527 | 4.39% |
Oligoryzomys nigripes | 14/123 | 11.38% | |
Other rodents | 3/294 | 1.02% | |
Total captured | 41/944 | 4.34% |
Species | Predictors | Factor Level | No. Neg (%) | No. Pos (%) | Odds Ratio a | pb | LR p-Value b |
---|---|---|---|---|---|---|---|
Akodon montensis | Sex | Male | 252 (94) | 16 (6) | 1.98 (0.8~4.9) | 0.123 | 0.113 |
Female | 249 (97) | 8 (3) | |||||
Age | Adult | 263 (94) | 18 (6) | 3.23 (1.3~9.9) | 0.022 | 0.021 | |
Juvenile | 4 (80) | 1 (20) | 11.80 (0.5~101.0) | 0.041 | |||
SubAdult | 236 (98) | 5 (2) | |||||
Weight c | 501 (9~57) | 24 (11~74) | 1.08 (1.0~1.1) | 0.000 | 0.000 | ||
Tail Scar | Y | 190 (93) | 15 (7) | 2.75 (1.2~6.6) | 0.019 | 0.017 | |
N | 313 (97) | 9 (3) | |||||
Reprod. Activity | Active | 101 (90) | 11 (10) | 3.35 (1.4~7.7) | 0.004 | 0.006 | |
Not active | 402 (97) | 13 (3) | |||||
Oligoryzomys nigripes | Sex | Male | 59 (82) | 13 (18) | 11.02 (2.1~203.6) | 0.023 | 0.002 |
Female | 50 (98) | 1 (2) | |||||
Age d | SubAdult | 23 (100) | 0 | ||||
Juvenile | 1 (100) | 0 | |||||
Adult | 85 (86) | 14 (14) | |||||
Weight c | 109 (6~37) | 14 (22~31) | 1.20 (1.1~1.4) | 0.004 | 0.001 | ||
Tail Scar | Y | 3 (60) | 2 (40) | 5.89 (0.7~39.1) | 0.065 | 0.091 | |
N | 106 (90) | 12 (10) | |||||
Reprod. Activity | Active | 50 (81) | 12 (19) | 7.08 (1.8~46.9) | 0.013 | 0.003 | |
Not active | 59 (97) | 2 (3) |
Species | Predictors | Factor Level | No. Neg (%) | No. Pos (%) | Odds Ratio a | pb | LR p-Value b |
---|---|---|---|---|---|---|---|
Akodon montensis | Resource | Y | 131 (95) | 7 (5) | 1.17 (0.44~2.78) | 0.734 | 0.767 |
N | 372 (96) | 17 (4) | |||||
Habitat Degradation | Most | 156 (96) | 7 (4) | 1.88 (0.59~6.47) | 0.287 | 0.040 | |
Moderate | 137 (92) | 12 (8) | 3.68 (1.33~11.8) | 0.016 | |||
Least | 210 (98) | 5 (2) | |||||
Habitat Clusters | 3 | 139 (95) | 7 (5) | 0.60 (0.22~1.55) | 0.127 | 0.016 | |
2 | 200 (99) | 3 (1) | 0.18 (0.04~0.58) | 0.004 | |||
1 | 144 (92) | 12 (8) | |||||
Oligoryzomys nigripes | Resource | Y | 61 (90) | 7 (10) | 0.79 (0.25~2.44) | 0.673 | 0.673 |
N | 48 (87) | 7 (13) | |||||
Habitat Degradation | Most | 38 (88) | 5 (12) | 1.05 (0.28~3.75) | 0.936 | 0.996 | |
Moderate | 23 (88) | 3 (12) | 1.04 (0.20~4.34) | 0.955 | |||
Least | 48 (89) | 6 (11) | |||||
Habitat Clusters | 3 | 35 (92) | 3 (8) | 0.42 (0.09~1.57) | 0.223 | 0.340 | |
2 | 32 (91) | 3 (9) | 0.46 (0.09~1.73) | 0.275 | |||
1 | 39 (83) | 8 (17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camp, J.V.; Spruill-Harrell, B.; Owen, R.D.; Solà-Riera, C.; Williams, E.P.; Eastwood, G.; Sawyer, A.M.; Jonsson, C.B. Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest. Viruses 2021, 13, 85. https://doi.org/10.3390/v13010085
Camp JV, Spruill-Harrell B, Owen RD, Solà-Riera C, Williams EP, Eastwood G, Sawyer AM, Jonsson CB. Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest. Viruses. 2021; 13(1):85. https://doi.org/10.3390/v13010085
Chicago/Turabian StyleCamp, Jeremy V., Briana Spruill-Harrell, Robert D. Owen, Carles Solà-Riera, Evan P. Williams, Gillian Eastwood, Aubrey M. Sawyer, and Colleen B. Jonsson. 2021. "Mixed Effects of Habitat Degradation and Resources on Hantaviruses in Sympatric Wild Rodent Reservoirs within a Neotropical Forest" Viruses 13, no. 1: 85. https://doi.org/10.3390/v13010085