Invasive Alien Plants in Africa and the Potential Emergence of Mosquito-Borne Arboviral Diseases—A Review and Research Outlook
Abstract
:1. Introduction
2. Invasive Alien Plants
3. Effect of Invasive Alien Plants on the Ecology of Preimaginal Stages of Arboviral Mosquito Vectors
4. Effect of Invasive Alien Plants on Arboviral Mosquito Vector Survival
5. Potential Effects of Invasive Alien Plants on Viral Pathogen Transmission
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Growing at a Slower Pace, World Population Is Expected to Reach 9.7 Billion in 2050 and Could Peak at Nearly 11 Billion Around 2100. UN DESA|United Nations Department of Economic and Social Affairs. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 31 March 2020).
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junglen, S.; Kurth, A.; Kuehl, H.; Quan, P.-L.; Ellerbrok, H.; Pauli, G.; Nitsche, A.; Nunn, C.; Rich, S.M.; Lipkin, W.I.; et al. Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection. EcoHealth 2009, 6, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer Steiger, D.B.; Ritchie, S.A.; Laurance, S.G.W. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit. Vectors 2016, 9, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoli, A.; Tagliapietra, V.; Cagnacci, F.; Marini, G.; Arnoldi, D.; Rosso, F.; Rosà, R. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int. J. Parasitol. Parasites Wildl. 2019, 9, 394–401. [Google Scholar] [CrossRef]
- Foster, W.A. Mosquito Sugar feeding and reproductive energetics. Annu. Rev. Entomol. 1995, 40, 443–474. [Google Scholar] [CrossRef]
- Stone, C.M.; Witt, A.B.R.; Walsh, G.C.; Foster, W.A.; Murphy, S.T. Would the control of invasive alien plants reduce malaria transmission? A review. Parasit. Vectors 2018, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, B.; Jackson, B.T.; Guseman, J.L.; Przybylowicz, C.M.; Stone, C.M.; Foster, W.A. Alteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes. J. Appl. Ecol. 2018, 55, 841–851. [Google Scholar] [CrossRef]
- Manda, H.; Gouagna, L.C.; Foster, W.A.; Jackson, R.R.; Beier, J.C.; Githure, J.I.; Hassanali, A. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae. Malar. J. 2007, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Arum, S.O.; Weldon, C.W.; Orindi, B.; Tigoi, C.; Musili, F.; Landmann, T.; Tchouassi, D.P.; Affognon, H.D.; Sang, R. Plant resting site preferences and parity rates among the vectors of Rift Valley Fever in northeastern Kenya. Parasit. Vectors 2016, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.N.; Dalu, T.; Mutshekwa, T.; Wasserman, R.J. Leaf inputs from invasive and native plants drive differential mosquito abundances. Sci. Total Environ. 2019, 689, 652–654. [Google Scholar] [CrossRef]
- Gardner, A.M.; Allan, B.F.; Frisbie, L.A.; Muturi, E.J. Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae). Parasit. Vectors 2015, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaich, J.N.; Mathias, D.K.; Torto, B.; Jackson, B.T.; Tao, D.; Ebrahimi, B.; Tarimo, B.B.; Cheseto, X.; Foster, W.A.; Dinglasan, R.R. The nonartemisinin sesquiterpene lactones parthenin and parthenolide block Plasmodium falciparum sexual stage Transmission. Antimicrob. Agents Chemother. 2016, 60, 2108–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.M.; Muturi, E.J.; Overmier, L.D.; Allan, B.F. Large-scale removal of invasive honeysuckle decreases mosquito and avian host abundance. EcoHealth 2017, 14, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Muller, G.C.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Sissoko, F.; Dembele, S.M.; Schlein, Y.; Arheart, K.L.; Revay, E.E.; et al. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: A habitat manipulation experiment. Malar. J. 2017, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Stone, C.M.; Jackson, B.T.; Foster, W.A. Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae. Am. J. Trop. Med. Hyg. 2012, 87, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Choge, S.K.; Pasiecznik, N.M.; Harvey, M.; Wright, J.; Awan, S.Z.; Harris, P.J.C. Prosopis pods as human food, with special reference to Kenya. Water SA 2007, 33, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Witt, A. Guide to the Naturalized and Invasive Plants of Laikipia; CABI: Oxfordshire, UK, 2017. [Google Scholar]
- Witt, A.; Luke, Q. Guide to the Naturalized and Invasive Plants of Eastern Africa; CABI International: Wallingford, UK, 2017. [Google Scholar]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Pyšek, P.; Pergl, J.; Essl, F.; Lenzner, B.; Dawson, W.; Kreft, H.; Weigelt, P.; Winter, M.; Kartesz, J.; Nishino, M.; et al. Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 2017, 89, 203–274. [Google Scholar]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef]
- Kleunen, M.V.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Belz, R.G.; Reinhardt, C.F.; Foxcroft, L.C.; Hurle, K. Residue allelopathy in Parthenium hysterophorus L.—Does parthenin play a leading role? Crop. Prot. 2007, 26, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Alvarez, M.; Heller, G.; Leparmarai, P.; Maina, D.; Malombe, I.; Bollig, M.; Vehrs, H. Land-use changes and the invasion dynamics of shrubs in Baringo. J. East. Afr. Stud. 2016, 10, 111–129. [Google Scholar] [CrossRef]
- Harper, D.M. The ecological relationships of aquatic plants at lake Naivasha, Kenya. Hydrobiologia 1992, 232, 65–71. [Google Scholar] [CrossRef]
- Midgley, J.M.; Hill, M.P.; Villet, M.H. The effect of water hyacinth, Eichhornia crassipes (Martius) SolmsLaubach (Pontederiaceae), on benthic biodiversity in two impoundments on the New Year’s River, South Africa. Afr. J. Aquat. Sci. 2006, 31, 25–30. [Google Scholar] [CrossRef]
- Njambuya, J.; Triest, L. Comparative performance of invasive alien Eichhornia crassipes and native Ludwigia stolonifera under non-limiting nutrient conditions in Lake Naivasha, Kenya. Hydrobiologia 2010, 656, 221–231. [Google Scholar] [CrossRef]
- Wabuyele, E.; Lusweti, A.; Bisikwa, J.; Kyenune, G.; Clark, K.; Lotter, W.D.; McConnachie, A.J.; Wondi, M. A roadside survey of the invasive weed Parthenium hysterophorus (Asteraceae) in East Africa. J. East. Afr. Nat. His. 2015, 103, 49–57. [Google Scholar] [CrossRef]
- Wittig, R.; Becker, U.; Ataholo, M. Weed communities of arable fields in the Sudanian and the Sahelian zone of West Africa. Phytocoenologia 2011, 41, 107–141. [Google Scholar] [CrossRef]
- Tamado, T.; Milberg, P. Weed flora in arable fields of eastern Ethiopia with emphasis on the occurrence of Parthenium hysterophorus. Weed Res. 2000, 40, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, A.; Khaliq, A.; Ali, H.H.; Mahajan, G.; Chauhan, B.S. Interference and management of parthenium: The world’s most important invasive weed. Crop. Prot. 2015, 68, 49–59. [Google Scholar] [CrossRef]
- Te Beest, M.; Howison, O.; Howison, R.A.; Dew, L.A.; Poswa, M.M.; Dumalisile, L.; Van, S.J. Successful control of the invasive shrub Chromolaena odorata in Hluhluwe-iMfolozi Park. In Conserving Africa’s Mega-Diversity in the Anthropocene: The Hluhluwe-iMfolozi Park Story; Cambridge University Press: Cambridge, UK, 2017; pp. 358–382. [Google Scholar]
- Zachariades, C.; Day, M.; Muniappan, R.; Reddy, G.V.P. Chromolaena odorata (L.) King and Robinson (Asteraceae). In Biological Control of Tropical Weeds Using Arthropods; Muniappan, R., Reddy, G.V.P., Raman, A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 130–162. [Google Scholar]
- Habel, J.C.; Teucher, M.; Rödder, D.; Bleicher, M.-T.; Dieckow, C.; Wiese, A.; Fischer, C. Kenyan endemic bird species at home in novel ecosystem. Ecol. Evol. 2016, 6, 2494–2505. [Google Scholar] [CrossRef] [Green Version]
- Teucher, M.; Fischer, C.; Busch, C.; Horn, M.; Igl, J.; Kerner, J.; Müller, A.; Mulwa, R.K.; Habel, J.C. A Kenyan endemic bird species Turdoides hindei at home in invasive thickets. Basic Appl. Ecol. 2015, 16, 180–188. [Google Scholar] [CrossRef]
- Syed, Z.; Guerin, P.M. Tsetse flies are attracted to the invasive plant Lantana camara. J. Insect Physiol. 2004, 50, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apetorgbor, M.M.; Bosu, P.P. Occurrence and control of paper mulberry (broussonetia papyrifera) in souther Ghana. Ghana J. For. 2011, 27, 40–51. [Google Scholar]
- Adhiambo, R.; Muyekho, F.; Creed, I.F.; Enanga, E.; Shivoga, W.; Trick, C.G.; Obiri, J. Managing the invasion of guava trees to enhance carbon storage in tropical forests. For. Ecol. Manag. 2019, 432, 623–630. [Google Scholar] [CrossRef]
- Wakibara, J.V.; Mnaya, B.J. Possible control of Senna spectabilis (Caesalpiniaceae), an invasive tree in Mahale mountains National park, Tanzania. Oryx 2002, 36, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Heshmati, I.; Khorasani, N.; Shams-Esfandabad, B.; Riazi, B. Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: Implications for environmental monitoring and risk assessment. Environ. Monit. Assess. 2019, 191, 72. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Le Maitre, D.C.; van Wilgen, B.W.; Richardson, D.M. Towards a national strategy to optimise the management of a widespread invasive tree (Prosopis species; mesquite) in South Africa. Ecosyst. Serv. 2017, 27, 242–252. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Witt, A.B.R.; Piroris, F.M.; van Wilgen, B.W. Distribution and socio-ecological impacts of the invasive alien cactus Opuntia stricta in eastern Africa. Biol. Invasions 2017, 19, 2427–2441. [Google Scholar] [CrossRef] [Green Version]
- Agha, S.B.; Tchouassi, D.P.; Bastos, A.D.S.; Sang, R. Assessment of risk of dengue and yellow fever virus transmission in three major Kenyan cities based on Stegomyia indices. PLoS Negl. Trop. Dis. 2017, 11, e0005858. [Google Scholar] [CrossRef] [Green Version]
- Kronenwetter-Koepel, T.A.; Meece, J.K.; Miller, C.A.; Reed, K.D. Surveillance of above- and below-ground mosquito breeding habitats in a rural midwestern community: Baseline data for larvicidal control measures against West Nile virus vectors. Clin. Med. Res. 2005, 3, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Obaid, S.; Samraoui, B.; Thomas, J.; El-Serehy, H.A.; Alfarhan, A.H.; Schneider, W.; O’connell, M. An overview of wetlands of Saudi Arabia: Values, threats, and perspectives. Ambio 2017, 46, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, C.E.; Ironside, A.; Mansfield, S. A comparison of oviposition preference in the presence of three aquatic plants by the mosquitoes “Culex annulirostris” Skuse and “Culex quinquefasciatus” Say (Culicidae: Diptera) in laboratory tests. Gen. Appl. Entomol. J. Entomol. Soc. New South. Wales. 2013, 41, 21. [Google Scholar]
- Tantely, L.M.; Boyer, S.; Fontenille, D. A review of mosquitoes associated with Rift Valley fever virus in Madagascar. Am. J. Trop. Med. Hyg. 2015, 92, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turell, M.J.; Kay, B.H. Susceptibility of selected strains of Australian mosquitoes (Diptera: Culicidae) to Rift Valley fever virus. J. Med. Entomol. 1998, 35, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Van den Hurk, A.F.; Hall-Mendelin, S.; Webb, C.E.; Tan, C.S.E.; Frentiu, F.D.; Prow, N.A.; Hall, R.A. Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasit. Vectors 2014, 7, 586. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G.; Ghosh, A.; Biswas, D.; Chatterjee, S.N. Host plant preference of Mansonia Mosquitoes. J. Aquat. Plant. Manag. 2006, 44, 142–144. [Google Scholar]
- Gardner, A.M.; Anderson, T.K.; Hamer, G.L.; Johnson, D.E.; Varela, K.E.; Walker, E.D.; Ruiz, M.O. Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in catch basins, Chicago, USA. Parasit. Vectors 2013, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Merritt, R.W.; Dadd, R.H.; Walker, E.D. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 1992, 37, 349–374. [Google Scholar] [CrossRef]
- De Tezanos Pinto, P.; Allende, L.; O’Farrell, I. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: An experimental approach. J. Plankton Res. 2007, 29, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Kipyab, P.C.; Khaemba, B.M.; Mwangangi, J.M.; Mbogo, C.M. The physicochemical and environmental factors affecting the distribution of Anopheles merus along the Kenyan coast. Parasit. Vectors 2015, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Tuno, N.; Kohzu, A.; Tayasu, I.; Nakayama, T.; Githeko, A.; Yan, G. An algal diet accelerates larval growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae). J. Med. Entomol. 2018, 55, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Kilpatrick, A.M. “Bird biting” mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2011, 11, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwabiah, A.B.; Stoskopf, N.C.; Voroney, R.P.; Palm, C.A. Nitrogen and Phosphorus release from decomposing leaves under sub-humid Tropical conditions. Biotropica 2001, 33, 229–240. [Google Scholar] [CrossRef]
- Alvarez, M.; Heller, G.; Malombe, I.; Matheka, K.W.; Choge, S.; Becker, M. Classification of Prosopis juliflora invasion in the Lake Baringo basin and environmental correlations. Afr. J. Ecol. 2019, 57, 296–303. [Google Scholar] [CrossRef]
- Brown, H.; Diuk-Wasser, M.; Andreadis, T.; Fish, D. Remotely-sensed vegetation indices identify mosquito clusters of West Nile virus vectors in an urban landscape in the Northeastern United States. Vector-Borne Zoonotic Dis. 2008, 8, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Munyua, P.M.; Murithi, R.M.; Ithondeka, P.; Hightower, A.; Thumbi, S.M.; Anyangu, S.A.; Kiplimo, J.; Bett, B.; Vrieling, A.; Breiman, R.F.; et al. Predictive factors and risk mapping for Rift Valley fever epidemics in Kenya. PLoS ONE 2016, 11, e0144570. [Google Scholar] [CrossRef] [Green Version]
- Mosomtai, G.; Evander, M.; Sandström, P.; Ahlm, C.; Sang, R.; Hassan, O.A.; Affognon, H.; Landmann, T. Association of ecological factors with Rift Valley fever occurrence and mapping of risk zones in Kenya. Int. J. Infect. Dis. 2016, 46, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Anyamba, A.; Chretien, J.-P.; Small, J.; Tucker, C.J.; Formenty, P.B.; Richardson, J.H.; Britch, S.C.; Schnabel, D.C.; Erickson, R.L.; Linthicum, K.J. Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA 2009, 106, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Manda, H.; Gouagna, L.C.; Nyandat, E.; Kabiru, E.W.; Jackson, R.R.; Foster, W.A.; Githure, J.I.; Beier, J.C.; Hassanali, A. Discriminative feeding behaviour of Anopheles gambiae s.s. on endemic plants in western Kenya. Med. Vet. Entomol. 2007, 21, 103–111. [Google Scholar] [CrossRef]
- Mwangi, E.; Swallow, B. Prosopis juliflora invasion and rural livelihoods in the Lake Baringo area of Kenya. Conserv. Soc. 2008, 6, 130. [Google Scholar]
- Pasiecznik, N.M.; Vall, A.O.M.; Nourissier-Mountou, S.; Danthu, P.; Murch, J.; McHugh, M.J.; Harris, P.J.C. Discovery of a life history shift: Precocious flowering in an introduced population of Prosopis. Biol. Invasions 2006, 8, 1681–1687. [Google Scholar] [CrossRef]
- Harris, P.J.C.; Pasiecznik, N.M.; Smith, S.J.; Billington, J.M.; Ramírez, L. Differentiation of Prosopis juliflora (Sw.) DC and P. pallida (H. & B. ex. Willd.) HBK using foliar characters and ploidy. For. Ecol. Manag. 2003, 180, 153–164. [Google Scholar]
- Sissoko, F.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Dembele, S.M.; Schlein, Y.; Traore, A.S.; Gergely, P.; Xue, R.-D.; et al. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLoS ONE 2019, 14, e0214170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikbakhtzadeh, M.R.; Terbot, J.W.; Foster, W.A. Survival value and sugar access of four East African plant species attractive to a laboratory strain of sympatric Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 2016, 53, 1105–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyasembe, V.O.; Teal, P.E.; Mukabana, W.R.; Tumlinson, J.H.; Torto, B. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Parasit. Vectors 2012, 5, 234. [Google Scholar] [CrossRef] [Green Version]
- Nyasembe, V.O.; Cheseto, X.; Kaplan, F.; Foster, W.A.; Teal, P.E.A.; Tumlinson, J.H.; Borgemeister, C.; Torto, B. The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS ONE 2015, 10, e0137836. [Google Scholar] [CrossRef] [Green Version]
- Gary, R.E.; Foster, W.A. Anopheles gambiae feeding and survival on honeydew and extra-floral nectar of peridomestic plants. Med. Vet. Entomol. 2004, 18, 102–107. [Google Scholar] [CrossRef]
- Leak, S.G.A. Their Role in the Epidemiology and Control of Trypanosomosis; CAB International: Wallingford, UK, 1999. [Google Scholar]
- Nyasembe, V.O.; Tchouassi, D.P.; Pirk, C.W.W.; Sole, C.L.; Torto, B. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl. Trop. Dis. 2018, 12, e0006185. [Google Scholar] [CrossRef]
- Braack, L.; Gouveia de Almeida, A.P.; Cornel, A.J.; Swanepoel, R.; de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasit. Vectors 2018, 11, 29. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Auerswald, H.; Vignuzzi, M.; Dussart, P.; Karlsson, E.A. Taking a bite out of nutrition and arbovirus infection. PLoS Negl. Trop. Dis. 2018, 12, e0006247. [Google Scholar] [CrossRef] [Green Version]
- David, J.P.; Rey, D.; Pautou, M.P.; Meyran, J.C. Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J. Invertebr. Pathol. 2000, 75, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Webster, J.A.; Madzokere, E.T.; Stephenson, E.B.; Herrero, L.J. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection. Parasit. Vectors 2019, 12, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assar, A.A.; el-Sobky, M.M. Biological and histopathological studies of some plant extracts on larvae of Culex pipiens (Diptera: Culicidae). J. Egypt Soc. Parasitol. 2003, 33, 189–200. [Google Scholar] [PubMed]
- Nyasembe, V.O.; Teal, P.E.A.; Sawa, P.; Tumlinson, J.H.; Borgemeister, C.; Torto, B. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake. Curr. Biol. 2014, 24, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Madhu, K.; Vanisree, R.; Devi, Y.P. Study on antibacterial activity of Parthenium hysterophorus L. leaf and flower extracts. J. Sci. Res. Pharm. 2015, 4, 121–124. [Google Scholar]
Scientific Name | Common English Name | Family | Geographical Origin |
---|---|---|---|
A. Aquatic and semi-aquatic plants | |||
Argemone mexicana L. | Mexican poppy | Papaveraceae | Central America and the Caribbean |
Eichhornia crassipes (Mart.) Solms | Water hyacinth | Pontederiaceae | Tropical America |
Mimosa pigra L. | Giant sensitive plant | Leguminosae | Tropical America |
Pistia stratiotes L. | Water lettuce | Araceae | Probably Tropical America |
Salvinia molesta D. S. Mitch. | Giant salvinia | Salviniaceae | Tropical America |
B. Annual herbs and ruderal forbs | |||
Bidens pilosa L. | Blackjack | Compositae | Tropical America |
Datura stramonium L. | Thorn apple | Solanaceae | North America |
Galinsoga parviflora Cav. | Quickweed | Compositae | Central America and the Caribbean |
Parthenium hysterophorus L. | Famine weed | Compositae | Tropical America |
Tagetes minuta L. | Wild marigold | Compositae | South America |
C. Shrubs and trees | |||
Broussonetia papyrifera (L.) L’Hér. ex Vent. | Paper mulberry | Moraceae | Subtropical Asia |
Chromolaena odorata (L.) R. M. King & H. Rob. | Siam weed | Compositae | Tropical America |
Lantana camara L. | Lantana | Verbenaceae | Tropical America |
Prosopis juliflora (Sw.) DC. | Mesquite | Leguminosae | Tropical America |
Psidium guajava L. | Common guava | Myrtaceae | Central America and the Caribbean |
Senna spectabilis (DC.) H.S. Irwin & Barneby | Golden wonder tree | Leguminosae | Tropical America |
D. Succulent plants | |||
Austrocylindropuntia subulata (Muehlenpf.) Backeb. | Long-spine cactus | Cactaceae | Peruvian Andes |
Opuntia ficus-indica (L.) Mill. | Sweet prickly pear | Cactaceae | North America |
Opuntia stricta (Haw.) Haw. | Erect prickly pear | Cactaceae | North America |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agha, S.B.; Alvarez, M.; Becker, M.; Fèvre, E.M.; Junglen, S.; Borgemeister, C. Invasive Alien Plants in Africa and the Potential Emergence of Mosquito-Borne Arboviral Diseases—A Review and Research Outlook. Viruses 2021, 13, 32. https://doi.org/10.3390/v13010032
Agha SB, Alvarez M, Becker M, Fèvre EM, Junglen S, Borgemeister C. Invasive Alien Plants in Africa and the Potential Emergence of Mosquito-Borne Arboviral Diseases—A Review and Research Outlook. Viruses. 2021; 13(1):32. https://doi.org/10.3390/v13010032
Chicago/Turabian StyleAgha, Sheila B., Miguel Alvarez, Mathias Becker, Eric M. Fèvre, Sandra Junglen, and Christian Borgemeister. 2021. "Invasive Alien Plants in Africa and the Potential Emergence of Mosquito-Borne Arboviral Diseases—A Review and Research Outlook" Viruses 13, no. 1: 32. https://doi.org/10.3390/v13010032