Endocrine Dysfunction in Children with Zika-Related Microcephaly Who Were Born during the 2015 Epidemic in the State of Pernambuco, Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miranda-Filho, D.; Martelli, C.M.T.; Ximenes, R.A.; Araújo, T.V.B.; Rocha, M.A.W.; Ramos, R.C.F.; Dhalia, R.; França, R.F.; Júnior, E.T.M.; Cunha, L. Rodrigues Initial Description of the presumed congenital Zika Syndrome. Am. J. Public Health 2016, 106, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Hazin, A.N.; Poretti, A.; Cruz, D.S.; Tenorio, M.; van der Linden, A.; Pena, L.J.; Brito, C.; Gil, L.H.V.; Miranda-Filho, D.; Marques, E.T.; et al. Computed Tomographic Findings in Microcephaly Associated with Zika Virus. N. Engl. J. Med. 2016, 374, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Staples, J.E.; Dobyns, W.B.; Pessoa, A.; Ventura, C.V.; Da Fonseca, E.B.; Rasmussen, S.A. Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr. 2017, 171, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, A.F. Differential diagnosis of pathological intracranial calcifications in patients with microcephaly related to congenital Zika virus infection. Radiol. Bras. 2018, 51, 270–271. [Google Scholar] [CrossRef]
- Aragão, M.F.V.; van der Linden, V.; Brainer-Lima, A.M.; Coeli, R.R.; Rocha, M.A.; da Silva, P.S.; de Carvalho, M.D.C.G.; van der Linden, A.; de Holanda, A.C.; Valenca, M.M. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: Retrospective case series study. BMJ 2016, 353, i1901. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.V.; Maia, M.; Ventura, B.V.; van der Linden, V.; Araújo, E.B.; Ramos, R.C.; Rocha, M.A.W.; Carvalho, M.D.C.G.; Belfort, R., Jr.; Ventura, L.O. Ophthalmological findings in infants with microcephaly and presumable intra-uterus Zika virus infection. Arq. Bras. Oftalmol. 2016, 79, 1–3. [Google Scholar] [CrossRef]
- Alt, C.; Shevell, M.I.; Poulin, C.; Rosenblatt, B.; Saint-Martin, C.; Srour, M. Clinical and Radiologic Spectrum of Septo-optic Dysplasia: Review of 17 Cases. J. Child Neurol. 2017, 32, 797–803. [Google Scholar] [CrossRef]
- Costin, G.; Murphree, A.L. Hypothalamic-pituitary function in children with optic nerve hypoplasia. Am. J. Dis. Child. 1985, 139, 249–254. [Google Scholar] [CrossRef]
- Lohmüller, R.; Gangloff, A.S.; Wenzel, F.; Lagrèze, W.A. Optic nerve hypoplasia and septo-optic dysplasia. Ophthalmologe 2017, 114, 759–766. [Google Scholar] [CrossRef]
- Koizumi, M.; Ida, S.; Shoji, Y.; Etani, Y.; Hatsukawa, Y.; Okamoto, N. Endocrine status of patients with septo-optic dysplasia: Fourteen Japanese cases. Clin. Pediatr. Endocrinol. 2017, 26, 89–98. [Google Scholar] [CrossRef]
- Toizumi, M.; Vo, H.M.; Dang, D.A.; Moriuchi, H.; Yoshida, L. Clinical manifestations of congenital rubella syndrome: A review of our experience in Vietnam. Vaccine 2019, 37, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Clarke, W.L.; Shaver, K.A.; Bright, G.M.; Rogol, A.D.; Nance, W.E. Autoimmunity in congenital rubella syndrome. J. Pediatr. 1984, 104, 370–373. [Google Scholar] [CrossRef]
- Mena, W.; Royal, S.; Pass, R.F.; Whitley, R.J.; Philips, J.B. Diabetes insipidus associated with symptomatic congenital cytomegalovirus infection. J. Pediatr. 1993, 122, 911–913. [Google Scholar] [CrossRef]
- Hirano, T.; Jogamoto, M.; Chin, I. Syndrome of resistance to thyroid hormone in an infant with congenital cytomegalovirus infection. Acta Paediatr. Jpn. 1989, 31, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Chimelli, L.; Melo, A.S.O.; Avvad-Portari, E.; Wiley, C.A.; Camacho, A.H.S.; Lopes, V.S.; Machado, H.N.; Andrade, C.V.; Dock, D.C.A.; Moreira, M.E.; et al. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol. 2017, 133, 983–999. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Cui, X.Y.; Yang, W.; Fan, D.Y.; Liu, D.; Wang, P.G.; An, J. Zika Virus Infection in Hypothalamus Causes Hormone Deficiencies and Leads to Irreversible Growth Delay and Memory Impairment in Mice. Cell Rep. 2018, 25, 1537–1547. [Google Scholar] [CrossRef] [Green Version]
- Trus, I.; Darbellay, J.; Huang, Y.; Gilmour, M.; Safronetz, D.; Gerdts, V.; Karniychuk, U. Persistent Zika virus infection in porcine conceptuses is associated with elevated in utero cortisol levels. Virulence 2018, 9, 1338–1343. [Google Scholar] [CrossRef] [Green Version]
- WHO Anthro for Personal Computers, Version 3.2.2, 2011: Software for Assessing Growth and Development of the World’s Children; WHO: Geneva, Switzerland, 2010; Available online: http://www.who.int/childgrowth/software/en/ (accessed on 22 June 2019).
- Obesity and Overweight. Charts and Tables: WHO Child Gowth Standards for Children Aged under 5 Years. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 June 2019).
- Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes Brasileiras de Obesidade. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica, 4th ed.; Diagnóstico e tratamento da obesidade em crianças e adolescents: São Paulo, Brazil, 2016; pp. 129–158. [Google Scholar]
- Carel, J.C.; Léger, J. Clinical practice. Precocious puberty. N. Engl. J. Med. 2008, 358, 2366–2377. [Google Scholar] [CrossRef]
- Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Rus, K.R.; Vipotnik, T.V.; Vodušek, V.F.; et al. Zika virus associated with microcephaly. N. Engl. J. Med. 2016, 374, 951–958. [Google Scholar] [CrossRef]
- Driggers, R.W.; Ho, C.Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef]
- Wu, J.; Huang, D.; Ma, J.T.; Ma, Y.H.; Hu, Y.F. Available Evidence of Association between Zika Virus and Microcephaly. Chin. Med. J. 2016, 129, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Cavarzere, P.; Mauro, M.; Vincenzi, M.; Lauriola, S.; Teofoli, F.; Gaudino, R.; Ramaroli, D.A.; Micciolo, R.; Camilot, M.; Antoniazzi, F. Children with premature pubarche: Is an alterated neonatal 17-Ohp screening test a predictive factor? Ital. J. Pediatr. 2018, 44, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancho Rodríguez, M.L.; Bueno Lozano, G.; Labarta Aizpún, J.I.; de Arriba Muñoz, A. Natural progression of premature pubarche and underlying diseases. An. Pediatr. 2018, 89, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Liimatta, J.; Utriainen, P.; Voutilainen, R.; Jääskeläinen, J. Trajectories of growth and serum DHEAS and IGF-1 concentrations in girls with a history of premature adrenarche: Attenuation of the phenotype by adulthood. Front. Endocrinol. 2018, 9, 375. [Google Scholar] [CrossRef]
- Cemeroglu, A.P.; Coulas, T.; Kleis, L. Spectrum of clinical presentations and endocrinological findings of patients with septo-optic dysplasia: A retrospective study. J. Pediatr. Endocrinol. Metab. 2015, 28, 1057–1063. [Google Scholar] [CrossRef]
- Khaper, T.; Bunge, M.; Clark, I.; Rafay, M.F.; Mhanni, A.; Kirouac, N.; Sharma, A.; Rodd, C.; Wicklow, B. Increasing incidence of optic nerve hypoplasia /septo-optic dysplasia spectrum: Geographic clustering in Northern Canada. Paediatr. Child Health 2017, 22, 445–453. [Google Scholar] [CrossRef]
- Fard, M.A.; Wu-Chen, W.Y.; Man, B.L.; Miller, N.R. Septo-optic dysplasia. Pediatr. Endocrinol. Rev. 2010, 8, 18–24. [Google Scholar]
- Cerbone, M.; Dattani, M.T. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency. Growth Horm. IGF Res. 2017, 37, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Birkebaek, N.H.; Patel, L.; Wright, N.B.; Grigg, J.R.; Sinha, S.; Hall, C.M.; Price, D.A.; Lloyd, I.C.; Clayton, P.E. Endocrine status in patients with optic nerve hypoplasia: Relationship to midline central nervoussystem abnormalities and appearance of the hypothalamic–pituitary axis on Magnetic resonance imaging. J. Clin. Endocrinol. Metab. 2003, 88, 5281–5286. [Google Scholar] [CrossRef]
- Zanelli, S.A.; Rogol, A.D. Short children born small for gestational age outcomes in the era of growth hormone therapy. Growth Horm. IGF Res. 2018, 38, 8–13. [Google Scholar] [CrossRef]
- Cho, W.K.; Suh, B.K. Catch-up growth and catch-up fat in children born small for gestational age. Korean J. Pediatr. 2016, 59, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wierman, M.E.; Beardsworth, D.E.; Crawford, J.D.; Crigler, J.F., Jr.; Mansfield, M.J.; Bode, H.H.; Boepple, P.A.; Kushner, D.C.; Crowley, W.F., Jr. Adrenarche and skeletal maturation during luteinizing hormone releasing hormone analogue suppression of gonadarche. J. Clin. Investig. 1986, 77, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Petraitienė, I.; Valūnienė, M.; Albertsson-Wikland, K.; Verkauskienė, R. Adrenal Function in Adolescence is Related to Intrauterine and Postnatal Growth. Medicina 2019, 55, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, I.; de Zegher, F. Adrenarche and fetal growth. Pediatr. Res. 1997, 41, 440–442. [Google Scholar] [CrossRef] [Green Version]
- Imdad, A.; Bhutta, Z.A. Global micronutrient deficiencies in childhood and impact on growth and survival: Challenges and opportunities. Nestle Nutr. Inst. Workshop Ser. 2012, 70, 1–10. [Google Scholar]
- Haschke, F.; Binder, C.; Huber-Dang, L.M.; Haiden, N. Early–Life Nutrition, Growth trajectories, and Long-Term Outcome. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 107–120. [Google Scholar]
- Abaci, A.; ÇatlI, G.; Anik, A.; Böber, E. Epidemiology, Classification and Management of Undescended Testes: Does Medication Have Value in its Treatment? J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 65–72. [Google Scholar]
- Husmann, D.A.; Levy, J.B. Current concepts in the pathophysiology of testicular undescent. Urology 1995, 46, 267–276. [Google Scholar] [CrossRef]
- Hadziselimovic, F. On the descent of the epididymo-testicular unit, cryptorchidism, and prevention of infertility. Basic Clin. Androl. 2017, 27, 21. [Google Scholar] [CrossRef]
- Barthold, J.S.; Wintner, A.; Hagerty, J.A.; Rogers, K.J.; Hossain, M.J. Cryptorchidism in boys with Cerebral Palsy Is Associated with the Severity of Disease and with Co-Occurrence of Other Congenital Anomalies. Front. Endocrinol. 2018, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.M. Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 2015, 21, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Foy, B.D.; Kobylinski, K.C.; Foy, J.L.C.; Blitvich, B.J.; da Rosa, A.T.; Haddow, A.D.; Lanciotti, R.S.; Tesh, R.B. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg. Infect. Dis. 2011, 17, 880–882. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, R.A.L.; Ximenes, R.A.A.; Calado, A.A.; Martelli, C.M.T.; Gonçalves, A.V.; Brickley, E.B.; de Araújo, T.V.B.; Rocha, M.A.W.; Miranda-Filho, D. Cryptorchidism in Children with Zika486 Related Microcephaly. Am. J. Trop. Med. Hyg. 2020, 102, 982–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, M.; Sinha, M.K.; Das, M.K.; Sarkar, S. Van Wyk-Grumbach syndrome with hemangioma in an infant. J. Pediatr. Endocrinol. Metab. 2018, 31, 1057–1060. [Google Scholar] [CrossRef]
- Reddy, P.; Tiwari, K.; Kulkarni, A.; Parikh, K.; Khubchandani, R. Van Wyk Grumbach Syndrome: A Rare Consequence of Hypothyroidism. Indian J. Pediatr. 2018, 85, 1028–1030. [Google Scholar] [CrossRef]
- Desailloud, R.; Hober, D. Viruses and thyroiditis: An update. Virol. J. 2009, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Rabinowe, S.L.; George, K.L.; Loughlin, R.; Soeldner, J.S.; Eisenbarth, G.S. Congenital rubella monoclonal antibody-defined T cell Abnormalities in young adults. Am. J. Med. 1986, 81, 779–782. [Google Scholar] [CrossRef]
- Svalheim, S.; Sveberg, L.; Mochol, M.; Taubøll, E. Interactions between antiepileptic drugs and hormones. Seizure 2015, 28, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Vainionpää, L.K.; Mikkonen, K.; Rättyä, J.; Knip, M.; Pakarinen, A.J.; Myllylä, V.V.; Isojärvi, J.I.T. Thyroid function in girls with epilepsy with carbamazepine, oxcarbazepine, or valproate monotherapy and after withdrawal of medication. Epilepsia 2004, 45, 197–203. [Google Scholar] [CrossRef]
- Kim, S.H.; Chung, H.R.; Kim, S.H.; Kim, H.; Lim, B.C.; Chae, J.H.; Kim, K.J.; Hwang, Y.S.; Hwang, H. Subclinical hypothyroidism during valproic acid therapy in children and adolescents with epilepsy. Neuropediatrics 2012, 43, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Verrotti, A.; Mencaroni, E.; Cofini, M.; Castagnino, M.; Leo, A.; Russo, E.; Belcastro, V. Valproic Acid Metabolism and its Consequences on Sexual Functions. Curr. Drug Metab. 2016, 17, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; D’Egidio, C.; Mohn, A.; Coppola, G.; Parisi, P.; Chiarelli, F. Antiepileptic drugs, sex hormones, and PCOS. Epilepsia 2011, 52, 199–211. [Google Scholar] [CrossRef] [PubMed]
Parameters | Values | |
---|---|---|
Age, sex distribution and anthropometric characteristics | ||
Age at diagnosis (Months) | 41.66 | (±1.29) |
z-score current head circumference | −5.89 | (±1.84) |
Sex [female (%)/male (%)] | 16/14 | [(53.33)/(46.67)] |
Weight (kg) | 14.608 | (±3.941) |
Height (cm) | 92.6 | (±4.40) |
Height standard deviation score | −1.70 | (±1.26) |
Body mass index (kg/m2) | 16.79 | (±3.98) |
Body mass index standard deviation score | 1.07 | (±2.63) |
z-score for head circumference at birth | −3.95 | (±1.93) |
Neurological characteristics | ||
Seizure | 26/30 | 86.6% |
Electroencephalogram without abnormalities | 2/27 | 7% |
Electroencephalogram abnormalities: | ||
Focal epileptiform | 10/27 | 37% |
Multifocal epileptiform | 7/27 | 26% |
Generalized epileptiform | 5/27 | 19% |
Multifocal and generalized epileptiform | 2/27 | 7% |
Focal and generalized epileptiform | 1/27 | 4% |
Neurological abnormalities | 23/23 | 100% |
Signs of pyramidal release | 23/23 | 100% |
Altered tone | 22/23 | 96% |
Localized motor deficit | 1/23 | 4% |
Inadequate visual response | 18/23 | 30% |
Inadequate auditory response | 7/23 | 30% |
Brain Magnetic Resonance Imaging | 21/30 | 70% |
Hypoplasia of corpus callosum | 20/21 | 95% |
Altered pituitary image | 4/20 | 20% |
Hypoplasia of optic nerve | 6/21 | 28.6% |
Nystagmus | 19/30 | 63.3% |
Endocrine Dysfunction | N | % |
---|---|---|
Early puberty, pubarche, adrenarche | 8 | 26.67% |
Short stature | 5 | 16.67% |
Hypothyroidism | 2 | 6.67% |
Obesity | 2 | 6.67% |
Early puberty + hypothyroidism | 4 | 13.33% |
Early puberty + short stature | 3 | 10% |
Short stature + hypothyroidism | 1 | 3.33% |
Short stature + adrenal insufficiency Early puberty + obesity + short stature | 1 2 | 3.33% 6.67% |
Early puberty + obesity + adrenal insufficiency Early puberty + obesity + hypothyroidism | 1 1 | 3.33% 3.33% |
Total | 30 | 100% |
Case | Sex | HC at Birth | HC | BMI | Height SDS | Tanner | LH | SDHEA | TSH | T4 Free | IGF−1 | Glucose | Cortisol |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Early puberty variants | |||||||||||||
1 | F | −4.96 | −6.28 | 1.24 | −0.89 | M1P3 | 0.1 | 18 | 2.62 | 1.39 | 295 | 87 | 17.2 |
2 | M | NI | −6.19 | 0.22 | −1.61 | G1P1 | 0.1 | 49 | 4.08 | 1.47 | 186.8 | 89 | 8.3 |
3 | M | −4.69 | −6.14 | 1.86 | −0.34 | G1P2 | 0.1 | 72 | 1.4 | 1.34 | 247.7 | 95 | 13 |
4 | F | −2.43 | −5.24 | 0.57 | −0.6 | M1P2 | 0.1 | 29 | 4.24 | 1.01 | 218.8 | 80 | 5.4 |
5 | F | −2.85 | −2.61 | −1.1 | 1.97 | M1P2 | 0.58 | 3 | 2.23 | 1.52 | 172.1 | 84 | 4.8 |
6 | F | −2.01 | −4.96 | 0.05 | −0.58 | M1P2 | 0.1 | 7 | 4.36 | 1.21 | 226.9 | 90 | 13.6 |
7 | M | −4.3 | −5.1 | 1.79 | −0.83 | G1P2 | 0.1 | 9 | 3.68 | 0.92 | 178.8 | 95 | 7.6 |
8 | M | −6.88 | −8,89 | −2.72 | −1.46 | G1P1 | 0.1 | 59 | 1.99 | 1.42 | 147.3 | 99 | 9.7 |
Short stature | |||||||||||||
9 | F | −3.27 | −6.31 | −2.87 | −2.36 | M1P1 | 0.1 | 30 | 3.24 | 1.2 | 146.1 | 85 | 20.4 |
10 | M | −5.94 | −4.11 | −1.77 | −3.79 | G1P1 | 0.1 | 12 | 1.81 | 1.23 | 160.4 | 74 | 8.1 |
11 | M | NI | −9.21 | 0.98 | −2.95 | G1P1 | 0.1 | 13 | 1.99 | 1.25 | 187.7 | 89 | 6.4 |
12 | F | −4.96 | −6.26 | −1.18 | −2.81 | M1P1 | 0.1 | 18 | 5.07 | 1.85 | 196.2 | 85 | 6.2 |
13 | F | −4.12 | −6.26 | 0.11 | −3.44 | M1P1 | 0.1 | 2 | 1.84 | 1.28 | 230.1 | 87 | 7.9 |
Hypothyroidism | |||||||||||||
14 | F | −1.59 | −4.89 | −1.24 | 0.02 | M1P1 | 0.1 | 1 | 7.69 | 1.43 | 165.2 | 86 | 7.1 |
15 | F | −3.07 | −3.41 | −0.83 | −0.84 | M1P1 | 0.1 | 6 | 9.55 | 1.5 | 85.4 | 81 | 13 |
Obesity | |||||||||||||
16 | F | −4.54 | −5.66 | 3.48 | −1.78 | M1P1 | 0.1 | 6 | 6.26 | 1.18 | 261.1 | 89 | 9.6 |
17 | M | −5.09 | −3.96 | 4.84 | −1.2 | G1P1 | 0.1 | 11 | 1.05 | 1.44 | 75.2 | 111 | 5.6 |
18 | M | −4.3 | −5.09 | 7.04 | −1.55 | G1P1 | 0.1 | 12 | 2.23 | 1.2 | 216.7 | 81 | 24 |
Hypothyroidism and Variants of Early Puberty | |||||||||||||
19 | F | −4.12 | −4.91 | 2.36 | −0.9 | M1P2 | 0.1 | 8 | 9.86 | 1.28 | 71.7 | 73 | 4.1 |
20 | M | −3.12 | −4.14 | 2.47 | −0.7 | G1P1 | 0.36 | 3 | 4.69 | 1.35 | 95.5 | 83 | 6.4 |
21 | M | −3.51 | −6.48 | 0.22 | −1.57 | G1P1 | 1.22 | 25 | 13.6 | 1.42 | 91 | 80 | 9.8 |
22 | M | NI | −4.1 | 2.33 | −1.51 | G1P1 | 0.58 | 17 | 6.14 | 1.24 | 153.5 | 82 | 12.9 |
Short stature and Variants of Early Puberty | |||||||||||||
23 | M | −1.62 | −5.48 | −2.07 | −2.77 | G1P1 | 0.3 | 14 | 4.45 | 1.43 | 254.2 | 91 | 5 |
24 | F | −4.96 | −7.33 | −0.05 | −3.19 | M1P2 | 0.1 | 11 | 3.3 | 1.41 | 269.4 | 94 | |
25 | F | −4.12 | −7.32 | 1.03 | −2.21 | M1P2 | 0.1 | 76 | 1.48 | 1.38 | 229.3 | 88 | 4.7 |
Short stature and adrenal insufficiency | |||||||||||||
26 | F | −1.59 | −3.77 | 0.28 | −2.89 | M1P1 | 0.1 | 0 | 3.59 | 1 | 194.9 | 81 | 1.5 |
Short stature and Hypothyroidism | |||||||||||||
27 | M | NI | −8.22 | −3.45 | −2.84 | G1P1 | 0.1 | 18 | 5.81 | 1.21 | 195 | 86 | 7.8 |
Obesity, Variants of Early Puberty and adrenal insufficiency | |||||||||||||
28 | F | −6.65 | −10.5 | 7.78 | −1.46 | M1P2 | 0.1 | 3 | 4.48 | 1.3 | 199.1 | 85 | 0.4 |
Obesity and Variants of Early Puberty | |||||||||||||
29 | M | −3.91 | −5.42 | 3.03 | −2.37 | G1P1 | 0.35 | 1 | 3.84 | 0.88 | 175.1 | 94 | 6.4 |
30 | F | NI | −8.52 | 3.63 | −3.72 | M1P1 | 0.1 | 45 | 2.08 | 1.22 | 195 | 81 | 8.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veras Gonçalves, A.; Miranda-Filho, D.d.B.; Rocha Vilela, L.C.; Ramos, R.C.F.; de Araújo, T.V.B.; de Vasconcelos, R.A.L.; Wanderley Rocha, M.A.; Eickmann, S.H.; Cordeiro, M.T.; Ventura, L.O.; et al. Endocrine Dysfunction in Children with Zika-Related Microcephaly Who Were Born during the 2015 Epidemic in the State of Pernambuco, Brazil. Viruses 2021, 13, 1. https://doi.org/10.3390/v13010001
Veras Gonçalves A, Miranda-Filho DdB, Rocha Vilela LC, Ramos RCF, de Araújo TVB, de Vasconcelos RAL, Wanderley Rocha MA, Eickmann SH, Cordeiro MT, Ventura LO, et al. Endocrine Dysfunction in Children with Zika-Related Microcephaly Who Were Born during the 2015 Epidemic in the State of Pernambuco, Brazil. Viruses. 2021; 13(1):1. https://doi.org/10.3390/v13010001
Chicago/Turabian StyleVeras Gonçalves, Andréia, Demócrito de B. Miranda-Filho, Líbia Cristina Rocha Vilela, Regina Coeli Ferreira Ramos, Thalia V. B. de Araújo, Rômulo A. L. de Vasconcelos, Maria Angela Wanderley Rocha, Sophie Helena Eickmann, Marli Tenório Cordeiro, Liana O. Ventura, and et al. 2021. "Endocrine Dysfunction in Children with Zika-Related Microcephaly Who Were Born during the 2015 Epidemic in the State of Pernambuco, Brazil" Viruses 13, no. 1: 1. https://doi.org/10.3390/v13010001