Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex
Abstract
:1. Introduction
2. N Protein Structure and Function
3. M-Protein Structure and Function
4. P-Protein Structure and Function
5. L-Protein Structure and Function
6. Assembly of the RNP
7. Morphology of the RNP in Virions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baquero, E.; Albertini, A.A.; Gaudin, Y. Recent mechanistic and structural insights on class III viral fusion glycoproteins. Curr. Opin. Struct. Biol. 2015, 33, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Green, T.J.; Zhang, X.; Tsao, J.; Qiu, S. Conserved characteristics of the rhabdovirus nucleoprotein. Virus Res. 2007, 129, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.C.; Assenberg, R.; Delmas, O.; Verma, A.; Gholami, A.; Talbi, C.; Owens, R.J.; Stuart, D.I.; Grimes, J.M.; Bourhy, H. Rhabdovirus Matrix Protein Structures Reveal a Novel Mode of Self-Association. PLoS Pathog. 2008, 4, e1000251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, P.; Tsao, J.; Schein, S.; Green, T.J.; Luo, M.; Zhou, Z.H. Cryo-EM Model of the Bullet-Shaped Vesicular Stomatitis Virus. Science 2010, 327, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Newcomb, W.W.; Brown, J.C.; Wall, J.S.; Hainfeld, J.F.; Trus, B.L.; Steven, A.C. Mass and molecular composition of vesicular stomatitis virus: A scanning transmission electron microscopy analysis. J. Virol. 1985, 54, 598–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Li, Z.; Jenni, S.; Rahmeh, A.A.; Morin, B.M.; Grant, T.; Grigorieff, N.; Harrison, S.C.; Whelan, S.P.J. Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy. Cell 2015, 162, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Kremer, J.R.; Mastronarde, D.N.; McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996, 116, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Green, T.J.; Zhang, X.; Wertz, G.W.; Luo, M. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 2006, 313, 357–360. [Google Scholar] [CrossRef]
- Albertini, A.A.V.; Wernimont, A.K.; Muziol, T.; Ravelli, R.B.G.; Clapier, C.R.; Schoehn, G.; Weissenhorn, W.; Ruigrok, R.W.H. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 2006, 313, 360–363. [Google Scholar] [CrossRef]
- Quan, B.; Seo, H.S.; Blobel, G.; Ren, Y. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1•Nup98). Proc. Natl. Acad. Sci. USA 2014, 111, 9127–9132. [Google Scholar] [CrossRef] [Green Version]
- Gaudier, M.; Gaudin, Y.; Knossow, M. Crystal structure of vesicular stomatitis virus matrix protein. EMBO J. 2002, 21, 2886–2892. [Google Scholar] [CrossRef]
- Newcomb, W.W.; Brown, J.C. Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions. J. Virol. 1981, 39, 295–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newcomb, W.W.; Tobin, G.J.; McGowan, J.J.; Brown, J.C. In vitro reassembly of vesicular stomatitis virus skeletons. J. Virol. 1982, 41, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebatsion, T.; Weiland, F.; Conzelmann, K.-K. Matrix Protein of Rabies Virus Is Responsible for the Assembly and Budding of Bullet-Shaped Particles and Interacts with the Transmembrane Spike Glycoprotein, G. J. Virol. 1999, 73, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Zakowski, J.J.; Wagner, R.R.; Petri, W.A. Role of Matrix Protein in Assembling the Membrane of Vesicular Stomatitis Virus: Reconstitution of Matrix Protein with Negatively Charged Phospholipid Vesicles. Biochemistry 1981, 20, 3902–3907. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.D.; Rose, J.K. Membrane association of functional vesicular stomatitis virus matrix protein in vivo. J. Virol. 1993, 67, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Mebatsion, T.; König, M.; Conzelmann, K.-K. Budding of Rabies Virus Particles in the Absence of the Spike Glycoprotein. Cell 1996, 84, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Robison, C.S.; Whitt, M.A. The Membrane-Proximal Stem Region of Vesicular Stomatitis Virus G Protein Confers Efficient Virus Assembly. J. Virol. 2000, 74, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Harty, R.N.; Paragas, J.; Sudol, M.; Palese, P. A Proline-Rich Motif within the Matrix Protein of Vesicular Stomatitis Virus and Rabies Virus Interacts with WW Domains of Cellular Proteins: Implications for Viral Budding. J. Virol. 1999, 73, 2921–2929. [Google Scholar] [CrossRef] [Green Version]
- Wirblich, C.; Tan, G.S.; Papaneri, A.; Godlewski, P.J.; Orenstein, J.M.; Harty, R.N.; Schnell, M.J. PPEY Motif within the Rabies Virus (RV) Matrix Protein Is Essential for Efficient Virion Release and RV Pathogenicity. J. Virol. 2008, 82, 9730–9738. [Google Scholar] [CrossRef] [Green Version]
- Jayakar, H.R.; Murti, K.G.; Whitt, M.A. Mutations in the PPPY Motif of Vesicular Stomatitis Virus Matrix Protein Reduce Virus Budding by Inhibiting a Late Step in Virion Release. J. Virol. 2000, 74, 9818–9827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, G.M.; Hanson, P.I.; Kielian, M. Ubiquitin Depletion and Dominant-Negative VPS4 Inhibit Rhabdovirus Budding without Affecting Alphavirus Budding. J. Virol. 2007, 81, 13631–13639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harty, R.N.; Brown, M.E.; McGettigan, J.P.; Wang, G.; Jayakar, H.R.; Huibregtse, J.M.; Whitt, M.A.; Schnell, M.J. Rhabdoviruses and the Cellular Ubiquitin-Proteasome System: A Budding Interaction. J. Virol. 2001, 75, 10623–10629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soh, T.K.; Whelan, S.P.J. Tracking the Fate of Genetically Distinct Vesicular Stomatitis Virus Matrix Proteins Highlights the Role for Late Domains in Assembly. J. Virol. 2015, 89, 11750–11760. [Google Scholar] [CrossRef] [Green Version]
- Raux, H.; Obiang, L.; Richard, N.; Harper, F.; Blondel, D.; Gaudin, Y. The Matrix Protein of Vesicular Stomatitis Virus Binds Dynamin for Efficient Viral Assembly. J. Virol. 2010, 84, 12609–12618. [Google Scholar] [CrossRef] [Green Version]
- Chong, L.D.; Rose, J.K. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids. J. Virol. 1994, 68, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Lenard, J.; Vanderoef, R. Localization of the membrane-associated region of vesicular stomatitis virus M protein at the N terminus, using the hydrophobic, photoreactive probe 125I-TID. J. Virol. 1990, 64, 3486–3491. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Sun, W.; Suryanarayana, K.; Justice, P.; Robinson, D.; Wagner, R.R. Membrane-binding domains and cytopathogenesis of the matrix protein of vesicular stomatitis virus. J. Virol. 1994, 68, 7386–7396. [Google Scholar] [CrossRef] [Green Version]
- Von Kobbe, C.; Van Deursen, J.M.A.; Rodrigues, J.P.; Sitterlin, D.; Bachi, A.; Wu, X.; Wilm, M.; Carmo-Fonseca, M.; Izaurralde, E. Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol. Cell 2000, 6, 1243–1252. [Google Scholar] [CrossRef]
- Faria, P.A.; Chakraborty, P.; Levay, A.; Barber, G.N.; Ezelle, H.J.; Enninga, J.; Arana, C.; Van Deursen, J.; Fontoura, B.M.A. VSV disrupts the Rae1/mrnp41 mRNA nuclear export pathway. Mol. Cell 2005, 17, 93–102. [Google Scholar] [CrossRef]
- Rajani, K.R.; Pettit Kneller, E.L.; McKenzie, M.O.; Horita, D.A.; Chou, J.W.; Lyles, D.S. Complexes of Vesicular Stomatitis Virus Matrix Protein with Host Rae1 and Nup98 Involved in Inhibition of Host Transcription. PLoS Pathog. 2012, 8, e1002929. [Google Scholar] [CrossRef] [PubMed]
- Welnowska, E.; Castelló, A.; Moral, P.; Carrasco, L. Translation of mRNAs from Vesicular Stomatitis Virus and Vaccinia Virus Is Differentially Blocked in Cells with Depletion of eIF4GI and/or eIF4GII. J. Mol. Biol. 2009, 394, 506–521. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.H.; Lyles, D.S. Vesicular Stomatitis Virus Infection Alters the eIF4F Translation Initiation Complex and Causes Dephosphorylation of the eIF4E Binding Protein 4E-BP1. J. Virol. 2002, 76, 10177–10187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, J.H.; Lyles, D.S. Inhibition of host and viral translation during vesicular stomatitis virus infection: eIF2 is responsible for the inhibition of viral but not host translation. J. Biol. Chem. 2005, 280, 13512–13519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neidermyer, W.J.; Whelan, S.P.J. Global analysis of polysome-associated mRNA in vesicular stomatitis virus infected cells. PLoS Pathog. 2019, 15, e1007875. [Google Scholar] [CrossRef]
- Beilstein, F.; Obiang, L.; Raux, H.; Gaudin, Y. Characterization of the Interaction between the Matrix Protein of Vesicular Stomatitis Virus and the Immunoproteasome Subunit LMP2. J. Virol. 2015, 89, 11019–11029. [Google Scholar] [CrossRef] [Green Version]
- Leyrat, C.; Yabukarski, F.; Tarbouriech, N.; Ribeiro, E.A.; Jensen, M.R.; Blackledge, M.; Ruigrok, R.W.H.; Jamin, M.; Jamin, M. Structure of the vesicular stomatitis virus N0-P complex. PLoS Pathog. 2011, 7, e1002248. [Google Scholar] [CrossRef]
- Leyrat, C.; Jensen, M.R.; Ribeiro, E.A.; Gérard, F.C.A.; Ruigrok, R.W.H.; Blackledge, M.; Jamin, M. The N 0 -binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient α-helices. Protein Sci. 2011, 20, 542–556. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, N.E.; Leyrat, C.; Gérard, F.C.; Bourhis, J.M.; Blondel, D.; Jamin, M.; Barbar, E. The LC8-RavP ensemble Structure Evinces A Role for LC8 in Regulating Lyssavirus Polymerase Functionality. J. Mol. Biol. 2019, 431, 4959–4977. [Google Scholar] [CrossRef]
- Jenni, S.; Bloyet, L.-M.; Diaz-Avalos, R.; Liang, B.; Whelan, S.P.J.; Grigorieff, N.; Harrison, S.C. Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Cell Rep. 2020, 30, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, J.A.; Jenni, S.; Harrison, S.C.; Whelan, S.P.J. Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, J.R.; Qiu, S.; Shang, Q.; Ogino, T.; Prevelige, P.E.; Petit, C.M.; Green, T.J. The Connector Domain of Vesicular Stomatitis Virus Large Protein Interacts with the Viral Phosphoprotein. J. Virol. 2020, 94. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Green, T.J.; Lu, S.; Luo, M. Crystal Structure of the Oligomerization Domain of the Phosphoprotein of Vesicular Stomatitis Virus. J. Virol. 2006, 80, 2808–2814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, I.; Crépin, T.; Jamin, M.; Ruigrok, R.W.H. Structure of the Dimerization Domain of the Rabies Virus Phosphoprotein. J. Virol. 2010, 84, 3707–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, E.A.; Favier, A.; Gerard, F.C.A.; Leyrat, C.; Brutscher, B.; Blondel, D.; Ruigrok, R.W.H.; Blackledge, M.; Jamin, M. Solution Structure of the C-Terminal Nucleoprotein-RNA Binding Domain of the Vesicular Stomatitis Virus Phosphoprotein. J. Mol. Biol. 2008, 382, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Mavrakis, M.; McCarthy, A.A.; Roche, S.; Blondel, D.; Ruigrok, R.W.H. Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus. J. Mol. Biol. 2004, 343, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Gerard, F.C.A.; Ribeiro, E.D.A.; Albertini, A.A.V.; Gutsche, I.; Zaccai, G.; Ruigrok, R.W.H.; Jamin, M. Unphosphorylated Rhabdoviridae phosphoproteins form elongated dimers in solution. Biochemistry 2007, 46, 10328–10338. [Google Scholar] [CrossRef]
- Leyrat, C.; Ribeiro, E.A.; Gérard, F.C.A.; Ivanov, I.; Ruigrok, R.W.H.; Jamin, M. Structure, interactions with host cell and functions of rhabdovirus phosphoprotein. Future Virol. 2011, 6, 465–481. [Google Scholar] [CrossRef]
- Chenik, M.; Chebli, K.; Blondel, D. Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J. Virol. 1995, 69, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Kretzschmar, E.; Peluso, R.; Schnell, M.J.; Whitt, M.A.; Rose, J.K. Normal replication of vesicular stomatitis virus without C proteins. Virology 1996, 216, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Spiropoulou, C.F.; Nichol, S.T. A small highly basic protein is encoded in overlapping frame within the P gene of vesicular stomatitis virus. J. Virol. 1993, 67, 3103–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barik, S.; Banerjee, A.K. Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation. J. Virol. 1992, 66, 1109–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Blondel, D.; Choudhary, S.; Banerjee, A.K. The Phosphoprotein of Rabies Virus Is Phosphorylated by a Unique Cellular Protein Kinase and Specific Isomers of Protein Kinase, C. J. Virol. 2000, 74, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavrakis, M.; Iseni, F.; Mazza, C.; Schoehn, G.; Ebel, C.; Gentzel, M.; Franz, T.; Ruigrok, R.W.H. Isolation and characterisation of the rabies virus N°-P complex produced in insect cells. Virology 2003, 305, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Howard, M.; Wertz, G. Vesicular stomatitis virus RNA replication: A role for the NS protein. J. Gen. Virol. 1989, 70, 2683–2694. [Google Scholar] [CrossRef]
- Peluso, R.W.; Moyer, S.A. Viral proteins required for the in Vitro replication of vesicular stomatitis virus defective interfering particle genome RNA. Virology 1988, 162, 369–376. [Google Scholar] [CrossRef]
- Chen, M.; Ogino, T.; Banerjee, A.K. Interaction of Vesicular Stomatitis Virus P and N Proteins: Identification of Two Overlapping Domains at the N Terminus of P That Are Involved in N0-P Complex Formation and Encapsidation of Viral Genome RNA. J. Virol. 2007, 81, 13478–13485. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Y.; Real, E.; Tordo, N. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains. J. Virol. 2001, 75, 9613–9622. [Google Scholar] [CrossRef] [Green Version]
- Yabukarski, F.; Leyrat, C.; Martinez, N.; Communie, G.; Ivanov, I.; Ribeiro, E.A.; Buisson, M.; Gerard, F.C.; Bourhis, J.M.; Jensen, M.R.; et al. Ensemble Structure of the Highly Flexible Complex Formed between Vesicular Stomatitis Virus Unassembled Nucleoprotein and its Phosphoprotein Chaperone. J. Mol. Biol. 2016, 428, 2671–2694. [Google Scholar] [CrossRef]
- Chenik, M.; Schnell, M.; Conzelmann, K.K.; Blondel, D. Mapping the Interacting Domains between the Rabies Virus Polymerase and Phosphoprotein. J. Virol. 1998, 72, 1925–1930. [Google Scholar] [CrossRef] [Green Version]
- Castel, G.; Chtéoui, M.; Caignard, G.; Préhaud, C.; Méhouas, S.; Réal, E.; Jallet, C.; Jacob, Y.; Ruigrok, R.W.H.; Tordo, N. Peptides That Mimic the Amino-Terminal End of the Rabies Virus Phosphoprotein Have Antiviral Activity. J. Virol. 2009, 83, 10808–10820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, B.P.; Banerjee, A.K. Requirements and functions of vesicular stomatitis virus L and NS proteins in the transcription process in vitro. Biochem. Biophys. Res. Commun. 1985, 126, 40–49. [Google Scholar] [CrossRef]
- Chenik, M.; Chebli, K.; Gaudin, Y.; Blondel, D. In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N): Existence of two N-binding sites on P protein. J. Gen. Virol. 1994, 75, 2889–2896. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.F.; Zheng, Y.; Wunner, W.H.; Koprowski, H.; Dietzschold, B. Both the N- and the C-terminal domains of the nominal phosphoprotein of rabies virus are involved in binding to the nucleoprotein. Virology 1994, 200, 590–597. [Google Scholar] [CrossRef]
- Brzózka, K.; Finke, S.; Conzelmann, K.-K. Identification of the Rabies Virus Alpha/Beta Interferon Antagonist: Phosphoprotein P Interferes with Phosphorylation of Interferon Regulatory Factor 3. J. Virol. 2005, 79, 7673–7681. [Google Scholar] [CrossRef] [Green Version]
- Brzózka, K.; Finke, S.; Conzelmann, K.-K. Inhibition of Interferon Signaling by Rabies Virus Phosphoprotein P: Activation-Dependent Binding of STAT1 and STAT2. J. Virol. 2006, 80, 2675–2683. [Google Scholar] [CrossRef] [Green Version]
- Chelbi-Alix, M.K.; Vidy, A.; El Bougrini, J.; Blondel, D. Rabies viral mechanisms to escape the IFN system: The viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. J. Interferon Cytokine Res. 2006, 26, 271–280. [Google Scholar] [CrossRef]
- Blondel, D.; Regad, T.; Poisson, N.; Pavie, B.; Harper, F.; Pandolfi, P.P.; De Thé, H.; Chelbi-Alix, M.K. Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 2002, 21, 7957–7970. [Google Scholar] [CrossRef] [Green Version]
- Blondel, D.; Kheddache, S.; Lahaye, X.; Dianoux, L.; Chelbi-Alix, M.K. Resistance to Rabies Virus Infection Conferred by the PMLIV Isoform. J. Virol. 2010, 84, 10719–10726. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dong, W.; Shi, Y.; Deng, F.; Chen, X.; Wan, C.; Zhou, M.; Zhao, L.; Fu, Z.F.; Peng, G. Rabies virus phosphoprotein interacts with ribosomal protein L9 and affects rabies virus replication. Virology 2016, 488, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Kammouni, W.; Wood, H.; Saleh, A.; Appolinario, C.M.; Fernyhough, P.; Jackson, A.C. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress. J. Neurovirol. 2015, 21, 370–382. [Google Scholar] [CrossRef]
- Fouquet, B.; Nikolic, J.; Larrous, F.; Bourhy, H.; Wirblich, C.; Lagaudrière-Gesbert, C.; Blondel, D. Focal Adhesion Kinase Is Involved in Rabies Virus Infection through Its Interaction with Viral Phosphoprotein, P. J. Virol. 2015, 89, 1640–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raux, H.; Flamand, A.; Blondel, D. Interaction of the Rabies Virus P Protein with the LC8 Dynein Light Chain. J. Virol. 2000, 74, 10212–10216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogino, T.; Green, T.J. Transcriptional control and mRNA capping by the GDP polyribonucleotidyltransferase domain of the rabies virus large protein. Viruses 2019, 11, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogino, T.; Banerjee, A.K. Unconventional Mechanism of mRNA Capping by the RNA-Dependent RNA Polymerase of Vesicular Stomatitis Virus. Mol. Cell 2007, 25, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Rahmeh, A.A.; Li, J.; Kranzusch, P.J.; Whelan, S.P.J. Ribose 2′-O Methylation of the Vesicular Stomatitis Virus mRNA Cap Precedes and Facilitates Subsequent Guanine-N-7 Methylation by the Large Polymerase Protein. J. Virol. 2009, 83, 11043–11050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grdzelishvili, V.Z.; Smallwood, S.; Tower, D.; Hall, R.L.; Hunt, D.M.; Moyer, S.A. A Single Amino Acid Change in the L-Polymerase Protein of Vesicular Stomatitis Virus Completely Abolishes Viral mRNA Cap Methylation. J. Virol. 2005, 79, 7327–7337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Fontaine-Rodriguez, E.C.; Whelan, S.P.J. Amino Acid Residues within Conserved Domain VI of the Vesicular Stomatitis Virus Large Polymerase Protein Essential for mRNA Cap Methyltransferase Activity. J. Virol. 2005, 79, 13373–13384. [Google Scholar] [CrossRef] [Green Version]
- Galloway, S.E.; Wertz, G.W. S-Adenosyl Homocysteine-Induced Hyperpolyadenylation of Vesicular Stomatitis Virus mRNA Requires the Methyltransferase Activity of L Protein. J. Virol. 2008, 82, 12280–12290. [Google Scholar] [CrossRef] [Green Version]
- Hunt, D.M.; Hutchinson, K.L. Amino acid changes in the l polymerase protein of vesicular stomatitis virus which confer aberrant polyadenylation and temperature-sensitive phenotypes. Virology 1993, 193, 786–793. [Google Scholar] [CrossRef]
- Rahmeh, A.A.; Schenk, A.D.; Danek, E.I.; Kranzusch, P.J.; Liang, B.; Walz, T.; Whelan, S.P.J. Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proc. Natl. Acad. Sci. USA 2010, 107, 20075–20080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.L.; Lyles, D.S. Organization of the Vesicular Stomatitis Virus Glycoprotein into Membrane Microdomains Occurs Independently of Intracellular Viral Components. J. Virol. 2003, 77, 3985–3992. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.L.; Lyles, D.S. A novel method for analysis of membrane microdomains: Vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding. Virology 2003, 310, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Lyles, D.S. Assembly and Budding of Negative-Strand RNA Viruses. In Advances in Virus Research; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Swinteck, B.D.; Lyles, D.S. Plasma Membrane Microdomains Containing Vesicular Stomatitis Virus M Protein Are Separate from Microdomains Containing G Protein and Nucleocapsids. J. Virol. 2008, 82, 5536–5547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desfosses, A.; Ribeiro, E.A.; Schoehn, G.; Blondel, D.; Guilligay, D.; Jamin, M.; Ruigrok, R.W.H.; Gutsche, I. Self-organization of the vesicular stomatitis virus nucleocapsid into a bullet shape. Nat. Commun. 2013, 4, 1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadd, T.L.; Skoging, U.; Liljeström, P. Budding of enveloped viruses from the plasma membrane. BioEssays 1997, 19, 993–1000. [Google Scholar] [CrossRef]
- Whelan, S.P.J.; Wertz, G.W. The 5′ Terminal Trailer Region of Vesicular Stomatitis Virus Contains a Position-Dependent cis-Acting Signal for Assembly of RNA into Infectious Particles. J. Virol. 1999, 73, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Finke, S.; Conzelmann, K.K. Ambisense gene expression from recombinant rabies virus: Random packaging of positive- and negative-strand ribonucleoprotein complexes into rabies virions. J. Virol. 1997, 71, 7281–7288. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Lu, J.; Liu, Y.; Davis, B.; Lee, M.S.; Olson, M.A.; Ruthel, G.; Freedman, B.D.; Schnell, M.J.; Wrobel, J.E.; et al. Small-Molecule Probes Targeting the Viral PPxY-Host Nedd4 Interface Block Egress of a Broad Range of RNA Viruses. J. Virol. 2014, 88, 7294–7306. [Google Scholar] [CrossRef] [Green Version]
- Riedel, C.; Vasishtan, D.; Pražák, V.; Ghanem, A.; Conzelmann, K.-K.; Rümenapf, T. Cryo EM structure of the rabies virus ribonucleoprotein complex. Sci. Rep. 2019, 9, 9639. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedel, C.; Hennrich, A.A.; Conzelmann, K.-K. Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses 2020, 12, 959. https://doi.org/10.3390/v12090959
Riedel C, Hennrich AA, Conzelmann K-K. Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses. 2020; 12(9):959. https://doi.org/10.3390/v12090959
Chicago/Turabian StyleRiedel, Christiane, Alexandru A. Hennrich, and Karl-Klaus Conzelmann. 2020. "Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex" Viruses 12, no. 9: 959. https://doi.org/10.3390/v12090959
APA StyleRiedel, C., Hennrich, A. A., & Conzelmann, K.-K. (2020). Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses, 12(9), 959. https://doi.org/10.3390/v12090959