Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Serial Passaging of FMDV
2.3. Plaque-Forming Assay
2.4. Genome Amplification, Nucleotide Sequencing, and Amino Acid Sequence Alignment
2.5. Structural Analysis and the Molecular Docking Model
3. Results
3.1. Change in the Plaque Phenotypes and the FMDV O/SKR/Andong/2010 Receptor by Serial Passaging
3.2. Amino Acid Mutation Analysis of P1 Regions of O/SKR/Andong/2010 by Serial Passaging
3.3. Three-Dimensional (3D) Structural Analysis of Mutated Amino Acid Residues by Serial Passaging
3.4. Hydrogen Bond Analysis of L5B6S2 by Amino Acid Mutations
3.5. Predicted Interaction between the L5B6S2 Virus and the JMJD6 Protein by the VP1 208 Amino Acid Mutation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Moraes, M.P.; de Los Santos, T.; Koster, M.; Turecek, T.; Wang, H.; Andreyev, V.G.; Grubman, M.J. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J. Virol. 2007, 81, 7124–7135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amadori, M.; Volpe, G.; Defilippi, P.; Berneri, C. Phenotypic features of BHK-21 cells used for production of foot-and-mouth disease vaccine. Biologicals 1997, 25, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Neff, S.; Sá-Carvalho, D.; Rieder, E.; Mason, P.W.; Blystone, S.D.; Brown, E.J.; Baxt, B. Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J. Virol. 1998, 72, 3587–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sa-Carvalho, D.; Rieder, E.; Baxt, B.; Rodarte, R.; Tanuri, A.; Mason, P.W. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 1997, 71, 5115–5123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, E.E.; Lea, S.M.; Jackson, T.; Newman, J.W.; Ellard, F.M.; Blakemore, W.E.; Abu-Ghazaleh, R.; Samuel, A.; King, A.M.; Stuart, D.I. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 1999, 18, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Fry, E.E.; Newman, J.W.I.; Curry, S.; Najjam, S.; Jackson, T.; Blakemore, W.; Lea, S.M.; Miller, L.; Burman, A.; King, A.M.Q.; et al. Structure of Foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: Receptor conservation in the face of antigenic variation. J. Gen. Virol. 2005, 86, 1909–1920. [Google Scholar] [CrossRef]
- Han, S.C.; Guo, H.C.; Sun, S.Q. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch. Virol. 2015, 160, 1–16. [Google Scholar] [CrossRef]
- Chamberlain, K.; Fowler, V.L.; Barnett, P.V.; Gold, S.; Wadsworth, J.; Knowles, N.J.; Jackson, T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J. Gen. Virol. 2015, 96, 2684–2692. [Google Scholar] [CrossRef]
- Dill, V.; Eschbaumer, M. Cell culture propagation of foot-and-mouth disease virus: Adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2020, 56, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Nagarajan, H.; Lewis, N.E.; Pan, S.; Cai, Z.; Liu, X.; Chen, W.; Xie, M.; Wang, W.; Hammond, S.; et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidholt, K.; Weinke, J.L.; Kiser, C.S.; Lugemwa, F.N.; Bame, K.J.; Cheifetz, S.; Massagué, J.; Lindahl, U.; Esko, J.D. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Natl. Acad. Sci. USA 1992, 89, 2267–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, P.; LaRocco, M.; Baxt, B.; Rieder, E. Examination of soluble integrin resistant mutants of foot-and-mouth disease virus. Virol. J. 2013, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Pacheco, J.M.; Mason, P.W. Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J. Virol. 2003, 77, 3269–3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, P.; Rai, D.; Conderino, J.S.; Uddowla, S.; Rieder, E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016, 492, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.; Conderino, J.S.; Rieder, E. Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: Role of Jumonji C-domain containing protein 6 in RHA demethylation. Virology 2014, 452–453, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, P.; Rieder, E. Insights into Jumonji C-domain containing protein 6 (JMJD6): A multifactorial role in foot-and-mouth disease virus replication in cells. Virus Genes 2017, 53, 340–351. [Google Scholar] [CrossRef]
- Moller-Tank, S.; Maury, W. Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology 2014, 468–470, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Morizono, K.; Chen, I.S. Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 2014, 88, 4275–4290. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, J.M.; Lee, K.N.; Eschbaumer, M.; Bishop, E.A.; Hartwig, E.J.; Pauszek, S.J.; Smoliga, G.R.; Kim, S.M.; Park, J.H.; Ko, Y.J.; et al. Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and a Isolated in 2010 from Outbreaks in the Republic of Korea. PLoS ONE 2016, 11, e0146445. [Google Scholar] [CrossRef]
- LaRocco, M.; Krug, P.W.; Kramer, E.; Ahmed, Z.; Pacheco, J.M.; Duque, H.; Baxt, B.; Rodriguez, L.L. Correction for LaRocco et al., A Continuous Bovine Kidney Cell Line Constitutively Expressing Bovine αVβ6 Integrin Has Increased Susceptibility to Foot-and-Mouth Disease Virus. J. Clin. Microbiol. 2015, 53, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.M.; Kim, S.K.; Lee, K.N.; Park, J.H.; Kim, B. Stable expression of bovine integrin beta 6 increases susceptibility of goat kidney cell line to foot-and-mouth disease virus. J. Bacteriol. Virol. 2020, 50, 35–43. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent end points. Am. J. Hyg. 1938, 27, 7. [Google Scholar]
- Lewis, A.M., Jr.; Rowe, W.P. Isolation of two plaque variants from the adenovirus type 2-simian virus 40 hybrid population which differ in their efficiency in yielding simian virus 40. J. Virol. 1970, 5, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Sehnal, D.; Rose, A.S.; Koča, J.; Burley, S.K.; Velankar, S. Mol*: Towards a common library and tools for web molecular graphics. In Workshop on Molecular Graphics and Visual Analysis of Molecular Data; Eurographics Association: Brno, Czech Republic, 2018; pp. 29–33. [Google Scholar]
- Keedy, D.A.; Georgiev, I.; Triplett, E.B.; Donald, B.R.; Richardson, D.C.; Richardson, J.S. The role of local backrub motions in evolved and designed mutations. PLoS Comput. Biol. 2012, 8, e1002629. [Google Scholar] [CrossRef] [Green Version]
- Comeau, S.R.; Kozakov, D.; Brenke, R.; Shen, Y.; Beglov, D.; Vajda, S. ClusPro: Performance in CAPRI rounds 6-11 and the new server. Proteins 2007, 69, 781–785. [Google Scholar] [CrossRef]
- Baranowski, E.; Ruiz-Jarabo, C.M.; Sevilla, N.; Andreu, D.; Beck, E.; Domingo, E. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: Flexibility in aphthovirus receptor usage. J. Virol. 2000, 74, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Borca, M.V.; Pacheco, J.M.; Holinka, L.G.; Carrillo, C.; Hartwig, E.; Garriga, D.; Kramer, E.; Rodriguez, L.; Piccone, M.E. Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology 2012, 422, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, P.; Pacheco, J.; Stenfeldt, C.; Arzt, J.; Rai, D.K.; Rieder, E. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 2016, 492, 108–117. [Google Scholar] [CrossRef]
- Martín-Acebes, M.A.; González-Magaldi, M.; Sandvig, K.; Sobrino, F.; Armas-Portela, R. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology 2007, 369, 105–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, J.K.; Pandey, L.K.; Rai, D.K.; Das, B.; Rodriguez, L.L.; Rout, M.; Subramaniam, S.; Sanyal, A.; Rieder, E.; Pattnaik, B. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: Implications for receptor interactions. J. Gen. Virol. 2015, 96, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Morioka, K.; Fukai, K.; Ohashi, S.; Sakamoto, K.; Tsuda, T.; Yoshida, K. Comparison of the characters of the plaque-purified viruses from foot-and-mouth disease virus O/JPN/2000. J. Vet. Med. Sci. 2008, 70, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forss, S.; Strebel, K.; Beck, E.; Schaller, H. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 1984, 12, 6587–6601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitson, J.D.; McCahon, D.; Belsham, G.J. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: Evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 1990, 179, 26–34. [Google Scholar] [CrossRef]
- Pfaff, E.; Thiel, H.J.; Beck, E.; Strohmaier, K.; Schaller, H. Analysis of neutralizing epitopes on foot-and-mouth disease virus. J. Virol. 1988, 62, 2033–2040. [Google Scholar] [CrossRef] [Green Version]
- Hadži, D.; Kidrič, J.; Koller, J.; Mavri, J. The role of hydrogen bonding in drug-receptor interactions. J. Mol. Struct. 1990, 237, 139–150. [Google Scholar] [CrossRef]
- Luo, J.; Deng, L.; Ding, X.; Quan, L.; Wu, A.; Jiang, T. Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human. Sci. Rep. 2017, 7, 14295. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, M.; Gao, J. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974. [Google Scholar] [CrossRef]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol. J. 2018, 15, 46. [Google Scholar] [CrossRef]
- Fadok, V.A.; Bratton, D.L.; Rose, D.M.; Pearson, A.; Ezekewitz, R.A.; Henson, P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000, 405, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fadok, V.A.; de Cathelineau, A.; Daleke, D.L.; Henson, P.M.; Bratton, D.L. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 2001, 276, 1071–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, G.; Parry, N.R.; Barnett, P.V.; McGinn, B.; Rowlands, D.J.; Brown, F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol. 1989, 70, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Dill, V.; Hoffmann, B.; Zimmer, A.; Beer, M.; Eschbaumer, M. Adaption of FMDV Asia-1 to Suspension Culture: Cell Resistance Is Overcome by Virus Capsid Alterations. Viruses 2017, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.C.; McCahon, D.; Crowther, J.R.; Belsham, G.J.; McCullough, K.C. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J. Gen. Virol. 1987, 68, 1637–1647. [Google Scholar] [CrossRef]
- Berryman, S.; Clark, S.; Kakker, N.K.; Silk, R.; Seago, J.; Wadsworth, J.; Chamberlain, K.; Knowles, N.J.; Jackson, T. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J. Virol. 2013, 87, 8735–8744. [Google Scholar] [CrossRef] [Green Version]
Serially Passaged Viruses | VP2 | VP3 | VP1 | ||
---|---|---|---|---|---|
Amino Acid Positions e | |||||
34 | 205 | 56 | 60 | 208 | |
Wildtype | H | A | H | D | P |
L5 a | · | · | · | · | · |
L5B6 b | · | G | R | G | · |
L5B6S1 c | Y | · | R | G | · |
L5B6S2 d | Y | · | R | G | L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Hwang, J.-H.; Kim, A.; Park, J.-H.; Lee, M.J.; Kim, B.; Kim, S.-M. Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses 2020, 12, 1012. https://doi.org/10.3390/v12091012
Lee G, Hwang J-H, Kim A, Park J-H, Lee MJ, Kim B, Kim S-M. Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses. 2020; 12(9):1012. https://doi.org/10.3390/v12091012
Chicago/Turabian StyleLee, Gyeongmin, Ji-Hyeon Hwang, Aro Kim, Jong-Hyeon Park, Min Ja Lee, Byounghan Kim, and Su-Mi Kim. 2020. "Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors" Viruses 12, no. 9: 1012. https://doi.org/10.3390/v12091012
APA StyleLee, G., Hwang, J.-H., Kim, A., Park, J.-H., Lee, M. J., Kim, B., & Kim, S.-M. (2020). Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses, 12(9), 1012. https://doi.org/10.3390/v12091012