Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. RNA Extraction and Sequencing Method
2.3. HIV-1 Subtyping
2.4. HIV-1 INSTI Resistance Profile Genotyping
2.5. Polymorphism Analysis
2.6. Genetic Barrier Analysis
2.7. Phylogenetic and Phylodynamic Analysis
2.8. GenBank Accession Numbers
3. Results
3.1. Study Population
3.2. HIV-1 Subtyping
3.3. Prevalence of Integrase DRMs
3.4. Prevalence of Naturally Occurring Integrase Polymorphisms
3.5. Genetic Barrier
3.6. Founder Effect of the L74I Mutation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reference on HIV Infection in the Russian Federation. Federal Scientific for the Prevention and Combat of AIDS of the Public Office of the Central Scientific Research Institute Rospotrebnadzor. Available online: http://www.hivrussia.ru/ (accessed on 31 October 2019).
- Panel on Antiretroviral Guidelines for Adults and Adolescents DHHS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Available online: https://aidsinfo.nih.gov/contentfiles/lvguidelines/AdultandAdolescentGL.pdf (accessed on 4 June 2018).
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Available online: http://www.who.int/hiv/pub/arv/arv-2016/en/ (accessed on 4 June 2018).
- de Wit, S.; Battegay, M.; Monforte, A.D.; Lundgren, J.; Oprea, C.; Antinori, A.; Bhagani, S.; Fätkenheuer, G.; Friis-Moller, N.; Furrer, H.; et al. European AIDS Clinical Society Second Standard of Care Meeting, Brussels 16–17 November 2016: A summary. HIV Med. 2017, 19, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saag, M.S.; Benson, C.A.; Gandhi, R.T.; Hoy, J.F.; Landovitz, R.J.; Mugavero, M.J.; Sax, P.E.; Smith, D.; Thompson, M.A.; Buchbinder, S.; et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults. JAMA 2018, 320, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, V.; Yurin, O.; Kravchenko, A.; Belyaeva, V.; Ermak, T.; Kanestri, V.; Shahgildyan, V.; Kozyrina, N.; Buravtsova, V.; Narsiya, R.; et al. National recommendations for dispensary observation and treatment of HIV patients. Epidemiology and Infectious Diseases. Top. Issue 2018, 4, 1–84. [Google Scholar]
- Anstett, K.; Brenner, B.G.; Mesplède, T.; Wainberg, M.A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 2017, 14, 36. [Google Scholar] [CrossRef]
- Brooks, K.M.; Sherman, E.M.; Egelund, E.F.; Brotherton, A.; Durham, S.; Badowski, M.E.; Cluck, D.; Badowksi, M.E. Integrase Inhibitors: After 10 Years of Experience, Is the Best Yet to Come? Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 576–598. [Google Scholar] [CrossRef]
- Hurt, C.B.; Sebastian, J.; Hicks, C.B.; Eron, J.J. Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009–2012. Clin. Infect. Dis. 2013, 58, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Delelis, O.; Carayon, K.; Saïb, A.; Deprez, E.; Mouscadet, J.-F. Integrase and integration: Biochemical activities of HIV-1 integrase. Retrovirology 2008, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini-Silberstein, F.; Malet, I.; D’Arrigo, R.; Antinori, A.; Marcelin, A.-G.; Perno, C.F. Characterization and structural analysis of HIV-1 integrase conservation. Aids Rev. 2009, 11, 17–29. [Google Scholar]
- Meixenberger, K.; Yousef, K.P.; Smith, M.R.; Somogyi, S.; Fiedler, S.; Bartmeyer, B.; Hamouda, O.; Bannert, N.; von Kleist, M.; Kücherer, C. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors. Virol. J. 2017, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Lataillade, M.; Chiarella, J.; Kozal, M.J. Natural polymorphism of the HIV-1 integrase gene and mutations associated with integrase inhibitor resistance. Antivir. Ther. 2007, 12, 563–570. [Google Scholar]
- Mikasi, S.G.; Gichana, O.J.; van der Walt, M.C.; Brado, D.; Obasa, A.E.; Njenda, D.; Messembe, M.; Lyonga, E.; Assoumou, O.; Cloete, R.; et al. HIV-1 Integrase Diversity and Resistance-Associated Mutations and Polymorphisms Among Integrase Strand Transfer Inhibitor-Naive HIV-1 Patients from Cameroon. AIDS Res. Hum. Retrovir. 2020, 36, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Orkin, C.; Arasteh, K.; Hernandez-Mora, M.G.; Pokrovsky, V.; Overton, E.T.; Girard, P.-M.; Oka, S.; D’Amico, R.; Dorey, D.; Griffith, S.; et al. Long-Acting Cabotegravir + Rilpivirine for HIV Maintenance: FLAIR Week 48 Results. CROI 4–7 March 2019, Seattle. Late Breaker Oral Abstract. Available online: http://www.natap.org/2019/CROI/croi_65.htm (accessed on 6 July 2020).
- Overton, E.T.; Orkin, C.; Swindells, S.; Arasteh, K.; Hernández-Mora, M.G.; Pokrovsky, V.; Girard, P.-M.; Oka, S.; Andrade-Villanueva, J.-F.; Richmond, G.J.; et al. Monthly Long-Acting Cabotegravir and Rilpivirine is Non-Inferior to Oral ART as Maintenance Therapy for HIV-1 Infection: Week 48 Pooled Analysis from the Phase 3 ATLAS and FLAIR Studies. IAS 2019, Abstract MOPEB257. Available online: https://www.hivandmore.de/kongresse/ias2019/002185-Cabotegravir-IAS-2019-Week-48-Pooled-Analysis-from-ATLAS-and-FLAIR-studies.pdf (accessed on 6 July 2020).
- INSTI Resistance Notes. Available online: hivdb.stanford.edu/s/instinotes (accessed on 4 February 2019).
- Lapovok, V.L.I.; Laga, V.; Kazennova, E.; Bobkova, M. HIV Type 1 Integrase Natural Polymorphisms in Viral Variants Circulating in FSU Countries. Curr. HIV Res. 2017, 15, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Gashnikova, N.M.; Totmenin, A.V.; Ivlev, V.V.; Zyryanova, D.P.; Astahova, E.M.; Gashnikova, M.P.; Ismailova, T.N.; Chernov, A.S.; Mikheev, V.N. Investigation of HIV-1 diversity in the integrase coding region. Far East. J. Infect. Pathol. 2015, 28, 58–61. [Google Scholar]
- Lapovok, I.A.; Laga, V.Y.; Vasilyev, A.V.; Salamov, G.G.; Kazennova, E.V.; Matkovsky, I.A.; Mokhniy, G.A.; Melnik, T.A.; Bobkova, M.R. Molecular genetic analysis of pol gene region coding for HIV-1 integrase in patients from Russia and Ukraine. HIV Infect. Immunosuppressive Disord. 2012, 4, 73–81. [Google Scholar]
- Kazennova, E.V.; Lapovok, I.A.; Laga, V.Y.; Vasilyev, A.V.; Bobkova, M.R. Natural polymorphisms of HIV-1 IDU-A variant pol gene. HIV Infect. Immunosuppressive Disord. 2012, 4, 44–51. [Google Scholar]
- Rogers, L.; Obasa, A.E.; Jacobs, G.B.; Sarafianos, S.G.; Sönnerborg, A.; Neogi, U.; Singh, K. Structural Implications of Genotypic Variations in HIV-1 Integrase from Diverse Subtypes. Front. Microbiol. 2018, 9, 1754. [Google Scholar] [CrossRef] [Green Version]
- Hachiya, A.; Kirby, K.A.; Ido, Y.; Shigemi, U.; Matsuda, M.; Okazaki, R.; Imamura, J.; Sarafianos, S.G.; Yokomaku, Y.; Iwatani, Y. Impact of HIV-1 Integrase L74F and V75I Mutations in a Clinical Isolate on Resistance to Second-Generation Integrase Strand Transfer Inhibitors. Antimicrob. Agents Chemother. 2017, 61, e00315-17. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Ibanescu, R.-I.; Anstett, K.; Mésplède, T.; Routy, J.-P.; Robbins, M.; Brenner, B.G. Selective resistance profiles emerging in patient-derived clinical isolates with cabotegravir, bictegravir, dolutegravir, and elvitegravir. Retrovirology 2018, 15, 56. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Fofana, D.B.; Le, M.P.; Charpentier, C.; Peytavin, G.; Wirden, M.; Lambert-Niclot, S.; Desire, N.; Grude, M.; Morand-Joubert, L.; et al. Prevalence and clinical impact of minority resistant variants in patients failing an integrase inhibitor-based regimen by ultra-deep sequencing. J. Antimicrob. Chemother. 2018, 73, 2485–2492. [Google Scholar] [CrossRef]
- Low, A.; Prada, N.; Topper, M.; Vaida, F.; Castor, D.; Mohri, H.; Hazuda, D.; Muesing, M.; Markowitz, M. Natural Polymorphisms of Human Immunodeficiency Virus Type 1 Integrase and Inherent Susceptibilities to a Panel of Integrase Inhibitors. Antimicrob. Agents Chemother. 2009, 53, 4275–4282. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.A.; Gatell, J.; Rockstroh, J.; Katlama, C.; Yeni, P.; Lazzarin, A.; Chen, J.; Isaacs, R.; Teppler, H.; Nguyen, B.-Y. Results of BENCHMRK- 1, a Phase III Study Evaluating the Efficacy and Safety of MK-0518, a Novel HIV-1 Integrase Inhibitor, in Patients with Triple-Class Resistant Virus. CROI 25–28 Febuary 2007, Los Angeles. Abstract. Available online: http://www.natap.org/2007/CROI/croi_40.htm (accessed on 6 July 2020).
- Vavro, L.; Huang, J.; Underwood, M.R.; Ait-Khaled, M.; Sievers, J.; Yeo, J.M. Integrase genotypic and phenotypic predictors of antiviral response to dolutegravir (DTG) in subjects with resistance to integrase inhibitors (INIs). Antivir. Therapy 2013, 18, A37. [Google Scholar]
- Eron, J.J.; Clotet, B.; Durant, J.; Katlama, C.; Kumar, P.; Lazzarin, A.; Poizot-Martin, I.; Richmond, G.; Soriano, V.; Ait-Khaled, M.; et al. Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study. J. Infect. Dis. 2012, 207, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Katlama, C.; Soulie, C.; Caby, F.; Denis, A.; Blanc, C.; Schneider, L.; Valantin, M.-A.; Tubiana, R.; Kirstetter, M.; Valdenassi, E.; et al. Dolutegravir as monotherapy in HIV-1-infected individuals with suppressed HIV viraemia. J. Antimicrob. Chemother. 2016, 71, 2646–2650. [Google Scholar] [CrossRef] [Green Version]
- Theys, K.; Libin, P.J.K.; van Laethem, K.; Abecasis, A.B. An Evolutionary Model-Based Approach to Quantify the Genetic Barrier to Drug Resistance in Fast-Evolving Viruses and Its Application to HIV-1 Subtypes and Integrase Inhibitors. Antimicrob. Agents Chemother. 2019, 63, e00539-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Vijver, D.A.; Wensing, A.M.; Angarano, G.; Åsjö, B.; Balotta, C.; Boeri, E.; Camacho, R.; Chaix, M.-L.; Costagliola, D.; de Luca, A.; et al. The Calculated Genetic Barrier for Antiretroviral Drug Resistance Substitutions Is Largely Similar for Different HIV-1 Subtypes. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 41, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Maïga, A.-I.; Malet, I.; Soulie, C.; Derache, A.; Koita, V.; Amellal, B.; Tchertanov, L.; Delelis, O.; Morand-Joubert, L.; Mouscadet, J.-F.; et al. Genetic barriers for integrase inhibitor drug resistance in HIV type-1 B and CRF02_AG subtypes. Antivir. Ther. 2009, 14, 123–129. [Google Scholar] [PubMed]
- Hill, K.J.; Rogers, L.C.; Njenda, D.T.; Burke, D.H.; Sarafianos, S.G.; Sönnerborg, A.; Neogi, U.; Singh, K. Strain-specific effect on biphasic DNA binding by HIV-1 integrase. AIDS 2019, 33, 588–592. [Google Scholar] [CrossRef]
- Nouhin, J.; Donchai, T.; Hoang, K.T.H.; Ken, S.; Kamkorn, J.; Tran, T.; Ayouba, A.; Peeters, M.; Chaix, M.-L.; Truong, L.X.; et al. Natural polymorphisms of HIV-1 CRF01_AE integrase coding region in ARV-naïve individuals in Cambodia, Thailand and Vietnam: An ANRS AC12 working group study. Infect. Genet. Evol. 2011, 11, 38–43. [Google Scholar] [CrossRef]
- Brenner, B.G.; Lowe, M.; Moisi, D.; Hardy, I.; Gagnon, S.; Charest, H.; Baril, J.G.; Wainberg, M.A.; Roger, M. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J. Med Virol. 2011, 83, 751–759. [Google Scholar] [CrossRef]
- Theys, K.; Abecasis, A.B.; Vandamme, A.-M. HIV-1 drug resistance: Where do polymorphisms fit in? Futur. Microbiol. 2013, 8, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Garrido, C.; Geretti, A.M.; Zahonero, N.; Booth, C.; Strang, A.; Soriano, V.; de Mendoza, C. Integrase variability and susceptibility to HIV integrase inhibitors: Impact of subtypes, antiretroviral experience and duration of HIV infection. J. Antimicrob. Chemother. 2009, 65, 320–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutapea, H.M.L.; Maladan, Y. Widodo Relationship between HIV integrase polymorphisms and integrase inhibitor susceptibility: An in-silico analysis. Heliyon 2018, 4, e00956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neogi, U.; Singh, K.; Aralaguppe, S.G.; Rogers, L.C.; Njenda, D.T.; Sarafianos, S.G.; Hejdeman, B.; Sönnerborg, A.; Singh, K. Ex vivo antiretroviral potency of newer integrase strand transfer inhibitors cabotegravir and bictegravir in HIV-1 non-B subtypes. AIDS 2017, 32, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Foley, B.; Leitner, T.; Paraskevis, D.; Peeters, M. Primate immunodeficiency virus classification and nomenclature: Review. Infect. Genet. Evol. 2016, 46, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Bobkova, M. Current status of HIV-1 diversity and drug resistance monitoring in the former USSR. Aids Rev. 2013, 15, 20412. [Google Scholar]
- Lebedev, A.; Lebedeva, N.; Moskaleychik, F.; Pronin, A.; Kazennova, E.; Bobkova, M.R. Human Immunodeficiency Virus-1 Diversity in the Moscow Region, Russia: Phylodynamics of the Most Common Subtypes. Front. Microbiol. 2019, 10, 320. [Google Scholar] [CrossRef]
- Basic concepts of molecular evolution. In The Phylogenetic Handbook, A Practical Approach to DNA and Protein Phylogeny, 3rd ed.; Lemey, P.; Salemi, M.; Vandamme, A.M. (Eds.) Cambridge University Press: Cambridge, UK, 2012; pp. 3–30. [Google Scholar]
- Bishop, K.N.; Holmes, R.K.; Sheehy, A.M.; Malim, M.H. APOBEC-Mediated Editing of Viral RNA. Science 2004, 305, 645. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, N.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Boil. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Tzou, P.L.; Rhee, S.-Y.; Descamps, D.; Clutter, D.S.; Hare, B.; Mor, O.; Grude, M.; Parkin, N.; Jordan, M.R.; Bertagnolio, S.; et al. Integrase strand transfer inhibitor (INSTI)-resistance mutations for the surveillance of transmitted HIV-1 drug resistance. J. Antimicrob. Chemother. 2019. [Google Scholar] [CrossRef] [PubMed]
- Goethals, O.; Clayton, R.; van Ginderen, M.; Vereycken, I.; Wagemans, E.; Geluykens, P.; Dockx, K.; Strijbos, R.; Smits, V.; Vos, A.; et al. Resistance Mutations in Human Immunodeficiency Virus Type 1 Integrase Selected with Elvitegravir Confer Reduced Susceptibility to a Wide Range of Integrase Inhibitors. J. Virol. 2008, 82, 10366–10374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capel, E.; Parera, M.; Clotet, B.; Martínez, M.-A. Significant changes in integrase-associated HIV-1 replication capacity between early and late isolates. Virology 2013, 444, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Margot, N.; Ram, R.R.; White, K.L.; Abram, M.E.; Callebaut, C. Antiviral activity of HIV-1 integrase strand-transfer inhibitors against mutants with integrase resistance-associated mutations and their frequency in treatment-naïve individuals. J. Med Virol. 2019, 91, 2188–2194. [Google Scholar] [CrossRef]
- Ceccherini-Silberstein, F.; Malet, I.; Fabeni, L.; Dimonte, S.; Svicher, V.; D’Arrigo, R.; Artese, A.; Costa, G.; Bono, S.; Alcaro, S.; et al. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J. Antimicrob. Chemother. 2010, 65, 2305–2318. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Tagny, C.T.; Mbanya, D.; Fonsah, J.Y.; Nchindap, E.; Kenmogne, L.; Ma, J.; Njamnshi, A.; Kanmogne, G.D. Variability in HIV-1 Integrase Gene and 3′-Polypurine Tract Sequences in Cameroon Clinical Isolates, and Implications for Integrase Inhibitors Efficacy. Int. J. Mol. Sci. 2020, 21, 1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position | Codon | A1 (n = 100) | A6 (n = 193) | B (n = 2577) | Resistant Codon | Mutation * | Resistant Codon | Mutation * | Resistant Codon | Mutation * |
---|---|---|---|---|---|---|---|---|---|---|
Proportion | L74M | L74I | L74F | |||||||
74 | CTG | 64% | 0% | 82% | ATG | 1 tv | ATA | 1 tv, 1 ts (GA) | TTC/T | 1 tv, 1 ts |
CTA | 19% | <1% | 4% | ATG | 1 tv, 1 ts | ATA | 1 tv | TTC/T | 1 tv, 1 ts | |
ATA | 8% | 98% | 7% | ATG | 1 ts | ATA | 0 | TTC/T | 2 tv | |
TTG | 4% | 0% | 1% | ATG | 1 tv | ATA | 1 tv, 1 ts (GA) | TTC/T | 1 tv | |
ATG | 2% | 0% | <1% | ATG | 0 | ATA | 1 ts (GA) | TTC/T | 2 tv | |
GTG | 0% | 0% | 3% | ATG | 1 ts | ATA | 2 ts (GA) | TTC/T | 2 tv | |
140 | codon | Proportion | G140A | G140C | G140S | |||||
GGC | 0% | 0% | 81% | GCC | 1 tv | TGC | 1 tv | TCC | 2 tv | |
GGT | 0% | 0% | 13% | GCT | 1 tv | TGT | 1 tv | TCT | 2 tv | |
GGA | 47% | 11% | 3% | GCA | 1 tv | TGC/T | 2 tv | TCA | 2 tv | |
GGG | 52% | 85% | 2% | GCG | 1 tv | TGC/T | 2 tv | TCG | 2 tv | |
GGR | 1% | 4% | <1% | GCA/G | 1 tv | TGC/T | 2 tv | TCA/G | 2 tv | |
151 | codon | Proportion | V151A | V151I | V151L | |||||
GTA | 14% | 6% | 94% | GCA | 1 ts | ATA | 1 ts (GA) | CTA | 1 tv | |
GTG | 86% | 89% | 4% | GCG | 1 ts | ATA | 2 ts (GA) | CTG | 1 tv | |
ATA | 0% | 0% | 1% | GCA | 2 ts | ATA | 0 | CTA | 1 tv | |
GTR | 0% | 4% | <1% | GCA/G | 1 ts | ATA | 1/2 ts (GA) | CTA/G | 1 tv |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirichenko, A.; Lapovok, I.; Baryshev, P.; van de Vijver, D.A.M.C.; van Kampen, J.J.A.; Boucher, C.A.B.; Paraskevis, D.; Kireev, D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020, 12, 838. https://doi.org/10.3390/v12080838
Kirichenko A, Lapovok I, Baryshev P, van de Vijver DAMC, van Kampen JJA, Boucher CAB, Paraskevis D, Kireev D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses. 2020; 12(8):838. https://doi.org/10.3390/v12080838
Chicago/Turabian StyleKirichenko, Alina, Ilya Lapovok, Pavel Baryshev, David A. M. C. van de Vijver, Jeroen J. A. van Kampen, Charles A. B. Boucher, Dimitrios Paraskevis, and Dmitry Kireev. 2020. "Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs" Viruses 12, no. 8: 838. https://doi.org/10.3390/v12080838