“French Phage Network” Annual Conference—Fifth Meeting Report
Abstract
:1. Introduction
2. Summary of the Scientific Sessions
2.1. Ecology and Evolution
2.2. Phage Therapy and Biotechnology Session
2.3. Structure and Assembly Session
2.4. Phage–Host Interaction Session
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Herelle, F.; Smith, G.H. The Bacteriophage, Its Rôle in Immunity; Williams & Wilkins Company: Baltimore, MD, USA, 1922. [Google Scholar]
- D’Herelle, F.; Malone, R.H. A Preliminary Report of Work Carried out by the Cholera Bacteriophage Enquiry. Indian Med. Gaz. 1927, 62, 614–616. [Google Scholar]
- Keen, E.C. A century of phage research: Bacteriophages and the shaping of modern biology. BioEssays News Rev. Mol. Cell. Dev. Biol. 2015, 37, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 6 December 2019).
- Danovaro, R.; Corinaldesi, C.; Dell’anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A. Marine viruses and global climate change. FEMS Microbiol. Rev. 2011, 35, 993–1034. [Google Scholar] [CrossRef] [PubMed]
- Manrique, P.; Bolduc, B.; Walk, S.T.; Van der Oost, J.; De Vos, W.M.; Young, M.J. Healthy human gut phageome. Proc. Natl. Acad. Sci. USA 2016, 113, 10400–10405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttle, C.A. Marine viruses—Major players in the global ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Dy, R.L.; Rigano, L.A.; Fineran, P.C. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans. 2018, 46, 1605–1613. [Google Scholar] [CrossRef]
- Jafari, B.; Hamzeh-Mivehroud, M.; Morris, M.B.; Dastmalchi, S. Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev. 2019, 46, 54–65. [Google Scholar] [CrossRef]
- Lemire, S.; Yehl, K.M.; Lu, T.K. Phage-Based Applications in Synthetic Biology. Annu. Rev. Virol. 2018, 5, 453–476. [Google Scholar] [CrossRef]
- Taylor, V.L.; Fitzpatrick, A.D.; Islam, Z.; Maxwell, K.L. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 103, pp. 1–31. [Google Scholar]
- Hu, B.; Margolin, W.; Molineux, I.J.; Liu, J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc. Natl. Acad. Sci. USA 2015, 112, E4919–E4928. [Google Scholar] [CrossRef] [Green Version]
- Knowles, B.; Silveira, C.B.; Bailey, B.A.; Barott, K.; Cantu, V.A.; Cobián-Güemes, A.G.; Coutinho, F.H.; Dinsdale, E.A.; Felts, B.; Furby, K.A.; et al. Lytic to temperate switching of viral communities. Nature 2016, 531, 466–470. [Google Scholar] [CrossRef]
- Mavrich, T.N.; Hatfull, G.F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2017, 2, 17112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.-H.; Xiong, Z.-Q.; Song, X.; Xia, Y.-J.; Zhang, N.; Ai, L.-Z. Characterization of a Panel of Strong Constitutive Promoters from Streptococcus thermophilus for Fine-Tuning Gene Expression. ACS Synth. Biol. 2019, 8, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Tagliavia, M.; Nicosia, A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms 2019, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Demerdash, H.A.M.; Heller, K.J.; Geis, A. Application of the shsp Gene, Encoding a Small Heat Shock Protein, as a Food-Grade Selection Marker for Lactic Acid Bacteria. Appl. Environ. Microbiol. 2003, 69, 4408–4412. [Google Scholar] [CrossRef] [Green Version]
- Garay-Novillo, J.N.; García-Morena, D.; Ruiz-Masó, J.Á.; Barra, J.L.; Del Solar, G. Combining Modules for Versatile and Optimal Labeling of Lactic Acid Bacteria: Two pMV158-Family Promiscuous Replicons, a Pneumococcal System for Constitutive or Inducible Gene Expression, and Two Fluorescent Proteins. Front. Microbiol. 2019, 10, 1431. [Google Scholar] [CrossRef]
- Cho, S.; Shin, J.; Cho, B.-K. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. Int. J. Mol. Sci. 2018, 19, 1089. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M. A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Crit. Rev. Biotechnol. 2017, 37, 296–308. [Google Scholar] [CrossRef]
- Enault, F.; Briet, A.; Bouteille, L.; Roux, S.; Sullivan, M.B.; Petit, M.-A. Phages rarely encode antibiotic resistance genes: A cautionary tale for virome analyses. ISME J. 2017, 11, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Calero-Cáceres, W.; Ye, M.; Balcázar, J.L. Bacteriophages as Environmental Reservoirs of Antibiotic Resistance. Trends Microbiol. 2019, 27, 570–577. [Google Scholar] [CrossRef]
- Debroas, D.; Siguret, C. Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME J. 2019, 13, 2856–2867. [Google Scholar] [CrossRef]
- Roux, S.; Krupovic, M.; Daly, R.A.; Borges, A.L.; Nayfach, S.; Schulz, F.; Sharrar, A.; Matheus Carnevali, P.B.; Cheng, J.-F.; Ivanova, N.N.; et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 2019, 4, 1895–1906. [Google Scholar] [CrossRef] [Green Version]
- Lossouarn, J.; Dupont, S.; Gorlas, A.; Mercier, C.; Bienvenu, N.; Marguet, E.; Forterre, P.; Geslin, C. An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents. Res. Microbiol. 2015, 166, 742–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeker, N.K.; Kiele, F.; Casjens, S.R.; Gilcrease, E.B.; Thalhammer, A.; Koetz, J.; Barbirz, S. In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620. Viruses 2018, 10, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeker, N.K.; Roske, Y.; Valleriani, A.; Stephan, M.S.; Andres, D.; Koetz, J.; Heinemann, U.; Barbirz, S. Time-resolved DNA release from an O-antigen–specific Salmonella bacteriophage with a contractile tail. J. Biol. Chem. 2019, 294, 11751–11761. [Google Scholar] [CrossRef] [PubMed]
- Zivanovic, Y.; Confalonieri, F.; Ponchon, L.; Lurz, R.; Chami, M.; Flayhan, A.; Renouard, M.; Huet, A.; Decottignies, P.; Davidson, A.R.; et al. Insights into bacteriophage T5 structure from the analysis of its morphogenesis genes and protein components. J. Virol. 2014, 88, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, C.A.; Effantin, G.; Vivès, C.; Engilberge, S.; Bacia, M.; Boulanger, P.; Girard, E.; Schoehn, G.; Breyton, C. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Commun. 2017, 8, 1953. [Google Scholar] [CrossRef] [Green Version]
- Pleška, M.; Lang, M.; Refardt, D.; Levin, B.R.; Guet, C.C. Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat. Ecol. Evol. 2018, 2, 359–366. [Google Scholar] [CrossRef]
- Pathak, D.T.; Wei, X.; Wall, D. Myxobacterial tools for social interactions. Res. Microbiol. 2012, 163, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Demarre, G.; Prudent, V.; Schenk, H.; Rousseau, E.; Bringer, M.A.; Barnich, N.; Tran Van Nhieu, G.; Rimsky, S.; De Monte, S.; Espeli, O. The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog. 2019, 14, e1008123. [Google Scholar] [CrossRef] [Green Version]
- Rakitina, D.V.; Manolov, A.I.; Kanygina, A.V.; Garushyants, S.K.; Baikova, J.P.; Alexeev, D.G.; Ladygina, V.G.; Kostryukova, E.S.; Larin, A.K.; Semashko, T.A.; et al. Genome analysis of E. coli isolated from Crohn’s disease patients. BMC Genom. 2017, 18, 544. [Google Scholar] [CrossRef] [Green Version]
- Chaïb, A.; Philippe, C.; Jaomanjaka, F.; Claisse, O.; Jourdes, M.; Lucas, P.; Cluzet, S.; Le Marrec, C. Lysogeny in the Lactic Acid Bacterium Oenococcus oeni Is Responsible for Modified Colony Morphology on Red Grape Juice Agar. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, L.; Tavares, P.; Alonso, J.C. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res. 2013, 173, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Davison, J. Pre-early functions of bacteriophage T5 and its relatives. Bacteriophage 2015, 5, e1086500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bougdour, A.; Wickner, S.; Gottesman, S. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. Genes Dev. 2006, 20, 884–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Jiménez, M.I.; Mesa, P.; Alonso, J.C. Bacillus subtilis τ subunit of DNA polymerase III interacts with bacteriophage SPP1 replicative DNA helicase G40P. Nucleic Acids Res. 2002, 30, 5056–5064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Klein, M.G.; Tokonzaba, E.; Zhang, Y.; Holden, L.G.; Chen, X.S. The structure of a DnaB-family replicative helicase and its interactions with primase. Nat. Struct. Mol. Biol. 2008, 15, 94–100. [Google Scholar] [CrossRef]
- Ayora, S.; Missich, R.; Mesa, P.; Lurz, R.; Yang, S.; Egelman, E.H.; Alonso, J.C. Homologous-pairing activity of the Bacillus subtilis bacteriophage SPP1 replication protein G35P. J. Biol. Chem. 2002, 277, 35969–35979. [Google Scholar] [CrossRef] [Green Version]
Poster Title | Authors. Presenters Underlined |
---|---|
Ecology and Evolution Session | |
A molecular ecology approach using Stable Isotope Probing and metagenomics to study viruses of methanogens’ diversity | H. Ngo, M. Sotomski, M. Krupovic, F. Enault, O. Chapleur, Théodore B., A. Bize |
Detection of an archaeal-specific viral family, previously thought to infect only hyperthermophiles, in human gut metaviromes | H. Ngo, C. Midoux, O. Rué, M. Mariadassou, V. Da Cunha, V. Loux, F. Enault, A. Bize |
Genome analysis of Pseudomonas phage PPA2 | ZE. Aynur, E. Oryasin, G. Basbülbül, B. Ertugrul, B. Bozdoğan |
Proline and arginine metabolism at the interface of stationary phase physiology and bacteriophage infection in Bacillus subtilis | J. Dorling, A. Corral–Lugo, V. Cvirkaite-Krupovic, P. Tavares |
Phage Therapy and Biotechnology Session | |
DNA-free POETential, a synthetic biology project for the iGEM competition: Repurposing a DNA-less bacterium into an “RNA cell” with a little help from phages | A. Boudigou, C. Diaz, H. Herrmann, N. Moné, L. Maroc, M. Sabeti Azad, P. Bouloc, S. Bury–Moné, O. Rossier |
Bacteriophages active against Meticillin Resistant Staphylococci isolated from bovine mastitis infections | Z. E. Aynur, G. Basbülbül, B. Bozdoğan |
Strategy using phages to control Staphylococcus aureus responsible for bovine mastitis | M. H. Chatain |
The use of interferometric microscopy to quantify viral particles in complex samples such as fecal filtrates | R. Sausset, M. Greffet, M–A. Petit, M. De Paepe |
Assessing phage therapy against the plant pest Xylella fastidiosa | F. Clavijo, M–A. Jacques, M. Ansaldi |
Study of the prophages of Pseudomonas aeruginosa strain PP001 | M. Billaud, M–A. Petit, P. Champion–Arnaud |
Optical Bacterial Susceptibility test by Surface Plasmon Resonance (SPR) | L. O’Connell |
Structure and Assembly Session | |
Detection of viral particles in bacterial cultures of Xanthomonas campestris pv. campestris | M. Kocanova, M. Baránek, A. Eichmeier |
Phage–Host Interaction Session | |
Exploring the mechanisms of host takeover by bacteriophage T5: role of the DNA-binding protein A2 | M. Senarisoy, P. Cuniasse, S. Zinn–Justin, P. Boulanger |
Investigation of A2 protein partners, an essential pre-early protein of bacteriophage T5 | A. Djedid, N. Ginet, A. Battesti, M. Ansaldi |
Filamentous phage translocation in Escherichia coli envelope does not require a functional TolQRA motor | P. Samire, B. Serrano, D. Duché, E. Lemarié, R. Lloubes, L. Houot |
How bacteria and bacteriophage coexist in the mammalian gut? | M. Mansos Lourenco, L. Chaffringeon, Q. Lamy–Besnier, C. Eberl, B. Stacher, L. Debarbieux, L. De Sordi |
Low efficiency of DNA mismatch repair system on lambda phage | M. De Paepe, J. Cornuault, M. Elez |
ATP-dependent formation of Sak4 filaments: a first step towards the single strand annealing | O. Son, S. Baconnais, M–A. Petit, E. Le Cam, F. Lecointe |
Role of H-NS in maintenance of Gifsy prophages lysogeny in Salmonella enterica ST4/74 | J. A. Bulssico, M. Ansaldi, A. Wahl, A. Boulanger |
Isolation and characterization of the bacteriophages infecting Xanthomonas arboricola pv. juglandis | I. Altin, K. Gasic, M. Krivokapic, E. Stefani |
An early expressed Pseudomonas phage protein increases host susceptibility to lysis and antibiotics | M. De Jode, A. Chevallereau, M. Monot, E. Brambilla, G. Karimova, L. Debarbieux |
Functional impact of relB-metK region and clpP carried by 12/111phiA prophage on GBS pathogenicity | A. Renard, M. Lacasse, S. Dos Santos Borges, N. van der Mee–Marquet |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laumay, F.; Chaïb, A.; Linares, R.; Breyton, C. “French Phage Network” Annual Conference—Fifth Meeting Report. Viruses 2020, 12, 446. https://doi.org/10.3390/v12040446
Laumay F, Chaïb A, Linares R, Breyton C. “French Phage Network” Annual Conference—Fifth Meeting Report. Viruses. 2020; 12(4):446. https://doi.org/10.3390/v12040446
Chicago/Turabian StyleLaumay, Floriane, Amel Chaïb, Romain Linares, and Cécile Breyton. 2020. "“French Phage Network” Annual Conference—Fifth Meeting Report" Viruses 12, no. 4: 446. https://doi.org/10.3390/v12040446
APA StyleLaumay, F., Chaïb, A., Linares, R., & Breyton, C. (2020). “French Phage Network” Annual Conference—Fifth Meeting Report. Viruses, 12(4), 446. https://doi.org/10.3390/v12040446