Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes (Natrix natrix)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Snake Capture and Sampling
2.2. Letea Virus Discovery and Genome Sequencing
2.3. Genetic Characterization and Phylogenetic Analysis
2.4. Detection of Gene Reassortment and Intragenic Recombination
2.5. Screening of Potential LEAV Vectors
2.6. Isolation of LEAV
3. Results
3.1. Detection and Genomic Analysis of LEAV
3.2. Phylogenetic Analysis
3.3. Detection of Gene Reassortment and Intragenic Recombination
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Attoui, H.; Mertens, P.; Becnel, J.; Belaganahalli, S.; Bergoin, M.; Brussaard, C.; Chappell, J.; Ciarlet, M.; del Vas, M.; Dermody, T. Orbiviruses, Reoviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier Academic Press: San Diego, CA, USA, 2012; ISBN 9780123846846. [Google Scholar]
- Attoui, H.; Mohd Jaafar, F. Zoonotic and emerging orbivirus infections. OIE Rev. Sci. Tech. 2015, 34, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attoui, H.; Mohd Jaafar, F.; Belhouchet, M.; Aldrovandi, N.; Tao, S.; Chen, B.; Liang, G.; Tesh, R.B.; de Micco, P.; de Lamballerie, X. Yunnan orbivirus, a new orbivirus species isolated from Culex tritaeniorhynchus mosquitoes in China. J. Gen. Virol. 2005, 86, 3409–3417. [Google Scholar] [CrossRef] [PubMed]
- Drolet, B.S.; Van Rijn, P.; Howerth, E.W.; Beer, M.; Mertens, P.P. A Review of Knowledge Gaps and Tools for Orbivirus Research. Vector Borne Zoonotic Dis. 2015, 15, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Attoui, H.; Stirling, J.M.; Munderloh, U.G.; Billoir, F.; Brookes, S.M.; Burroughs, J.N.; de Micco, P.; Mertens, P.P.C.; de Lamballerie, X. Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from cells of Ixodes scapularis. J. Gen. Virol. 2001, 82, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Belaganahalli, M.N.; Maan, S.; Maan, N.S.; Tesh, R.; Attoui, H.; Mertens, P.P.C. Umatilla virus genome sequencing and phylogenetic analysis: Identification of Stretch Lagoon orbivirus as a new member of the Umatilla virus species. PLoS ONE 2011, 6, e23605. [Google Scholar] [CrossRef] [Green Version]
- Huismans, H.; Erasmus, B.J. Identification of the serotype-specific and group-specific antigens of bluetongue virus. Onderstepoort J. Vet. Res. 1981, 48, 51–58. [Google Scholar]
- Mertens, P.P.C.; Pedley, S.; Cowley, J.; Burroughs, J.N.; Corteyn, A.H.; Jeggo, M.H.; Jennings, D.M.; Gorman, B.M. Analysis of the roles of bluetongue virus outer capsid proteins VP2 and VP5 in determination of virus serotype. Virology 1989, 170, 561–565. [Google Scholar] [CrossRef]
- Mohd Jaafar, F.; Belhouchet, M.; Belaganahalli, M.; Tesh, R.B.; Mertens, P.P.C.; Attoui, H. Full-genome characterisation of Orungo, Lebombo and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS ONE 2014, 9, e86392. [Google Scholar] [CrossRef]
- Hanganu, J.; Dubyna, D.; Zhmud, E.; Grigoras, I.; Menke, U.; Drost, H.; Ştefan, N.; Sărbu, I. Vegetation of the Biosphere Reserve “Danube Delta”—With Transboundary Vegetation Map; Danube Delta National Institute: Tulcea, Romania, 2002; ISBN 9036954797. [Google Scholar]
- Cotar, A.I.; Fălcuță, E.; Prioteasa, L.F.; Dinu, S.; Ceianu, C.S.; Paz, S. Transmission Dynamics of the West Nile Virus in Mosquito Vector Populations under the Influence of Weather Factors in the Danube Delta, Romania. Ecohealth 2016, 13, 796–807. [Google Scholar] [CrossRef]
- Prioteasa, F.-L.; Fălcuță, E. An annotated checklist of the mosquitoes (Diptera: Culicidae) of the Danube Delta Biosphere Reserve. Eur. Mosquito Bull. 2010, 28, 240–245. [Google Scholar]
- Sándor, A.D.; Dumitrache, M.O.; D’Amico, G.; Kiss, B.J.; Mihalca, A.D. Rhipicephalus rossicus and not R. sanguineus is the dominant tick species of dogs in the wetlands of the Danube Delta, Romania. Vet. Parasitol. 2014, 204, 430–432. [Google Scholar] [CrossRef]
- Török, E.; Tomazatos, A.; Cadar, D.; Horváth, C.; Keresztes, L.; Jansen, S.; Becker, N.; Kaiser, A.; Popescu, O.; Schmidt-Chanasit, J.; et al. Pilot longitudinal mosquito surveillance study in the Danube Delta Biosphere Reserve and the first reports of Anopheles algeriensis Theobald, 1903 and Aedes hungaricus Mihályi, 1955 for Romania. Parasit. Vectors 2016, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Kolodziejek, J.; Marinov, M.; Kiss, B.J.; Alexe, V.; Nowotny, N. The complete sequence of a West Nile virus lineage 2 strain detected in a Hyalomma marginatum marginatum tick collected from a song thrush (Turdus philomelos) in Eastern Romania in 2013 revealed closest genetic relationship to strain Volgograd 2007. PLoS ONE 2014, 9, e109905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mărcuţan, I.-D.; Kalmár, Z.; Ionică, A.M.; D’Amico, G.; Mihalca, A.D.; Vasile, C.; Sándor, A.D. Spotted fever group rickettsiae in ticks of migratory birds in Romania. Parasit. Vectors 2016, 9, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sándor, A.D.; Mǎrcuţan, D.I.; D’Amico, G.; Gherman, C.M.; Dumitrache, M.O.; Mihalca, A.D. Do the ticks of birds at an important migratory hotspot reflect the seasonal dynamics of Ixodes ricinus at the migration initiation site? A case study in the danube delta. PLoS ONE 2014, 9, e89378. [Google Scholar] [CrossRef] [Green Version]
- Tomazatos, A.; Jansen, S.; Pfister, S.; Török, E.; Maranda, I.; Horv, C.; Keresztes, L.; Spînu, M.; Tannich, E.; Jöst, H.; et al. Ecology of West Nile Virus in the Danube Delta, Romania: Phylogeography, Xenosurveillance and Mosquito Host-Feeding Patterns. Viruses 2019, 11, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truchado, D.A.; Diaz-Piqueras, J.M.; Gomez-Lucia, E.; Doménech, A.; Milá, B.; Pérez-Tris, J.; Schmidt-Chanasit, J.; Cadar, D.; Benítez, L. A Novel and Divergent Gyrovirus with Unusual Genomic Features Detected in Wild Passerine Birds from a Remote Rainforest in French Guiana. Viruses 2019, 11, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Beier, S.; Flade, I.; Górska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.J.; Tappu, R. MEGAN Community Edition—Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 2016, 12, e1004957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and high-performance computing Europe PMC Funders Group. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 2017, 27, 1164–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Tomazatos, A.; Jöst, H.; Schulze, J.; Spînu, M.; Schmidt-Chanasit, J.; Cadar, D.; Lühken, R. Blood-meal analysis of Culicoides (Diptera: Ceratopogonidae) reveals a broad host range and new species records for Romania. Parasit. Vectors 2020, 13, 79. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Mihalca, A.D.; Petney, T. (Eds.) Ticks of Europe and North Africa: A Guide to Species Identification, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Walker, J.B.; Keirans, J.E.; Horak, I. The Genus Rhipicephalus (Acari, Ixodidae): A Guide to the Brown Ticks of the World, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Mertens, P.; Mohd Jaafar, F.; Attoui, H. Orbiviruses and Bluetongue Virus; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- Bingham, A.M.; Graham, S.P.; Burkett-Cadena, N.D.; White, G.S.; Hassan, H.K.; Unnasch, T.R. Detection of Eastern Equine Encephalomyelitis Virus RNA in North American Snakes. Am. J. Trop. Med. Hyg. 2012, 87, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Farfán-Ale, J.A.; Blitvich, B.J.; Marlenee, N.L.; Loroño-Pino, M.A.; Puerto-Manzano, F.; García-Rejón, J.E.; Rosado-Paredes, E.P.; Flores-Flores, L.F.; Ortega-Salazar, A.; Chávez-Medina, J.; et al. Antibodies to West Nile virus in asymptomatic mammals, birds, and reptiles in the Yucatan Peninsula of Mexico. Am. J. Trop. Med. Hyg. 2006, 74, 908–914. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.P.; Hassan, H.K.; Chapman, T.; White, G.; Guyer, C.; Unnasch, T.R. Serosurveillance of Eastern equine encephalitis virus in amphibians and reptiles from Alabama, USA. Am. J. Trop. Med. Hyg. 2012, 86, 540–544. [Google Scholar] [CrossRef] [Green Version]
- Steinman, A.; Banet-noach, C.; Simanov, L.; Grinfeld, N.; Aizenberg, Z.; Levi, O.; Lahav, D.A.N.; Malkinson, M.; Perk, S.; Shpigel, N.Y. Experimental Infection of Common Garter Snakes (Thamnophis sirtalis) with West Nile Virus. Vect Born Zoo Dis. 2006, 6, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Whitney, E.; Jamnback, H.; Means, R.G.; Watthews, T.H. Arthropod-borne-virus survey in St. Lawrence County, New York. Arbovirus reactivity in serum from amphibians, reptiles, birds, and mammals. Am. J. Trop. Med. Hyg. 1968, 17, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Marschang, R.E. Viruses infecting reptiles. Viruses 2011, 3, 2087. [Google Scholar] [CrossRef] [Green Version]
- Attoui, H.; Mendez-lopez, M.R.; Rao, S.; Hurtado-Alendes, A.; Lizaraso-Caparo, F.; Mohd Jaafar, F.; Samuel, A.R.; Belhouchet, M.; Pritchard, L.I.; Melville, L.; et al. Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. Virology 2009, 394, 298–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, E.; Anbalagan, S.; Klumper, P.; Scherba, G.; Simonson, R.R.; Hause, B.M. Mobuck virus genome sequence and phylogenetic analysis: Identification of a novel Orbivirus isolated from a white-tailed deer in Missouri, USA. J. Gen. Virol. 2014, 95, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zheng, Y.; Zhao, G.; Fu, S.; Wang, D.; Wang, Z.; Liang, G. Tibet Orbivirus, a novel Orbivirus species isolated from Anopheles maculatus mosquitoes in Tibet, China. PLoS ONE 2014, 9, e88738. [Google Scholar] [CrossRef] [PubMed]
- Belhouchet, M.; Jaafar, F.; Firth, A.E.; Grimes, J.M.; Mertens, P.P.C.; Attoui, H. Detection of a fourth orbivirus non-structural protein. PLoS ONE 2011, 6, e25697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratinier, M.; Caporale, M.; Golder, M.; Franzoni, G.; Allan, K.; Nunes, S.F.; Armezzani, A.; Bayoumy, A.; Rixon, F.; Shaw, A.; et al. Identification and characterization of a novel non-structural protein of bluetongue virus. PLoS Pathog. 2011, 7, e1002477. [Google Scholar] [CrossRef] [Green Version]
- Belaganahalli, M.N.; Maan, S.; Maan, N.S.; Nomikou, K.; Pritchard, I.; Lunt, R.; Kirkland, P.D.; Attoui, H.; Brownlie, J.; Mertens, P.P.C. Full genome sequencing and genetic characterization of Eubenangee viruses identify Pata virus as a distinct species within the genus Orbivirus. PLoS ONE 2012, 7, e31911. [Google Scholar] [CrossRef]
- Attoui, H.; Fang, Q.; de Lamballerie, X.; Cantaloube, J.-F.; Mohd Jaafar, F. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J. Gen. Virol. 2002, 83, 1941–1951. [Google Scholar] [CrossRef]
- Attoui, H.; Mohd Jaafar, F.; Belhouchet, M.; Biagini, P.; Cantaloube, J.F.; De Micco, P.; De Lamballerie, X. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: Isolation and characterization of a new virus designated aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 2005, 343, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Belaganahalli, M.N.; Maan, S.; Maan, N.S.; Brownlie, J.; Tesh, R.; Attoui, H.; Mertens, P.P.C. Genetic characterization of the tick-borne orbiviruses. Viruses 2015, 7, 2185–2209. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Tesh, R.B.; Duraisamy, R.; Popov, V.L.; da Rosa, A.P.A.T.; Lipkin, W.I. A novel mosquito-borne Orbivirus species found in South-east Asia. J. Gen. Virol. 2013, 94, 1051–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, H.; He, Y.; Zhou, Y.; Xin, A.; Liao, D.; Meng, J. Isolation of Tibet orbivirus from Culicoides and associated infections in livestock in Yunnan, China. Virol. J. 2017, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.M.; Nelson, M.I.; Turner, P.E.; Patton, J.T. Reassortment in segmented RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 2016, 14, 448–460. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.M.; Patton, J.T. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 2011, 19, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Dutta, D.; Ghosh, S.; Bagchi, P.; Chattopadhyay, S.; Nagashima, S.; Kobayashi, N.; Dutta, P.; Krishnan, T.; Naik, T.N.; et al. Full genomic analysis of a human group A rotavirus G9P[6] strain from Eastern India provides evidence for porcine-to-human interspecies transmission. Arch. Virol. 2009, 154, 733–746. [Google Scholar] [CrossRef]
- Horimoto, T.; Kawaoka, Y. Influenza: Lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 2005, 3, 591–600. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Hornyák, Á.; Malik, P.; Marton, S.; Dóró, R.; Cadar, D.; Bányai, K. Emergence of multireassortant bluetongue virus serotype 4 in Hungary. Infect. Genet. Evol. 2015, 33, 6–10. [Google Scholar] [CrossRef]
- Maan, S.; Maan, N.S.; van Rijn, P.A.; van Gennip, R.G.P.; Sanders, O.; Wright, I.M.; Batten, C.; Hoffmann, B.; Eschbaumer, M.; Oura, C.A.L.; et al. Full genome characterisation of bluetongue virus serotype 6 from the Netherlands 2008 and comparison to other field and vaccine strains. PLoS ONE 2010, 5, e10323. [Google Scholar] [CrossRef]
- Nomikou, K.; Hughes, J.; Wash, R.; Kellam, P.; Breard, E.; Zientara, S.; Palmarini, M.; Biek, R.; Mertens, P. Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion. PLoS Pathog. 2015, 11, e1005056. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.E.; Ratinier, M.; Nunes, S.F.; Nomikou, K.; Caporale, M.; Golder, M.; Allan, K.; Hamers, C.; Hudelet, P.; Zientara, S.; et al. Reassortment between Two Serologically Unrelated Bluetongue Virus Strains Is Flexible and Can Involve any Genome Segment. J. Virol. 2013, 87, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Yang, H.; Zhang, Y.; Li, Z.; Lin, J.; Gao, L.; Liao, D.; Cao, Y.; Ren, P.; Li, H.; et al. Full genome sequence of the first bluetongue virus serotype 21 (BTV-21) isolated from China: Evidence for genetic reassortment between BTV-21 and bluetongue virus serotype 16 (BTV-16). Arch. Virol. 2018, 21, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.B.; Goekjian, V.H.; Potgieter, A.C.; Wilson, W.C.; Johnson, D.J.; Mertens, P.P.C.; Stallknecht, D.E. Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes. J. Gen. Virol. 2010, 91, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.B.; Holmes, E.C.; Potgieter, A.C.; Wright, I.M.; Sailleau, C.; Breard, E.; Ruder, M.G.; Stallknecht, D.E. Segmental configuration and putative origin of the reassortant orbivirus, epizootic hemorrhagic disease virus serotype 6, strain Indiana. Virology 2012, 424, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Anbalagan, S.; Cooper, E.; Klumper, P.; Simonson, R.R.; Hause, B.M. Whole genome analysis of epizootic hemorrhagic disease virus identified limited genome constellations and preferential reassortment. J. Gen. Virol. 2014, 95, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Anthony, S.J.; Maan, N.; Maan, S.; Sutton, G.; Attoui, H.; Mertens, P.P.C. Genetic and phylogenetic analysis of the non-structural proteins NS1, NS2 and NS3 of epizootic haemorrhagic disease virus (EHDV). Virus Res. 2009, 145, 211–219. [Google Scholar] [CrossRef]
- Gonzales, H.A.; Knudson, D.L. Orbivirus Species and Speciation: Genetic Reassortment between Corriparta Serogroup Viruses. Intervirology 1987, 28, 126–133. [Google Scholar] [CrossRef]
- Silva, S.P.; Dilcher, M.; Weber, F.; Hufert, F.T.; Weidmann, M.; Cardoso, J.F.; Carvalho, V.L.; Chiang, J.O.; Martins, L.C.; Lima, C.P.S.; et al. Genetic and biological characterization of selected Changuinola viruses (Reoviridae, Orbivirus) from Brazil. J. Gen. Virol. 2014, 95, 2251–2259. [Google Scholar] [CrossRef] [Green Version]
- Xing, S.; Guo, X.; Zhang, X.; Zhao, Q.; Li, L.; Zuo, S.; An, X.; Pei, G.; Sun, Q.; Cheng, S.; et al. A novel mosquito-borne reassortant orbivirus isolated from Xishuangbanna, China. Virol. Sin. 2017, 32, 159–162. [Google Scholar] [CrossRef]
- Coetzee, P.; Van Vuuren, M.; Stokstad, M.; Myrmel, M.; Venter, E.H. Bluetongue virus genetic and phenotypic diversity: Towards identifying the molecular determinants that influence virulence and transmission potential. Vet. Microbiol. 2012, 161, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.-Q.; Ding, N.-Z.; He, M.; Li, S.-N.; Wang, X.-M.; He, H.-B.; Liu, X.-F.; Guo, H.-S. Intragenic Recombination as a Mechanism of Genetic Diversity in Bluetongue Virus. J. Virol. 2010, 84, 11487–11495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngoveni, H.G.; van Schalkwyk, A.; Koekemoer, J.J.O. Evidence of Intragenic Recombination in African Horse Sickness Virus. Viruses 2019, 11, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, S.L.; Marton, S.; Dandár, E.; Kugler, R.; Gál, B.; Jakab, F.; Bálint, Á.; Kecskeméti, S.; Bányai, K. Lineage diversification, homo- and heterologous reassortment and recombination shape the evolution of chicken orthoreoviruses. Sci. Rep. 2016, 6, 36960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naglič, T.; Rihtarič, D.; Hostnik, P.; Toplak, N.; Koren, S.; Kuhar, U.; Jamnikar-Ciglenečki, U.; Kutnjak, D.; Steyer, A. Identification of novel reassortant mammalian orthoreoviruses from bats in Slovenia. BMC Vet. Res. 2018, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Shao, J.W.; Li, X.W.; Mei, M.M.; Guo, J.Y.; Li, W.F.; Huang, W.J.; Chi, S.H.; Yuan, S.; Li, Z.L.; et al. Molecular characterization of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. BMC Vet. Res. 2019, 15, 1–9. [Google Scholar] [CrossRef]
- Marthaler, D.; Suzuki, T.; Rossow, K.; Culhane, M.; Collins, J.; Goyal, S.; Tsunemitsu, H.; Ciarlet, M.; Matthijnssens, J. VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Vet. Microbiol. 2014, 172, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Bányai, K.; Borzák, R.; Ihász, K.; Fehér, E.; Dán, Á.; Jakab, F.; Papp, T.; Hetzel, U.; Marschang, R.E.; Farkas, S.L. Whole-genome sequencing of a green bush viper reovirus reveals a shared evolutionary history between reptilian and unusual mammalian orthoreoviruses. Arch. Virol. 2013, 159, 153–158. [Google Scholar] [CrossRef]
- Day, J.M. The diversity of the orthoreoviruses: Molecular taxonomy and phylogentic divides. Infect. Genet. Evol. 2009, 9, 390–400. [Google Scholar] [CrossRef]
- Duncan, R.; Corcoran, J.; Shou, J.; Stoltz, D. Reptilian reovirus: A new fusogenic orthoreovirus species. Virology 2003, 319, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Kugler, R.; Marschang, R.E.; Ihász, K.; Lengyel, G.; Jakab, F.; Bányai, K.; Farkas, S.L. Whole genome characterization of a chelonian orthoreovirus strain identifies significant genetic diversity and may classify reptile orthoreoviruses into distinct species. Virus Res. 2016, 215, 94–98. [Google Scholar] [CrossRef]
- Janev Hutinec, B.; Mebert, K. Ecological Partitioning between Dice Snakes (Natrix tessellata) and Grass Snakes (Natrix natrix) in Southern Croatia. Mertensiella 2011, 18, 225–233. [Google Scholar]
- Hermanns, K.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Cimodo virus belongs to a novel lineage of reoviruses isolated from African mosquitoes. J. Gen. Virol. 2014, 95, 905–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auguste, A.J.; Kaelber, J.T.; Fokam, E.B.; Guzman, H.; Carrington, C.V.F.; Erasmus, J.H.; Kamgang, B.; Popov, V.L.; Jakana, J.; Liu, X.; et al. A Newly Isolated Reovirus Has the Simplest Genomic and Structural Organization of Any Reovirus. J. Virol. 2015, 89, 676–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, R.L.; Whitehead, R.H.; Wetters, E.J.; Gorman, B.M.; Carley, J.G. A survey of antibody to 10 arboviruses (Koongol group, Mapputta group and ungrouped) isolated in Queensland. Trans. R. Soc. Trop. Med. Hyg. 1970, 64, 748–753. [Google Scholar] [CrossRef]
- Harrison, J.J.; Warrilow, D.; McLean, B.J.; Watterson, D.; O’Brien, C.A.; Colmant, A.M.G.; Johansen, C.A.; Barnard, R.T.; Hall-Mendelin, S.; Davis, S.S.; et al. A new orbivirus isolated from mosquitoes in North-Western Australia shows antigenic and genetic similarity to corriparta virus but does not replicate in vertebrate cells. Viruses 2016, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Dilcher, M.; Hasib, L.; Lechner, M.; Wieseke, N.; Middendorf, M.; Marz, M.; Koch, A.; Spiegel, M.; Dobler, G.; Hufert, F.T.; et al. Genetic characterization of Tribeč virus and Kemerovo virus, two tick-transmitted human-pathogenic Orbiviruses. Virology 2012, 423, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Van Gennip, R.G.P.; Drolet, B.S.; Rozo Lopez, P.; Roost, A.J.C.; Boonstra, J.; Van Rijn, P.A. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit. Vectors 2019, 12, 470. [Google Scholar] [CrossRef] [Green Version]
- Anthony, S.J.; Maan, N.; Maan, S.; Sutton, G.; Attoui, H.; Mertens, P.P.C. Genetic and phylogenetic analysis of the core proteins VP1, VP3, VP4, VP6 and VP7 of epizootic haemorrhagic disease virus (EHDV). Virus Res. 2009, 145, 187–199. [Google Scholar] [CrossRef]
- Anthony, S.J.; Darpel, K.E.; Belaganahalli, M.N.; Maan, N.; Nomikou, K.; Sutton, G.; Attoui, H.; Maan, S.; Mertens, P.P.C. RNA segment 9 exists as a duplex concatemer in an Australian strain of epizootic haemorrhagic disease virus (EHDV): Genetic analysis and evidence for the presence of concatemers as a normal feature of orbivirus replication. Virology 2011, 420, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Mohd Jaafar, F.; Goodwin, A.E.; Belhouchet, M.; Merry, G.; Fang, Q.; Cantaloube, J.F.; Biagini, P.; de Micco, P.; Mertens, P.P.C.; Attoui, H. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: Family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology 2008, 373, 310–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Tarlow, O.; Ballard, A.; Desselberger, U.; McCrae, M.A. Genomic concatemerization/deletion in rotaviruses: A new mechanism for generating rapid genetic change of potential epidemiological importance. J. Virol. 1993, 67, 6625–6632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murao, K.; Uyeda, I.; Ando, Y.; Kimura, I.; Cabauatan, P.Q.; Koganezawa, H. Genomic rearrangement in genome segment 12 of rice dwarf phytoreovirus. Virology 1996, 216, 238–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Liu, W.J.; Xu, W.; Jin, T.; Zhao, Y.; Song, J.; Shi, Y.; Ji, W.; Jia, H.; Zhou, Y.; et al. A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene. PLoS Pathog. 2016, 12, e1005883. [Google Scholar] [CrossRef] [PubMed]
- Basak, A.K.; Gouet, P.; Grimes, J.; Roy, P.; Stuart, D. Crystal structure of the top domain of African horse sickness virus VP7: Comparisons with bluetongue virus VP7. J. Virol. 1996, 70, 3797–3806. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.H.; Nason, E.; Staeuber, N.; Jiang, W.R.; Monastryrskaya, K.; Roy, P. RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells. J. Virol. 2001, 75, 3937–3947. [Google Scholar] [CrossRef] [Green Version]
- Tomori, O.; Fabiyi, A.; Murphy, F. Characterization of Orungo virus, an orbivirus from Uganda and Nigeria. Arch. Virol. 1976, 51, 285–298. [Google Scholar] [CrossRef]
- Tomori, O.; Aitken, T.H.G. Orungo Virus: Transmission Studies with Aedes Albopictus and Aedes Aegypti (Diptera: Culicidae)1. J. Med. Entomol. 1978, 14, 523–526. [Google Scholar]
- Mellor, P.S.; Jennings, M. Replication of Eubenangee virus in Culicoides nubeculosus (Mg.) and Culicoides variipennis (Coq.). Arch. Virol. 1980, 63, 203–208. [Google Scholar] [CrossRef]
- Ebersohn, K.; Coetzee, P.; Snyman, L.P.; Swanepoel, R.; Venter, E.H. Phylogenetic characterization of the Palyam serogroup orbiviruses. Viruses 2019, 11, 446. [Google Scholar] [CrossRef] [Green Version]
Segment | Protein Encoded | Segment Length (bp) | Segment ORF (with Stop Codon) | Predicted Protein (aa) | Predicted Protein Mass (kDa) | 5’ UTR (bp) | 5’ Conserved Terminus | 3’ UTR (bp) | 3’ Conserved Terminus | %GC | Top Blastp Results (ORF)% Pairwise Identity, Accession no. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | RNA-dependent RNA polymerase (VP1) | 4010 | 3855 | 1284 | 147.84 | 44 | 5’-GUGAAAG | 111 | CAUUUAC-3’ | 32.4% | VP1 AHSV-5 55.4%, AKP19848 |
2 | similar to outer shell VP2 of BTV, neutralization epitope (OC1) | 3060 | 2979 | 992 | 115.13 | 32 | 5’-GUAAUUA | 49 | UUGUUAC-3’ | 31.8% | VP2 BTV-5 25.6%, CAE51147 |
3 | major subcore protein (T2/VP3) | 2851 | 2727 | 908 | 104.30 | 68 | 5’-GUAAAUG | 56 | GACUUAC-3’ | 34.9% | VP3 LEBV 54.2%, YP_009507713 |
4 | minor core and capping enzyme (CaP/VP4) | 2058 | 1941 | 646 | 75.50 | 51 | 5’-GUAAAAC | 66 | AAAGUAC-3’ | 36.2% | VP4 PALV 50.5%, QCU80098 |
5 | tubules (TuP/NS1) | 1960 | 1851 | 616 | 71.06 | 29 | 5’-GUAGAAG | 80 | GAUUUAC-3’ | 37.0% | NS1 AHSV-8 32.1%, AKP19783 |
6 | outer capsid protein (OC2/VP5) | 1684 | 1605 | 534 | 60.03 | 41 | 5’-GUAAAAA | 38 | GAAUUAC-3’ | 36.0% | VP5 CGLV 48%, AGZ91957 |
7 | major core surface protein (T13/VP7) | 1164 | 1053 | 350 | 39.30 | 46 | 5’-GUAUAAC | 65 | CACUUAC-3’ | 37.7% | VP7 WALV 46.2%, AIT55708 |
8 | nonstructural protein, viral inclusion bodies (ViP/NS2) | 1281 | 1107 | 368 | 41.04 | 85 | 5’-GUAAAUA | 89 | GACUUAC-3’ | 36.8% | NS2 CGLV 33.5%, ACZ91977 |
9 | minor core protein, helicase (Hel/VP6) | 1164 | 936 | 311 | 34.71 | 61 | 5’-GUAAUGA | 167 | AGCGUAC-3’ | 33.6% | VP6 CGLV 32.1%, AGZ91984 |
nonstructural protein (NS4) | 246 | 81 | 10.03 | - | - | - | - | 40.2% | no results | ||
10 | nonstructural, virus release (NS3) | 751 | 603 | 200 | 21.62 | 111 | 5’-GUAAAAG | 37 | UCAUUAC-3’ | 36.8% | NS3 IFEV 35.8%, QBL15286 |
Total genome length | 19,983 |
Segment | Protein | AHSV | CGLV | WALV | PHSV | CGV | SCRV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nt | aa | nt | aa | nt | aa | nt | aa | nt | aa | nt | aa | ||
1 | VP1 (Pol) | 58 | 54 | 58 | 53 | 60 | 54 | 56 | 46 | 50 | 47 | 42 | 33 |
2 | VP2 (OC1) | 30 | 15 | 31 | 10 | 33 | 11 | 31 | 11 | 19 | NSI | 21 | NSI |
3 | VP3 (T2) | 57 | 52 | 57 | 53 | 58 | 53 | 50 | 36 | 46 | 37 | 37 | 22 |
4 | VP4 (CaP) | 54 | 50 | 53 | 49 | 53 | 48 | 52 | 44 | 44 | 40 | 44 | 35 |
5 | NS1 (TuP) | 42 | 26 | 39 | 24 | 40 | 22 | 42 | 21 | 28 | 16 | 28 | 15 |
6 | VP5 (OC2) | 51 | 41 | 54 | 46 | 54 | 45 | 47 | 34 | 42 | 31 | 38 | 27 |
7 | VP7 (T13) | 52 | 41 | 52 | 42 | 53 | 45 | 41 | 22 | 37 | 25 | 32 | 18 |
8 | NS2 (Vip) | 42 | 27 | 45 | 30 | 45 | 25 | 34 | 17 | 34 | 21 | 25 | 12 |
9 | VP6 (Hel) | 36 | 22 | 38 | 26 | 37 | 24 | 43 | 24 | 33 | 20 | 24 | 14 |
NS4 | 32 | NSI | 30 | 11 | 40 | NSI | 27 | NSI | 21 | NSI | N/A | ||
10 | NS3 | 35 | 23 | 37 | 21 | 36 | 21 | 32 | 15 | 36 | 21 | 29 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomazatos, A.; Marschang, R.E.; Maranda, I.; Baum, H.; Bialonski, A.; Spînu, M.; Lühken, R.; Schmidt-Chanasit, J.; Cadar, D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes (Natrix natrix). Viruses 2020, 12, 243. https://doi.org/10.3390/v12020243
Tomazatos A, Marschang RE, Maranda I, Baum H, Bialonski A, Spînu M, Lühken R, Schmidt-Chanasit J, Cadar D. Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes (Natrix natrix). Viruses. 2020; 12(2):243. https://doi.org/10.3390/v12020243
Chicago/Turabian StyleTomazatos, Alexandru, Rachel E. Marschang, Iulia Maranda, Heike Baum, Alexandra Bialonski, Marina Spînu, Renke Lühken, Jonas Schmidt-Chanasit, and Daniel Cadar. 2020. "Letea Virus: Comparative Genomics and Phylogenetic Analysis of a Novel Reassortant Orbivirus Discovered in Grass Snakes (Natrix natrix)" Viruses 12, no. 2: 243. https://doi.org/10.3390/v12020243