Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection Site
2.2. Larval Collection, DNA Barcoding, and the Establishment of Laboratory Colonies
2.3. Adult Mosquito Collection
2.4. Virus Isolation from Wild Mosquitoes
2.5. Detection of Medically Important Mosquito-transmitted Arboviruses
2.6. Next-Generation Sequencing and Detection of Virus Isolates
2.7. Genetic Characterization of Detected Viruses
2.8. Plaque Purification of Isolated Viruses and Complete Genome Determination
2.9. Purification of the Virus Particle and Structural Protein Analysis
2.10. Phylogenetic Analysis of RNA Viruses
2.11. Confirming Vertical Transmission of Viruses in Laboratory Colonies of Aedes Aegypti
2.12. DENV Superinfection in C6/36 Cells Persistently Infected with AaTV
2.13. Accession Numbers
3. Results
3.1. Larval Collection and DNA Barcoding
3.2. Adult Mosquito Collection and Detection of Medically Important Arboviruses
3.3. Genetic Characterization of RNA Viruses
3.3.1. Negative-Sense ssRNA Virus Phasivirus
3.3.2. Positive-Sense ssRNA Viruses
Flaviviruses
Alphamesoniviruses
Negeviruses
Iflavirus
Tetravirus
Korle-bu Aedes Virus (KoBV)
Mole Culex Virus (MoCV)
Aedes Aegypti Virga-like Virus (AaVV)
3.3.3. Double-stranded RNA Viruses
Reovirus
Totivirus
3.4. DENV Superinfection in C6/36 Cells Persistently Infected with AaTV
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uyar, Y. Arboviral Infections around the World. J. Trop. Dis. 2013, 1, e105. [Google Scholar] [CrossRef]
- Beckham, D.J.; Tyler, K.L. Arbovirus Infections. J. Neuroinfectious Dis. 2016, 21, 1599–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The Global Ecology and Epidemiology of West Nile Virus. Biomed. Res. Int. 2015, 2015, 376230. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Gao, X.; Gould, E.A. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg. Microbes Infect. 2015, 4, e18. [Google Scholar] [CrossRef]
- Weetman, D.; Kamgang, B.; Badolo, A.; Moyes, C.L.; Shearer, F.M.; Coulibaly, M.; Pinto, J.; Lambrechts, L.; McCall, P.J. Aedes Mosquitoes and Aedes -Borne Arboviruses in Africa: Current and Future Threats. Int. J. Environ. Res. Public Health. 2018, 15, 220. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Trombetta, C.M.; Montomoli, E. Emerging and Re-emerging Arboviral Diseases as a Global Health Problem. In Public Health; Majumder, M.A.A., Ed.; IntechOpen: London, UK, 2018; pp. 25–46. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.G.; Vasilakis, N.; Guzman, H.; Widen, S.G.; Wood, T.G.; Popov, V.L.; Thangamani, S.; Tesh, R.B. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence. Am. J. Trop. Med. Hyg. 2015, 92, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-specific virus discovery: Significance for the arbovirus community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [Green Version]
- Vasilakis, N.; Tesh, R.B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 2015, 15, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Asad, S.; Khromykh, A.A.; Asgari, S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci. Rep. 2017, 7, 6935. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Neville, P.; Nicholson, J.; Eden, J.S.; Imrie, A.; Holmes, E.C. High Resolution Meta-Transcriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia. J. Virol. 2017, 91, e00680-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakrzewski, M.; Rašić, G.; Darbro, J.; Krause, L.; Poo, Y.S.; Filipović, I.; Parry, R.; Asgari, S.; Devine, G.; Suhrbier, A. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Sci. Rep. 2018, 8, 4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoler, J.; Anto, F.; Fobil, J.N.; Awandare, G.A. Deconstructing “malaria”: West Africa as the next front for dengue fever surveillance and control. Acta Trop. 2014, 134, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Jupp, P.G. Mosquitoes of Southern Africa: Culicinae and Toxorhynchitinae; Ekogilde Publishers: Hartebeespoort, South Africa, 1996; pp. 1–156. [Google Scholar]
- Rueda, L.M. Pictorial Keys for the Identification of Mosquitoes (Diptera: Culicidae) Associated with Dengue Virus Transmission. Zootaxa 2004, 589, 1–60. [Google Scholar] [CrossRef]
- Rudbeck, L.; Dissing, J. Rapid, Simple Alkaline Extraction of Human Genomic DNA from Whole Blood, Buccal Epithelial Cells, Semen and Forensic Stains for PCR. Biotechniques 1998, 25, 588–590, 592. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Saitoh, Y.; Hattori, J.; Chinone, S.; Nihei, N.; Tsuda, Y.; Kurahashi, H.; Kobayashi, M. Yeast-generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling. J. Am. Mosq. Control. Assoc. 2004, 20, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.; Ohashi, M.; Osei, J.H.N.; Agbosu, E.; Opoku, M.; Agbekudzi, A.; Joannides, J.; Fujita, R.; Sasaki, T.; Bonney, J.H.K.; et al. Detection of a novel putative phlebovirus and first isolation of Dugbe virus from ticks in Accra, Ghana. Ticks Tick Borne Dis. 2017, 8, 640–645. [Google Scholar] [CrossRef]
- Ejiri, H.; Kuwata, R.; Tsuda, Y.; Sasaki, T.; Kobayashi, M.; Sato, Y.; Sawabe, K.; Isawa, H. First isolation and characterization of a mosquito-borne orbivirus belonging to the species Umatilla virus in East Asia. Arch. Virol. 2014, 159, 2675–2685. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vorndam, A.V. Rapid Detection and Typing of Dengue Viruses from Clinical Samples by Using Reverse Transcriptase-Polymerase Chain Reaction. J. Clin. Microbiol. 1992, 30, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Sawabe, K.; Sasaki, T.; Hoshino, K.; Isawa, H.; Kotaki, A.; Ito, M.; Takasaki, T.; Eshita, Y.; Kobayashi, M. Evaluation of the assays for detection of Wet Nile virus from mosquitoes in Japan. Med. Entomol. Zool. 2006, 57, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.K.; Nishibori, T.; Watanabe, K.; Ito, M.; Kotaki, A.; Tanaka, K.; Kurane, I.; Takasaki, T. Chikungunya Virus Isolated from a Returnee to Japan from Sri Lanka: Isolation of Two Sub-Strains with Different Characteristics. Am. J. Trop. Med. Hyg. 2009, 81, 865–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwata, R.; Satho, T.; Isawa, H.; Yen, N.T.; Phong, T.V.; Nga, P.T.; Kurashige, T.; Hiramatsu, Y.; Fukumitsu, Y.; Hoshino, K.; et al. Characterization of Dak Nong virus, an insect nidovirus isolated from Culex mosquitoes in Vietnam. Arch. Virol. 2013, 158, 2273–2284. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, M.; Zhang, H.; Wang, H.Y.; Wang, L.F. Improved rapid amplification of cDNA ends (RACE) for mapping both the 5′ and 3′ terminal sequences of paramyxovirus genomes. J. Virol. Methods. 2005, 130, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service_ multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Kuwata, R.; Isawa, H.; Hoshino, K.; Sasaki, T.; Kobayashi, M.; Maeda, K.; Sawabe, K. Analysis of Mosquito-Borne Flavivirus Superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex Flavivirus (Flaviviridae). J. Med. Entomol. 2015, 52, 222–229. [Google Scholar] [CrossRef]
- Chandler, J.A.; Thongsripong, P.; Green, A.; Kittayapong, P.; Wilcox, B.A.; Schroth, G.P.; Kapan, D.D.; Bennett, S.N. Metagenomic shotgun sequencing of a Bunyavirus in wild caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses. Virology 2014, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Öhlund, P.; Lundén, H.; Blomström, A.L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019, 55, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Nga, P.T.; del Carmen Parquet, C.; Lauber, C.; Parida, M.; Nabeshima, T.; Yu, F.; Thuy, N.T.; Inoue, S.; Ito, T.; Okamoto, K.; et al. Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathog. 2011, 7, e1002215. [Google Scholar] [CrossRef]
- Zirkel, F.; Kurth, A.; Quan, P.L.; Briese, T.; Ellerbrok, H.; Pauli, G.; Leendertz, F.H.; Lipkin, W.I.; Ziebuhr, J.; Drosten, C.; et al. An Insect Nidovirus Emerging from a Primary Tropical Rainforest. MBio 2011, 2, 21–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valles, S.M.; Chen, Y.; Firth, A.E.; Guérin, D.M.A.; Hashimoto, Y.; Herrero, S.; de Miranda, J.R.; Ryabov, E.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Iflaviridae. J. Gen. Virol. 2017, 527–528. [Google Scholar] [CrossRef]
- Webster, C.L.; Waldron, F.M.; Robertson, S.; Crowson, D.; Ferrari, G.; Quintana, J.F.; Brouqui, J.M.; Bayne, E.H.; Longdon, B.; Buck, A.H.; et al. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biol. 2015, 13, e1002210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature. 2016, 540, 539–543. [Google Scholar] [CrossRef]
- Sadeghi, M.; Popov, V.; Guzman, H.; Phan, T.G.; Vasilakis, N.; Tesh, R.; Delwart, E. Genomes of viral isolates derived from different mosquitos species. Virus Res. 2017, 242, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, R.; Kato, F.; Kobayashi, D.; Murota, K.; Takasaki, T.; Tajima, S.; Lim, C.K.; Saijo, M.; Isawa, H.; Sawabe, K. Persistent viruses in mosquito cultured cell line suppress multiplication of flaviviruses. Heliyon 2018, 4, e00736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csibra, E.; Brierley, I.; Irigoyen, N. Modulation of Stop Codon Read-Through Efficiency and Its Effect on the Replication of Murine Leukemia Virus. J. Virol. 2014, 88, 10364–10376. [Google Scholar] [CrossRef] [Green Version]
- Napthine, S.; Yek, C.; Powell, M.L.; Brown, T.D.; Brierley, I. Characterization of the stop codon readthrough signal of Colorado tick fever virus segment 9 RNA. RNA 2012, 18, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Pauvolid-corrêa, A.; Solberg, O.; Couto-lima, D.; Nogueira, M.; Langevin, S.; Komar, N. Novel Viruses Isolated from Mosquitoes in Pantanal, Brazil. Genome Announc. 2016, 4, e01195-16. [Google Scholar] [CrossRef] [Green Version]
- Ladner, J.T.; Wiley, M.R.; Beitzel, B.; Auguste, A.J.; Dupuis, A.P. II.; Lindquist, M.E.; Sibley, S.D.; Kota, K.P.; Fetterer, D.; Eastwood, G.; et al. A Multicomponent Animal Virus Isolated from Mosquitoes. Cell Host Microbe. 2016, 20, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attar, N. Viral evolution: Animal viruses in pieces. Nat. Rev. Microbiol. 2016, 14, 606–607. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.L.; Longdon, B.; Lewis, S.H.; Obbard, D.J. Twenty-Five New Viruses Associated with the Drosophilidae (Diptera). Evol. Bioinform. Online 2016, 12, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attoui, H.; Mohd Jaafar, F.; Belhouchet, M.; Biagini, P.; Cantaloube, J.F.; de Micco, P.; de Lamballerie, X. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: Isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 2005, 343, 212–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwata, R.; Hoshino, K.; Isawa, H.; Tsuda, Y.; Tajima, S.; Sasaki, T.; Takasaki, T.; Kobayashi, M.; Sawabe, K. Establishment and characterization of a cell line from the mosquito Culex tritaeniorhynchus (Diptera: Culicidae). Vitr. Cell. Dev. Biol. Anim. 2012, 48, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Isawa, H.; Kuwata, R.; Tajima, S.; Takasaki, T.; Iwabuchi, K.; Sawabe, K.; Kobayashi, M.; Sasaki, T. Establishment and characterization of two new cell lines from the mosquito Armigeres subalbatus (Coquillett) (Diptera: Culicidae). Vitr. Cell. Dev. Biol. Anim. 2015, 51, 672–679. [Google Scholar] [CrossRef]
- Rojas, D.P.; Barrera-Fuentes, G.A.; Pavia-Ruz, N.; Salgado-Rodriguez, M.; Che-Mendoza, A.; Manrique-Saide, P.; Vazquez-Prokopec, G.M.; Halloran, M.E.; Longini, I.M.; Gomez-Dantes, H. Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: Baseline and first year follow-up. PLoS Negl. Trop. Dis. 2018, 12, e0006847. [Google Scholar] [CrossRef]
- Rodrigues, N.C.P.; Daumas, R.P.; de Almeida, A.S.; Dos Santos, R.S.; Koster, I.; Rodrigues, P.P.; Gomes, M.F.; Macedo, A.F.; Gerardi, A.; Leite, I.D.C. Risk factors for arbovirus infections in a low-income community of Rio de Janeiro, Brazil, 2015–2016. PLoS ONE 2018, 13, e0198357. [Google Scholar] [CrossRef]
- Tarnagda, Z.; Cissé, A.; Bicaba, B.W.; Diagbouga, S.; Sagna, T.; Ilboudo, A.K.; Tialla, D.; Lingani, M.; Sondo, K.A.; Yougbaré, I.; et al. Dengue Fever in Burkina Faso, 2016. Emerg. Infect. Dis. 2018, 24, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Kutsuna, S.; Taniguchi, S.; Tajima, S.; Maeki, T.; Kato, F.; Lim, C.K.; Saijo, M.; Tsuboi, M.; Yamamoto, K.; et al. Dengue Virus Exported from Côte d’Ivoire to Japan, June 2017. Emerg. Infect. Dis. 2017, 23, 1758–1760. [Google Scholar] [CrossRef] [Green Version]
- Amoako, N.; Duodu, S.; Dennis, F.E.; Bonney, J.H.K.; Asante, K.P.; Ameh, J.; Mosi, L.; Hayashi, T.; Agbosu, E.E.; Pratt, D.; et al. Detection of Dengue Virus among Children with Suspected Malaria, Accra, Ghana. Emerg. Infect. Dis. 2018, 24, 1544–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonney, J.H.K.; Hayashi, T.; Dadzie, S.; Agbosu, E.; Pratt, D.; Nyarko, S.; Asiedu-Bekoe, F.; Ido, E.; Sarkodie, B.; Ohta, N.; et al. Molecular detection of dengue virus in patients suspected of Ebola virus disease in Ghana. PLoS One. 2018, 13, e0208907. [Google Scholar] [CrossRef] [PubMed]
- Appawu, M.; Dadzie, S.; Abdul, H.; Asmah, H.; Boakye, D.; Wilson, M.; Ofori-Adjei, D. Surveillance of viral haemorrhagic fevers in ghana: Entomological assessment of the risk of transmission in the northern regions. Ghana Med. J. 2006, 40, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, H.; Balasubramaniam, V.; Ooi, M.K.; Chew, M. Viral Determinants and Vector Competence of Zika Virus Transmission. Front. Microbiol. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Bennett, K.L.; Linton, Y.M.; Shija, F.; Kaddumukasa, M.; Djouaka, R.; Misinzo, G.; Lutwama, J.; Huang, Y.M.; Mitchell, L.B.; Richards, M.; et al. Molecular Differentiation of the African Yellow Fever Vector Aedes bromeliae (Diptera: Culicidae) from Its Sympatric Non-vector Sister Species, Aedes lilii. PLoS Negl. Trop. Dis. 2015, 9, e0004250. [Google Scholar] [CrossRef] [PubMed]
- Esena, R.K.; Amoyaw, F.P.; Doku-Amponsah, K. Aedes (Stegomyia) Mosquitoes in the Ashanti Region of Ghana: Implications for Yellow Fever Paucity. J. Biol. Agric. Healthc. 2013, 3, 131–143. [Google Scholar]
- LaBeaud, A.D.; Sutherland, L.J.; Muiruri, S.; Muchiri, E.M.; Gray, L.R.; Zimmerman, P.A.; Hise, A.G.; King, C.H. Arbovirus Prevalence in Mosquitoes, Kenya. Emerg. Infect. Dis. 2011, 17, 233–241. [Google Scholar] [CrossRef]
- Schultz, M.J.; Frydman, H.M.; Connor, J.H. Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 2018, 518, 406–413. [Google Scholar] [CrossRef]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.M.; et al. Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes In Vivo. J. Virol. 2019, 93, e00705-19. [Google Scholar] [CrossRef] [Green Version]
- Lucía-sanz, A.; Manrubia, S. Multipartite viruses: Adaptive trick or evolutionary treat? NPJ. Syst. Biol. Appl. 2017, 3, 34. [Google Scholar] [CrossRef]
Mosquito | Viral Genome | Virus Species | Abbreviation | Virus Family | Virus Genus | Source | Year of Source-Sample Collection | Total No. of Isolates | Region | Accession No. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Greater Accra | Western | Volta | Savannah | Upper West | ||||||||||
Field-caught mosquitoes | ssRNA (+) | Cell fusing agent virus | CFAV | Flaviviridae | Flavivirus | Ae. aegypti (female and male) | 2016 | 2 | 2 | 0 | 0 | 0 | 0 | LC496857 (isolate 16GH83) |
Cavally virus | CAVV | Mesoniviridae | Alphamesonivirus-1 | Cx. quinquefasciatus (female and male) | 2015 | 44 | 44 | 0 | 0 | 0 | 0 | LC497421 | ||
Ae. aegypti (female and male) | ||||||||||||||
Culex flavivirus | CxFV | Flaviviridae | Flavivirus | Culex spp. (female) | 2016 | 3 | 2 | 0 | 0 | 1 | 0 | LC504568 (isolate 16GH36) | ||
Korle-bu Aedes virus* | KoBV | unclassified | unclassified | Ae. aegypti (female) | 2016 | 8 | 8 | 0 | 0 | 0 | 0 | LC496785 (isolate 16GH61) | ||
Odorna virus* | OdV | Mesoniviridae | Alphamesonivirus-1 | Ae. aegypti (male) | 2016 | 1 | 1 | 0 | 0 | 0 | 0 | LC497422 (isolate 16GH83) | ||
Tesano Aedes virus* | TeAV | Iflaviridae | unclassified | Ae. aegypti (female and male) Culex spp. (female) | 2016 | 21 | 18 | 0 | 3 | 0 | 0 | LC496784 (isolate 16GH73) | ||
Goutanap virus | GoNV | unclassified | Negevirus (proposed genus) | Culex spp. (female) | 2016 | 1 | 0 | 1 | 0 | 0 | 0 | LC504569 (isolate 16GH1) | ||
Mole Culex virus* | MoCV | unclassified | Jingmenvirus (proposed genus) | Culex spp. (female) | 2016 | 3 | 0 | 0 | 0 | 3 | 0 | Segment 1: LC505052 (isolate 16GH38) | ||
Segment 2: LC505053 (isolate 16GH38) | ||||||||||||||
Segment 3: LC505054 (isolate 16GH38) | ||||||||||||||
Segment 4: LC505055 (isolate 16GH38) | ||||||||||||||
West Accra virus* | WAV | unclassified | Negevirus | Cx. qunquefasciatus (female and male) | 2015 | 17 | 17 | 0 | 0 | 0 | 0 | LC496489 | ||
Ae. aegypti (female and male) | ||||||||||||||
Culex permutotetra-like virus* | CxPTV | Permutotetraviridae | unclassified | Culex spp. (female) | 2016 | 5 | 0 | 1 | 0 | 4 | 0 | LC505019 (isolate 16GH6) | ||
ssRNA (-) | Phasi Charoen-like phasivirus | PCLV | Phenuiviridae | Phasivirus | Ae. aegypti (female and male) | 2016 | 7 | 2 | 0 | 1 | 4 | 0 | L segment: LC498491 (isolate 16GH73) | |
M segment: LC498492 (isolate 16GH73) | ||||||||||||||
S segment: LC498493 (isolate 16GH73) | ||||||||||||||
dsRNA | Aedes pseudoscutellaris reovirus | APRV | Reoviridae | Dinovernavirus | Ae. aegypti (female and male) Culex spp. (female) | 2015/2016 | 32 | 32 | 0 | 0 | 0 | 0 | (Shown in Table 2) | |
Ae. aegypti laboratory colony | ssRNA (+) | Aedes aegypti virga-like virus* | AaVV | unclassified | unclassified | Ae. aegypti laboratory colony GH115 | 2016 | NA | NA | NA | NA | NA | NA | LC496783 |
dsRNA | Aedes aegypti totivirus* | AaTV | Totiviridae | unclassified | Ae. aegypti laboratory colony GH115 | 2016 | NA | NA | NA | NA | NA | NA | LC496074 |
APRV 15AC18 | Amino Acid Sequence Identities and Similarity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Terminal Sequences (5’-3’) | APRV | FAKV CSW77 | ||||||||
Segment (Accession No.) | Segment Length (bp) | ORF Length (aa) | Protein | Encoded Gene | 5’ Terminus | 3’ Terminus | Identity (%) | Similarity (%) | Identity (%) | Similarity (%) |
1 (LC496848) | 3820 | 1189 | VP1 | nonstructural protein | AGUUUAAUUCCC | UUGAUCCUAAGU | 86.8 | 98.6 | 81.7 | 97.6 |
2 (LC496849) | 3752 | 1233 | VP2 | RNA-dependent RNA polymerase | AGUUAAACCGCC | UUGUUUUUAAGU | 96.4 | 99.5 | 89.5 | 98.5 |
3 (LC496850) | 3732 | 1202 | VP3 | major capsid protein | AGUUUAAAACCC | UUUGAUACUAGU | 95.8 | 99.4 | 90.0 | 99.0 |
4 (LC496851) | 3375 | 1003 | VP4 | nonstructural protein | AGUUUAAAAACC | UUAAUCCUAAGU | 87.4 | 97.8 | 72.8 | 93.3 |
5 (LC496852) | 3227 | 1056 | VP5 | turret protein | AGUUAAAACCAC | UUUAGUAAUAGU | 95.5 | 99.7 | 87.8 | 98.4 |
6 (LC496853) | 1775 | 540 | VP6 | structural protein | AGUUUAAACCCA | UUUGAUAAUAGU | 94.4 | 99.6 | 90.4 | 98.9 |
7 (LC496854) | 1171 | 348 | VP7 | clamp protein | AGUUAAAAACCA | UUUAGUAAUAGU | 95.7 | 100.0 | 87.9 | 99.1 |
8 (LC496855) | 1151 | 345 | VP8 | nonstructural protein | AGUUUAAAUCCU | UUUGAUAAUAGU | 77.7 | 96.2 | 64.6 | 93.3 |
9 (LC496856) | 1151 | 278 | VP9 | nonstructural protein | AGUUAAAACCCA | UUUAGUAAUAGU | 95.7 | 99.6 | 80.2 | 96.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoa-Bosompem, M.; Kobayashi, D.; Murota, K.; Faizah, A.N.; Itokawa, K.; Fujita, R.; Osei, J.H.N.; Agbosu, E.; Pratt, D.; Kimura, S.; et al. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses 2020, 12, 147. https://doi.org/10.3390/v12020147
Amoa-Bosompem M, Kobayashi D, Murota K, Faizah AN, Itokawa K, Fujita R, Osei JHN, Agbosu E, Pratt D, Kimura S, et al. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses. 2020; 12(2):147. https://doi.org/10.3390/v12020147
Chicago/Turabian StyleAmoa-Bosompem, Michael, Daisuke Kobayashi, Katsunori Murota, Astri Nur Faizah, Kentaro Itokawa, Ryosuke Fujita, Joseph Harold Nyarko Osei, Esinam Agbosu, Deborah Pratt, Shohei Kimura, and et al. 2020. "Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana" Viruses 12, no. 2: 147. https://doi.org/10.3390/v12020147
APA StyleAmoa-Bosompem, M., Kobayashi, D., Murota, K., Faizah, A. N., Itokawa, K., Fujita, R., Osei, J. H. N., Agbosu, E., Pratt, D., Kimura, S., Kwofie, K. D., Ohashi, M., Bonney, J. H. K., Dadzie, S., Sasaki, T., Ohta, N., Isawa, H., Sawabe, K., & Iwanaga, S. (2020). Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses, 12(2), 147. https://doi.org/10.3390/v12020147