Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops
Abstract
:1. Introduction
2. General Concepts
2.1. Definitions
2.2. Crop Domestication Centers and Introductions
2.3. Factors Favoring Spillover
3. Rice Yellow Mottle Disease
4. Cassava Mosaic Disease
5. Cassava Brown Streak Disease
6. Tomato Yellow Leaf Curl Disease
7. Groundnut Rosette Disease
8. Cacao Swollen Shoot Disease
9. Other Virus Diseases
10. Management
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thresh, J.M. The origins and epidemiology of some important plant virus diseases. Appl. Biol. 1980, 5, 1–65. [Google Scholar]
- Thresh, J.M. Crop viruses and virus diseases: A global perspective. In Virus Diseases and Crop Biosecurity; Cooper, J.I., Kuehne, T., Polischuk, V.P., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 9–32. [Google Scholar]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef]
- Jones, R.A.C. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009, 141, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Plant virus ecology and epidemiology: Historical perspectives, recent progress and future prospects. Ann. Appl. Biol. 2014, 164, 320–347. [Google Scholar] [CrossRef]
- Hull, R. Mathews’ Plant Virology, 5th ed.; Academic Press: London, UK, 2014. [Google Scholar]
- Jones, R.A.C.; Naidu, R.A. Global dimensions of plant virus diseases: Current status and future perspectives. Annu. Rev. Virol. 2019, 6, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Bos, L. Wild plants in the ecology of virus diseases. In Plant Diseases and Vectors: Ecology and Epidemiology; Maramarosch, K., Harris, K.F., Eds.; Academic Press: New York, NY, USA, 1981; pp. 1–8. [Google Scholar]
- Thresh, J.M. (Ed.) Pests, Pathogens and Vegetation; Pitman: London, UK, 1981. [Google Scholar]
- Cooper, J.I.; Jones, R.A.C. Wild plants and viruses: Under-investigated ecosystems. Adv. Virus Res. 2006, 67, 1–47. [Google Scholar]
- Alexander, H.M.; Mauck, K.E.; Whitfield, A.M.; Garrett, K.A.; Malmstrom, C.M. Plant-virus interactions and the agro-ecological interface. Eur. J. Plant Pathol. 2014, 138, 529–547. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Coutts, B.A. Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol. Plant Pathol. 2015, 16, 541–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmstrom, C.M.; Alexander, H.M. Effects of crop viruses on wild plants. Curr. Opin. Virol. 2016, 19, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Bos, L. Crop losses caused by viruses. Crop Prot. 1982, 1, 263–282. [Google Scholar] [CrossRef]
- Jones, R.A.C. Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res. 2004, 100, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Control of plant virus diseases. Adv. Virus Res. 2006, 67, 205–244. [Google Scholar] [PubMed]
- Sastry, S.K.; Zitter, T.A. Management of virus and viroid diseases of crops in the tropics. In Plant Virus and Viroid Diseases in the Tropics, Volume 2, Epidemiology and Management; Sastry, S.K., Zitter, T.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 149–480. [Google Scholar]
- Jeger, M.J.; Thresh, J.M. Modelling reinfection of replanted cocoa by swollen shoot virus in pandemically diseased areas. J. Appl. Ecol. 1993, 30, 187–196. [Google Scholar] [CrossRef]
- Thresh, J.M. Control of tropical plant virus diseases. Adv. Virus Res. 2006, 67, 245–295. [Google Scholar]
- Thresh, J.M. Plant virus epidemiology: The concept of host genetic vulnerability. Adv. Virus Res. 2006, 67, 89–125. [Google Scholar]
- Brunt, A.; Crabtree, K.; Gibbs, A.J. Viruses of Tropical Plants: Descriptions and Lists from the VIDE Database; CAB International: Wallingford, UK, 1990. [Google Scholar]
- Bos, L. New plant virus problems in developing countries: A corollary of agricultural modernization. Adv. Virus Res. 1992, 41, 349–407. [Google Scholar]
- Otim-Nape, G.W.; Thresh, J.M. The current pandemic of cassava mosaic virus disease in Uganda. In The Epidemiology of Plant Diseases; Jones, G., Ed.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 423–443. [Google Scholar]
- Mahuku, G.; Lockhart, B.E.; Wanjala, B.; Jones, M.W.; Kimunye, J.N.; Stewart, L.R.; Cassone, B.J.; Sevgan, S.; Nyasani, J.O.; Kusia, E.; et al. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 2015, 105, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.E.; Whitfield, A.E. The genus Tospovirus: Emerging bunyaviruses that threaten food security. Annu. Rev. Virol. 2016, 3, 101–124. [Google Scholar] [CrossRef]
- Catherall, P.L. Effects of barley yellow dwarf and ryegrass mosaic viruses alone and in combination on the productivity of perennial and Italian ryegrass. Plant Pathol. 1987, 36, 73–78. [Google Scholar] [CrossRef]
- McLaughlin, M.R.; Pederson, G.A.; Evans, R.R.; Ivy, R.L. Virus diseases and stand decline in a white clover pasture. Plant Dis. 1992, 76, 158–162. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Nicholas, D.A. Impact of an insidious virus disease in the legume component on the species balance within self-regenerating annual pasture. J. Agric. Sci. Camb. 1998, 131, 155–170. [Google Scholar] [CrossRef]
- Eagling, D.R.; Villalta, O.; Sward, R.J. Host range, symptoms and effects on pasture production of a Victorian isolate of ryegrass mosaic potyvirus. Aust. J. Agric. Res. 1992, 43, 1243–1251. [Google Scholar] [CrossRef]
- Coutts, B.A.; Jones, R.A.C. Temporal dynamics of spread of four viruses within mixed species perennial pastures. Ann. Appl. Biol. 2002, 140, 37–52. [Google Scholar] [CrossRef]
- Jones, R.A.C. Virus diseases of annual pasture legumes: Incidences, losses, epidemiology and management. Crop Pasture Sci. 2012, 63, 399–418. [Google Scholar] [CrossRef]
- Jones, R.A.C. Virus diseases of perennial pasture legumes: Incidences, losses, epidemiology and management. Crop Pasture Sci. 2013, 64, 199–215. [Google Scholar] [CrossRef]
- Jones, R.A.C. Virus diseases of pasture grasses in Australia: Incidences, losses, epidemiology and management. Crop Pasture Sci. 2013, 64, 216–233. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; Hughes, C.C.; Newton, L.A.; Stoner, C.L. Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol. 2005, 168, 217–230. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; McCullough, A.J.; Johnson, H.A.; Newton, L.A.; Borer, E.T. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 2005, 145, 153–164. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; Bigelow, P.; Trębicki, P.; Busch, A.K.; Friel, C.; Cole, E.; Abdel-Azim, H.; Phillippo, C.; Alexander, H.M. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR). Virus Res. 2017, 241, 172–184. [Google Scholar] [CrossRef]
- Vincent, S.J.; Coutts, B.A.; Jones, R.A.C. Effects of introduced and indigenous viruses on native plants: Exploring their disease causing potential at the agro-ecological interface. PLoS ONE 2014, 9, e91224. [Google Scholar] [CrossRef]
- Thresh, J.M. Control of plant virus diseases in sub-Saharan Africa: The possibility and feasibility of an integrated approach. Afr. Crop Sc. J. 2003, 11, 199–223. [Google Scholar] [CrossRef] [Green Version]
- Loebenstein, G.; Thottappilly, G. (Eds.) Virus and Virus-like Diseases of Major Crops in Developing Countries; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Thresh, J.M. Cropping practices and virus spread. Annu. Rev. Phytopathol. 1982, 20, 193–218. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sci. Rev. 2012, 22, 1–31. [Google Scholar] [CrossRef]
- Roossinck, M.J.; García-Arenal, F. Ecosystem simplification, biodiversity loss and plant virus emergence. Curr. Opin. Virol. 2015, 10, 56–62. [Google Scholar] [CrossRef]
- Webster, C.G.; Coutts, B.A.; Jones, R.A.C.; Jones, M.G.K.; Wylie, S.J. Virus impact at the interface of an ancient ecosystem and a recent agroecosystem: Studies on three legume-infecting potyviruses in the South West Australian Floristic Region. Plant Pathol. 2007, 56, 729–742. [Google Scholar] [CrossRef] [Green Version]
- Faillace, C.A.; Lorusso, N.S.; Duffy, S. Overlooking the smallest matter: Viruses impact biological invasions. Ecol. Lett. 2017, 20, 524–538. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.E.; Fereres, A. John Michael Thresh, founding father of plant virus epidemiology: A tribute. Virus Res. 2017, 241, 3–9. [Google Scholar] [CrossRef]
- Thresh, J.M. An ecological approach to the epidemiology of plant virus diseases. In Comparative Epidemiology: A Tool for Better Disease Management; Palti, J., Kranz, J., Eds.; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1980; pp. 57–70. [Google Scholar]
- Thresh, J.M. Plant virus epidemiology and control: Current trends and future prospects. In Plant Virus Epidemiology—The Spread and Control of Insect-Borne Pathogens; Plumb, R.T., Thresh, J.M., Eds.; Blackwell: Oxford, UK, 1983; pp. 349–360. [Google Scholar]
- Thresh, J.M. Insect-borne viruses of rice and the Green Revolution. Int. J. Pest Manag. 1989, 35, 264–272. [Google Scholar] [CrossRef]
- Thresh, J.M. Plant virus epidemiology: The battle of the genes. In Recognition and Response in Plant-Virus Interactions; [NATO ASI Series H: Cell Biology]; Springer: Heidelberg, Germany, 1990; Volume 41, pp. 93–121. [Google Scholar]
- Thresh, J.M. The ecology of tropical plant viruses. Plant Pathol. 1991, 40, 324–339. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Tran-Nguyen, L.T.T.; Jones, R.A.C. Cucumber Green Mottle Mosaic Virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annu. Rev. Phytopathol. 2017, 55, 231–256. [Google Scholar] [CrossRef]
- Legg, J.P.; Jeremiah, S.C.; Obiero, H.M.; Maruthi, M.N.; Ndyetabula, I.; Okao-Okuja, G.; Bouwmeester, H.; Bigirimana, S.; Tata-Hangy, W.; Gashaka, G.; et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res. 2011, 159, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Moriones, E.; Praveen, S.; Chakraborty, S. Tomato leaf curl New Delhi virus: An emerging virus complex threatening vegetable and fibre crops. Viruses 2017, 9, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, C.; Vanderschuren, H. Cassava mosaic and brown streak diseases: Current perspectives and beyond. Annu. Rev. Virol. 2017, 4, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Fargette, D.; Konate, G.; Fauquet, C.; Muller, E.; Peterscmitt, M.; Thresh, J.M. Molecular ecology and emergence of tropical plant viruses. Ann. Rev. Phytopathol. 2006, 44, 235–260. [Google Scholar] [CrossRef] [PubMed]
- Redinbaugh, M.G.; Stewart, L.R. Maize lethal necrosis: An emerging, synergistic viral disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef]
- Tomlinson, K.R.; Bailey, A.M.; Alicai, T.; Seal, S.; Foster, G.D. Cassava brown streak disease: Historical timeline, current knowledge and future prospects. Mol. Plant Pathol. 2018, 19, 1282–1294. [Google Scholar] [CrossRef] [Green Version]
- Fiallo-Olivé, E.; Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant Pathol. 2019, 20, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Klinkowski, M. Catastrophic plant diseases. Ann. Rev. Phytopathol. 1970, 8, 37–60. [Google Scholar] [CrossRef]
- Cooper, J.I.; Jones, A.T. Responses of plants to viruses: Proposals for the use of terms. Phytopathology 1983, 73, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Harlan, J.R. Agricultural origins: Centres and non-centres. Science 1971, 174, 468–474. [Google Scholar] [CrossRef]
- Harlan, J.R. Ecological settings for the emergence of agriculture. In Pests, Pathogens and Vegetation; Thresh, J.M., Ed.; Pitman Press: London, UK, 1981; pp. 3–22. [Google Scholar]
- Nunn, N.; Qian, N. The Columbian Exchange: A history of disease, food, and ideas. J. Econ. Perspect. 2010, 24, 163–188. [Google Scholar] [CrossRef] [Green Version]
- Elena, S.F.; Fraile, A.; Garcia-Arenal, F. Evolution and emergence of plant viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar] [PubMed] [Green Version]
- Rojas, M.R.; Gilbertson, R.L. Emerging plant viruses: A diversity of mechanisms and opportunities. In Plant Virus Evolution; Roossinck, M.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 27–51. [Google Scholar]
- Pagán, I.; González-Jara, P.; Moreno-Letelier, A.; Rodelo-Urrego, M.; Fraile, A.; Piñero, D.; García-Arenal, F. Effect of biodiversity changes in disease risk: Exploring disease emergence in a plant-virus system. PLoS Pathog. 2012, 8, e1002796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fereres, A. Insect vectors as drivers of plant virus emergence. Curr. Opin. Virol. 2015, 10, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 2, 67–93. [Google Scholar] [CrossRef]
- Jones, R.A.C. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar]
- Jones, R.A.C. Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Adv. Virus Res. 2018, 101, 149–187. [Google Scholar]
- García-Arenal, F.; Zerbini, F.M. Life on the edge: Geminiviruses at the interface between crops and wild plant hosts. Annu. Rev. Virol. 2019, 6, 411–433. [Google Scholar] [CrossRef] [Green Version]
- McLeish, M.J.; Fraile, A.; García-Arenal, F. Evolution of plant–virus interactions: Host range and virus emergence. Curr. Opin. Virol. 2019, 34, 50–55. [Google Scholar] [CrossRef]
- Lefeuvre, P.; Martin, D.P.; Elena, S.F.; Shepherd, D.N.; Roumagnac, P.; Varsani, A. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 2019, 17, 632–644. [Google Scholar] [CrossRef]
- Sweeney, M.; McCouch, S. The complex history of the domestication of rice. Ann. Bot. 2007, 100, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinel-Galzi, A.; Traoré, O.; Séré, Y.; Hébrard, E.; Fargette, D. The biogeography of viral emergence: Rice yellow mottle virus as a case study. Curr. Opin. Virol. 2015, 10, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Organization Statistical Databases; United Nations: Rome, Italy, 2020. [Google Scholar]
- Hibino, H. Biology and epidemiology of rice viruses. Ann. Rev. Phytopathol. 1996, 34, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Traoré, O.; Fargette, D. Rice yellow mottle virus. In Vector-Mediated Transmission of Plant Pathogens, Chapter 29; APS Publications: St. Paul, MN, USA, 2016; pp. 425–429. [Google Scholar]
- CABI. CABI Compendium Datasheets; CABI: Wallingford, UK, 2020. [Google Scholar]
- Rakotomalala, M.; Vrancken, B.; Pinel-Galzi, A.; Ramavovololona, P.; Hébrard, E.; Randrianangaly, J.S.; Dellicour, S.; Lemey, P.; Fargette, D. Comparing patterns and scales of plant virus phylogeography: Rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. 2019, 5, vez023. [Google Scholar] [CrossRef] [Green Version]
- Legg, J.P.; Kumar, P.L.; Makeshkumar, T.; Tripathi, L.; Ferguson, M.; Kanju, E.; Ntawuruhunga, P.; Cuellar, W. Cassava virus diseases: Biology, epidemiology, and management. Adv. Virus Res. 2015, 91, 85–142. [Google Scholar]
- Legg, J.; Somado, E.A.; Barker, I.; Beach, L.; Ceballos, H.; Cuellar, W.; Elkhoury, W.; Gerling, D.; Helsen, J.; Hershey, C.; et al. A global alliance declaring war on cassava viruses in Africa. Food Secur. 2014, 6, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Siriwan, W.; Jimenez, J.; Hemniam, N.; Saokham, K.; Lopez-Alvarez, D.; Leiva, A.M.; Martinez, A.; Mwanzia, L.; Becerra, L.A.; Cuellar, W.J. Surveillance and Diagnostics of the emergent Sri Lankan cassava mosaic virus (Fam. Geminiviridae) in Southeast Asia. Virus Res. 2020, 285, 197959. [Google Scholar] [CrossRef]
- Dzahini-Obiatey, H.; Domfeh, O.; Amoah, F.M. Over seventy years of a viral disease of cocoa in Ghana: From researchers perspective. Afr. J. Agric. Res. 2010, 5, 476–485. [Google Scholar]
- Ameyaw, G.A. Management of the cacao swollen shoot virus (CSSV). Menace in Ghana: The past, present and the future. In Plant Diseases-Current Threats and Management Trends; Topolovec-Pintarić, S., Ed.; IntechOpen: London, UK, 2019; pp. 1–13. [Google Scholar] [CrossRef] [Green Version]
- Naidu, R.A.; Bottenberg, H.; Subrahmanyam, P.; Kimmins, F.M.; Robinson, D.J.; Thresh, J.M. Epidemiology of groundnut rosette virus disease: Current status and future research needs. Ann. Appl. Biol. 1998, 132, 525–548. [Google Scholar] [CrossRef] [Green Version]
- Naidu, R.A.; Kimmins, F.M.; Deom, C.M.; Subrahmanyam, P.; Chiyembekeza, A.J.; van der Merwe, P.J.A. Groundnut rosette: A virus disease affecting groundnut production in sub-saharan Africa. Plant Dis. 1999, 83, 700–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taliansky, M.E.; Robinson, D.J.; Murant, A.F. Groundnut rosette disease virus complex: Biology and molecular biology. Adv. Virus Res. 2000, 56, 357–400. [Google Scholar]
- Mabele, A.S.; Were, H.K.; Ndong’a, M.F.; Mukoye, B. Distribution, molecular detection and host range of groundnut rosette assistor virus in western Kenya. J. Plant Sci. 2019, 7, 100–105. [Google Scholar]
- Moriones, E.; Navas-Castillo, J. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 2000, 71, 123–134. [Google Scholar] [CrossRef]
- Mabvakure, B.; Martin, D.P.; Kraberger, S.; Cloete, L.; van Brunschot, S.; Geering, A.D.; Thomas, J.E.; Bananej, K.; Lett, J.M.; Lefeuvre, P.; et al. Ongoing geographical spread of Tomato yellow leaf curl virus. Virology 2016, 498, 257–264. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, N.; Hari-Gowthem, G.; Muthamilarasan, M.; Prasad, M. Tomato yellow leaf curl virus: Impact, challenges, and management. Trends Plant Sci. 2020, 25, 897–911. [Google Scholar] [CrossRef]
- Luisoni, E.; Conti, M. Digitaria sanguinalis (L.) Scop., a new natural host of maize rough dwarf virus. Phytopathol. Mediterr. 1970, 9, 102–105. [Google Scholar]
- Harpaz, I. (Ed.) Maize rough dwarf. In A Planthopper Virus Disease Affecting Maize, Rice, Small Grains and Grasses; Israel Universities Press: Jerusalem, Israel, 1972; p. 251. [Google Scholar]
- Achon, M.A.; Serrano, L.; Clemente-Orta, G.; Barcelo, A. The virome of maize rough dwarf disease: Molecular genome diversification, phylogeny and selection. Ann. Appl. Biol. 2020, 176, 192–202. [Google Scholar] [CrossRef]
- Bosque-Pérez, N.A. Eight decades of maize streak virus research. Virus Res. 2000, 71, 107–121. [Google Scholar] [CrossRef]
- Shepherd, D.N.; Martin, D.P.; Van der Walt, E.; Dent, K.; Varsani, A.; Rybicki, E.P. Maize streak virus: An old and complex ‘emerging’ pathogen. Mol. Plant Pathol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Morales, F.J.; Jennings, P.R. Rice hoja blanca: A complex plant-virus-vector pathosystem. Plant Sci. Rev. 2010, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sarra, S.; Peters, D. Rice yellow mottle virus is transmitted by cows, donkeys, and grass rats in irrigated rice crops. Plant Dis. 2003, 87, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, A.; Sturm, B.; Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Calvert, L.; Munoz, C.; Otim-Nape, G.W.; Robinson, D.J.; Harrison, B.D. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 1997, 78, 2101–2111. [Google Scholar] [CrossRef]
- Legg, J.; Fauquet, C. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 2004, 56, 585–599. [Google Scholar] [CrossRef]
- Patil, B.; Fauquet, C. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 2009, 10, 685–701. [Google Scholar] [CrossRef]
- Thresh, J.M.; Fargette, D.; Otim-Nape, G.W. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop. Sci. Lond. 1994, 34, 26. [Google Scholar]
- Legg, J.P.; Sseruwagi, P.; Boniface, S.; Okao-Okuja, G.; Shirima, R.; Bigirimana, S.; Gashaka, G.; Herrmann, H.W.; Jeremiah, S.; Obiero, H.; et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 2014, 186, 61–75. [Google Scholar] [CrossRef]
- Sserubombwe, W.S.; Briddon, R.W.; Baguma, Y.K.; Ssemakula, G.N.; Bull, S.E.; Bua, A.; Alicai, T.; Omongo, C.; Otim-Nape, G.W.; Stanley, J. Diversity of begomoviruses associated with mosaic disease of cultivated cassava (Manihot esculenta Crantz) and its wild relative (Manihot glaziovii Müll. Arg.) in Uganda. J. Gen. Virol. 2008, 89, 1759–1769. [Google Scholar] [CrossRef]
- Ndunguru, J.; De León, L.; Doyle, C.D.; Sseruwagi, P.; Plata, G.; Legg, J.P.; Thompson, G.; Tohme, J.; Aveling, T.; Ascencio-Ibáñez, J.T.; et al. Two novel DNAs that enhance symptoms and overcome CMD2 resistance to cassava mosaic disease. J. Virol. 2016, 90, 4160–4173. [Google Scholar] [CrossRef] [Green Version]
- Shirima, R.R.; Maeda, D.G.; Kanju, E.E.; Tumwegamire, S.; Ceasar, G.; Mushi, E.; Sichalwe, C.; Mtunda, K.; Mkamilo, G.; Legg, J.P. Assessing the degeneration of cassava under high-virus inoculum conditions in coastal Tanzania. Plant Dis. 2019, 103, 2652–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillocks, R.J.; Raya, M.D.; Mtunda, K.; Kiozia, H. Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J. Phytopathol. 2001, 149, 389–394. [Google Scholar] [CrossRef]
- Maruthi, M.N.; Hillocks, R.J.; Mtunda, K.; Raya, M.D.; Muhanna, M.; Kiozia, H.; Rekha, A.R.; Colvin, J.; Thresh, J.M. Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). J. Phytopathol. 2005, 153, 307–312. [Google Scholar] [CrossRef]
- Maruthi, M.N.; Jeremiah, S.C.; Mohammed, I.U.; Legg, J.P. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses. J. Phytopathol. 2017, 165, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Monger, W.A.; Alicai, T.; Ndunguru, J.; Kinyua, Z.M.; Potts, M.; Reeder, R.H.; Miano, D.W.; Adams, I.P.; Boonham, N.; Glover, R.H.; et al. The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Arch. Virol. 2010, 155, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Alicai, T.; Ndunguru, J.; Sseruwagi, P.; Tairo, F.; Okao-Okuja, G.; Nanvubya, R.; Kiiza, L.; Kubatko, L.; Kehoe, M.A.; Boykin, L.M. Characterization by next generation sequencing reveals the molecular mechanisms driving the faster evolutionary rate of Cassava brown streak virus compared with Ugandan cassava brown streak virus. Sci. Rep. 2016, 6, 36164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amisse, J.J.; Ndunguru, J.; Tairo, F.; Boykin, L.M.; Kehoe, M.A.; Cossa, N.; Ateka, E.; Rey, C.; Sseruwagi, P. First report of cassava brown streak viruses on wild plant species in Mozambique. Physiol. Mol. Plant Pathol. 2019, 105, 88–95. [Google Scholar] [CrossRef]
- Jeremiah, S.C.; Ndyetabula, I.L.; Mkamilo, G.S.; Haji, S.; Muhanna, M.M.; Chuwa, C.; Kasele, S.; Bouwmeester, H.; Ijumba, J.N.; Legg, J.P. The dynamics and environmental influence on interactions between Cassava brown streak disease and the whitefly, Bemisia tabaci. Phytopathology 2015, 105, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.A. The origin of the cultivated tomato. Econ. Bot. 1948, 2, 379–392. [Google Scholar] [CrossRef]
- Hanssen, I.M.; Lapidot, M.; Thomma, B.P.H.J. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 2010, 23, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Rojas, M.R.; Macedo, M.A.; Maliano, M.R.; Soto-Aguilar, M.; Souza, J.O.; Briddon, R.W.; Kenyon, L.; Rivera-Bustamante, R.F.; Zerbini, F.M.; Adkins, S.; et al. World management of geminiviruses. Annu. Rev. Phytopathol. 2018, 56, 637–677. [Google Scholar] [CrossRef] [PubMed]
- Kil, E.J.; Kim, S.; Lee, Y.J.; Byun, H.S.; Park, J.; Seo, H.; Kim, C.S.; Shim, J.K.; Lee, J.H.; Kim, J.K.; et al. Tomato yellow leaf curl virus (TYLCV-IL): A seed-transmissible geminivirus in tomatoes. Sci. Rep. 2016, 6, 19013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefeuvre, P.; Martin, D.P.; Harkins, G.; Lemey, P.; Gray, A.J.; Meredith, S.; Lakay, F.; Monjane, A.; Lett, J.M.; Varsani, A.; et al. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 2010, 6, e1001164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polston, J.E.; Anderson, P.K. The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis. 1997, 81, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Monci, F.; Sánchez-Campos, S.; Navas-Castillo, J.; Moriones, E. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 2002, 303, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pendón, J.A.; Cañizares, M.C.; Moriones, E.; Bejarano, E.R.; Czosnek, H.; Navas-Castillo, J. Tomato yellow leaf curl viruses: Ménage à trois between the virus complex, the plant and the whitefly vector. Mol. Plant Pathol. 2010, 11, 441–450. [Google Scholar] [CrossRef]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef]
- Kenyon, L.; Tsai, W.S.; Shih, S.L.; Lee, L.M. Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res. 2014, 186, 104–113. [Google Scholar] [CrossRef]
- Sánchez-Campos, S.; Navas-Castillo, J.; Camero, R.; Soria, C.; Díaz, J.A.; Moriones, E. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 1999, 89, 1038–1043. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 22, 16112. [Google Scholar] [CrossRef]
- Bos, L. Research on Viruses of Legume Crops and the International Working Group on Legume Viruses: Historical Facts and Personal Reminiscences; ICARDA Publication: Aleppo, Syria, 1996. [Google Scholar]
- Makkouk, K.M.; Kumari, S.G.; van Leur, J.A.G.; Jones, R.A.C. Control of plant virus diseases in cool-season grain legume crops. Adv. Virus Res. 2014, 90, 207–253. [Google Scholar] [PubMed]
- Makkouk, K.M. Plant pathogens which threaten food security: Viruses of chickpea and other cool season legumes in West Asia and North Africa. Food Secur. 2020, 12, 495–502. [Google Scholar] [CrossRef]
- Rachie, K.O.; Roberts, L.M. Grain Legumes of the Lowland Tropics. Adv. Agron. 1974, 26, 1–132. [Google Scholar]
- Hema, M.; Sreenivasulu, P.; Patil, B.L.; Kumar, P.L.; Reddy, D.V. Tropical food legumes: Virus diseases of economic importance and their control. Adv. Virus Res. 2014, 90, 431–505. [Google Scholar] [PubMed]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef]
- Crowdy, S.H.; Posnette, A.F. Virus diseases of cacao in West Africa. II Cross-immunity experiments with viruses 1A, 1B, 1C. Ann. Appl. Biol. 1947, 34, 403–411. [Google Scholar] [CrossRef]
- Tinsley, T.W. The ecology of cacao viruses. I. The role of wild hosts in the incidence of swollen shoot virus in West Africa. J. Appl. Ecol. 1971, 8, 491–495. [Google Scholar] [CrossRef]
- Dongo, L.N.; Orisajo, S.B. Status of cocoa swollen shoot virus disease in Nigeria. Afr. J. Biotechnol. 2007, 6, 2054–2061. [Google Scholar]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- McCann, J. Maize and grace: History, corn, and Africa’s new landscapes, 1500–1999. Comp. Stud. Soc. Hist. 2001, 43, 246–272. [Google Scholar] [CrossRef] [Green Version]
- Bateson, M.F.; Lines, R.E.; Revill, P.; Chaleeprom, W.; Ha, C.V.; Gibbs, A.J.; Dale, J.L. On the evolution and molecular epidemiology of the potyvirus. J. Gen. Virol. 2002, 83, 2575–2585. [Google Scholar] [CrossRef]
- Pappu, H.R.; Jones, R.A.C.; Jain, R.K. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 2009, 141, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.; Jain, R.K.; Krishnareddy, M.; Krishna Kumar, N.K.; Ravi, K.S.; Pappu, H.R. Emerging problems of tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Dis. 2012, 96, 468–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.K.; Sadashiva, A.T.; Basavaraj, Y.B.; Venugopalan, R.; Rao, E.S.; Nandeesha, P. Genetic analysis of bud necrosis disease caused by groundnut bud necrosis virus (GBNV) in tomato (Solanum lycopersicum L.). Euphytica 2020, 216, 1–10. [Google Scholar] [CrossRef]
- Karmakar, A.; Saha, D.; Saha, S. Mini review on Begomoviruses infecting cultivated vegetable crops in India. In Organisms and Environment; Sarkar, A.N., Ed.; Education publishing: New Delhi, India, 2020; pp. 176–185. [Google Scholar]
- Yazdani-Khameneh, S.; Golnaraghi, A. The status of Begomoviruses in Iran. In Begomoviruses: Occurrence and Management in Asia and Africa; Saxena, S., Tiwari, A., Eds.; Springer: Singapore, 2017; pp. 229–253. [Google Scholar]
- Leke, W.N.; Mignouna, D.B.; Brown, J.K.; Kvarnheden, A. Begomovirus disease complex: Emerging threat to vegetable production systems of West and Central Africa. Agric. Food Secur. 2015, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.J.; Jones, P.G. The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res. 2004, 100, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.J. History and current distribution of begomoviruses in Latin America. Adv. Virus Res. 2006, 67, 127–162. [Google Scholar]
- Rocha, C.S.; Castillo-Urquiza, G.P.; Lima, A.T.; Silva, F.N.; Xavier, C.A.; Hora-Júnior, B.T.; Beserra-Júnior, J.E.; Malta, A.W.; Martin, D.P.; Varsani, A.; et al. Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J. Virol. 2013, 87, 5784–5799. [Google Scholar]
- Inoue-Nagata, A.K.; Lima, M.F.; Gilbertson, R.L. A review of geminivirus diseases in vegetables and other crops in Brazil: Current status and approaches for management. Hortic. Bras. 2016, 34, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Barboza, N.M.; Hernández, E.; Inoue-Nagata, A.K.; Moriones, E.; Hilje, L. Achievements in the epidemiology of begomoviruses and their vector Bemisia tabaci in Costa Rica. Rev. Biol. Trop. 2019, 67, 419–453. [Google Scholar]
- Morales, F.J.; Anderson, P.K. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch. Virol. 2001, 146, 415–441. [Google Scholar] [CrossRef] [PubMed]
- Rodoni, B. The role of plant biosecurity in preventing and controlling emerging plant virus disease epidemics. Virus Res. 2009, 141, 150–157. [Google Scholar] [CrossRef] [PubMed]
Disease | Continents or Regions Currently Affected | Causal Agent(s) | Virus Genus | Vector(s) | Crop Diseased | Crop Origin | Impact | Virus(es) Origin(s) | Causes(s) of Emergence at Interface | Wild Spill over Hosts | Factors favouring Increased Importance/Distribution | Key Citations |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cassava brown streak disease | East, Central and southern Africa | Cassava brown streak and Uganda cassava brown streak viruses | Ipomovirus | Whitefly (Bemisia tabaci) | Cassava (Manihot esculenta) | Amazon rainforest | Widespread devastating yield losses | Coastal East and southern Africa; areas below 1000 m in altitude inland in East and Central Africa | Cassava introduction; spread by whitefly vectors | Wild tree cassava (Manihot glaziovii), unknown wild species | Growing vulnerable cultivars; trade in contaminated cassava cuttings; introductions of whitefly supervectors | [20,52,54,55,57,82,83] |
Cassava mosaic disease | Sub-Saharan Africa and offshore islands, incl. Madagascar; (less affected so far: South India, Sri Lanka and Southeast Asia) | Cassava mosaic virus complex (seven viruses in sub-Saharan Africa/Madagascar. (Two further viruses in South India, Sri Lanka and Southeast Asia) | Begomovirus | Whitefly (Bemisia tabaci) | Cassava (Manihot esculenta) | Amazon rainforest | Widespread devastating yield losses; food shortages acute famine; deaths | Sub-Saharan Africa and Madagascar; East Africa a major center of diversity. (Indian subcontinent and Southeast Asia, separately) | Cassava introduction; spread by whitefly vectors | Several wild Euphorbiaceae and Fabaceae species | Growing vulnerable cultivars; trade in contaminated cassava cuttings; recombination generating virulent new variants; introductions of whitefly supervectors | [20,23,52,54,55,57,82,83,84] |
Cacao swollen shoot disease | West Africa | Cacao swollen shoot virus | Badnavirus | Mealybugs (Planococcoides njalensis and P. citri) | Cacao (Theobroma cacao) | Amazon rainforest | Widespread devastating yield losses; infected trees soon killed. Most costly virus eradication program ever. | West Africa | Cacao introduction; spread by mealybug vectors | Tree species Cola chlamydanta, (C. gigantean Adansonia digitata, Ceiba pentandra, and Sterculia tragacantha) | Large-sale planting of vulnerable cacao cv. Amelonado grown as a monoculture | [1,20,85,86] |
Groundnut rosette disease | Sub-Saharan Africa and offshore islands, including Madagascar | Groundnut rosette virus, groundnut rosette assistor virus and virus satellite | Umbravirus, Luteovrus, virus satellite tri-partite complex | Aphid (Aphis craccivora) | Peanut (= groundnut), Arachis hypogea) | South America (several locations) | Devastating yield losses, crop failure; major deterrent to peanut cultivation | Sub-Saharan Africa | Peanut introduction; spread by aphid vectors | Physalis peruviana and Cassia obtusa | Cultural practices including late sowing, wide row spacing | [19,87,88,89,90] |
Tomato yellow leaf curl disease | All continents except Antarctic | Tomato yellow leaf curl virus. (Several other begomoviruses also cause TYLCD, but have localised distributions—see Section 9) | Begomovirus | Whitefly (Bemisia tabaci) | Tomato (Solanum esculentum) | Andean region (Peru, Ecuador) | Widespread devastating yield losses, crop failure, hunger | Middle East and Iran | Tomato introduction; spread by efficient whitefly vectors | Several wild tomato species | International trade in tomato seedlings infected with TYLCV’s Mld and IL strains and carrying efficient whitefly vector MEAM1 and MED cryptic species; wind currents carrying viruliferous whitely vectors | [4,68,71,91,92,93] |
Maize rough dwarf disease | Mediterranean region and Middle East | Maize rough dwarf virus | Fijivirus | Planthopper (Laodelphax striatellus) | Maize (Zea mays) | Mexico | Devastating yield losses in hybrid maize cultivars; major threat to maize crop | Mediterranean region and Middle East | Maize introduction; spread by planthopper vector | Digitaria sanguinalis and other wild grasses | Growing vulnerable hybrid maize cultivars | [1,20,94,95,96] |
Maize streak disease | Sub-Saharan Africa | Maize streak mosaic virus | Mastrevirus | Leafhoppers (Cicadulina mbila and nine other Cicadulina species) | Maize (Zea mays) | Mexico | Widespread devastating yield losses, famine in some years | Southern Africa | Maize introduction; spread by leafhopper vectors; appearance of recombinant strain MSV-A | Digitaria, sp. and other wild grasses | Growing vulnerable short-season hybrid maize cultivars; agricultural intensification | [55,71,97,98] |
Rice hoja blanca disease | South, Central and North America | Rice hoja blanca virus | Tenuivirus | Planthopper (Sogatodes orizicola) | Rice (Oryza sativa) | China | Devastating yield losses in some years | South America | Rice introduction; spread by its leafhopper vector | Echinochloa colona and other wild grasses | Intensified rice cropping; growing vulnerable rice cultivars; long-distance spread by viruliferous leafhopper vector | [78,99] |
Rice yellow mottle disease | East, Central and West Africa, and Madagascar | Rice yellow mottle virus | Sobemovirus | Contact, beetles, mammals soil and water | Asian rice (Oryza sativa) and African rice (Oryza glaberrima) | China | Widespread devastating yield losses; major deterrent to rice cultivation | East and West Africa | Spread by contact and vectors; intensification of rice production; Introduction of Asian rice | Wild rice: Oryza barthii, Orryza longistaminata. Wild grasses. Echinochloa colona, Eragrostis atrovirens and Panicum repens | Intensive irrigated rice production. Short-distance spread by beetle vectors, contaminated soil, irrigation water, machinery. Long-distance spread by trade in live rice seedlings, stubble and ratoons | [1,55,75,76,77,78,79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.A.C. Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020, 12, 1388. https://doi.org/10.3390/v12121388
Jones RAC. Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses. 2020; 12(12):1388. https://doi.org/10.3390/v12121388
Chicago/Turabian StyleJones, Roger A. C. 2020. "Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops" Viruses 12, no. 12: 1388. https://doi.org/10.3390/v12121388