Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species
Abstract
:1. Introduction: Herpesviruses
2. Human Roseoloviruses: HHV-6A, HHV-6B, and HHV-7
2.1. Genomic Organisation and Replication of HHV-6A/B
2.2. Latency and Integration of HHV-6A/B
2.3. Genome, Replication, and Latency of HHV-7
2.4. Prevalence and Transmission of HHV-6A/B
2.5. Prevalence and Transmission of HHV-7
2.6. Clinical Consequences of HHV-6A/B
2.7. Clinical Consequences of iciHHV-6A/B
2.8. Clinical Consequences of HHV-7 Infections
2.9. Immune Response to HHV-6A/B and HHV-7 Infections
3. Murine Roselovirus: MTV/MRV
3.1. Genomic Organization and Latency
3.2. Prevalence and Transmission
3.3. Pathogenicity
3.4. Immune Response and Antiviral Drugs
4. Porcine Roseolovirus: PCMV
4.1. Genomic Organization and Latency
4.2. Prevalence and Transmission
4.3. Pathogenicity
4.4. Immune Response and Antiviral Drugs
4.5. PCMV/PRV and Xenotransplantation
5. Comparative Analysis
6. Roseoloviruses in Other Species
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Davison, A.J.; Dargan, D.J.; Stow, N.D. Fundamental and accessory systems in herpesviruses. Antivir. Res. 2002, 56, 1–11. [Google Scholar] [CrossRef]
- Salahuddin, S.Z.; Ablashi, D.V.; Markham, P.D.; Josephs, S.F.; Sturzenegger, S.; Kaplan, M.; Halligan, G.; Biberfeld, P.; Wong-Staal, F.; Kramarsky, B.; et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 1986, 234, 596–601. [Google Scholar] [CrossRef]
- Lopez, C.; Pellett, P.; Stewart, J.; Goldsmith, C.; Sanderlin, K.; Black, J.; Warfield, D.; Feorino, P. Characteristics of human herpesvirus-6. J. Infect. Dis. 1988, 157, 1271–1273. [Google Scholar] [CrossRef]
- Ablashi, D.; Agut, H.; Berneman, Z.; Campadelli-Fiume, G.; Carrigan, D.; Ceccerini-Nelli, L.; Chandran, B.; Chou, S.; Collandre, H.; Cone, R.; et al. Human herpesvirus-6 strain groups: A nomenclature. Arch. Virol. 1993, 129, 363–366. [Google Scholar] [CrossRef]
- Ablashi, D.V.; Balachandran, N.; Josephs, S.F.; Hung, C.L.; Krueger, G.R.; Kramarsky, B.; Salahuddin, S.Z.; Gallo, R.C. Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology 1991, 184, 545–552. [Google Scholar] [CrossRef]
- Adams, M.J.; Carstens, E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch. Virol. 2012, 157, 1411–1422. [Google Scholar] [CrossRef]
- Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M.; June, C.H. Isolation of a new herpesvirus from human CD4+ T cells. Proc. Natl. Acad. Sci. USA 1990, 87, 748–752. [Google Scholar] [CrossRef]
- Biberfeld, P.; Kramarsky, B.; Salahuddin, S.Z.; Gallo, R.C. Ultrastructural characterization of a new human B lymphotropic DNA virus (human herpesvirus 6) isolated from patients with lymphoproliferative disease. J. Natl. Cancer Inst. 1987, 79, 933–941. [Google Scholar]
- Yoshida, M.; Uno, F.; Bai, Z.L.; Yamada, M.; Nii, S.; Sata, T.; Kurata, T.; Yamanishi, K.; Takahashi, M. Electron microscopic study of a herpes-type virus isolated from an infant with exanthem subitum. Microbiol. Immunol. 1989, 33, 147–154. [Google Scholar] [CrossRef]
- Gompels, U.A.; Nicholas, J.; Lawrence, G.; Jones, M.; Thomson, B.J.; Martin, M.E.; Efstathiou, S.; Craxton, M.; Macaulay, H.A. The DNA sequence of human herpesvirus-6: Structure, coding content, and genome evolution. Virology 1995, 209, 29–51. [Google Scholar] [CrossRef]
- Dominguez, G.; Dambaugh, T.R.; Stamey, F.R.; Dewhurst, S.; Inoue, N.; Pellett, P.E. Human herpesvirus 6B genome sequence: Coding content and comparison with human herpesvirus 6A. J. Virol. 1999, 73, 8040–8052. [Google Scholar]
- Isegawa, Y.; Mukai, T.; Nakano, K.; Kagawa, M.; Chen, J.; Mori, Y.; Sunagawa, T.; Kawanishi, K.; Sashihara, J.; Hata, A.; et al. Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J. Virol. 1999, 73, 8053–8063. [Google Scholar] [PubMed]
- Caselli, E.; Di Luca, D. Molecular biology and clinical associations of Roseoloviruses human herpesvirus 6 and human herpesvirus 7. New Microbiol. 2007, 30, 173–187. [Google Scholar] [PubMed]
- Chou, S.; Marousek, G.I. Analysis of interstrain variation in a putative immediate-early region of human herpesvirus 6 DNA and definition of variant-specific sequences. Virology 1994, 198, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Mukai, T.; Kondo, K.; Yamanishi, K. Variation of DNA sequence in immediate-early gene of human herpesvirus 6 and variant identification by PCR. J. Clin. Microbiol. 1994, 32, 473–476. [Google Scholar] [PubMed]
- Dewin, D.R.; Catusse, J.; Gompels, U.A. Identification and characterization of U83A viral chemokine, a broad and potent beta-chemokine agonist for human CCRs with unique selectivity and inhibition by spliced isoform. J. Immunol. 2006, 176, 544–556. [Google Scholar] [CrossRef]
- Krug, L.T.; Pellett, P.E. Roseolovirus molecular biology: Recent advances. Curr. Opin. Virol. 2014, 9, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lusso, P.; Markham, P.D.; Tschachler, E.; di Marzo Veronese, F.; Salahuddin, S.Z.; Ablashi, D.V.; Pahwa, S.; Krohn, K.; Gallo, R.C. In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J. Exp. Med. 1988, 167, 1659–1670. [Google Scholar] [CrossRef]
- Takahashi, K.; Sonoda, S.; Higashi, K.; Kondo, T.; Takahashi, H.; Takahashi, M.; Yamanishi, K. Predominant CD4 T-lymphocyte tropism of human herpesvirus 6-related virus. J. Virol. 1989, 63, 3161–3163. [Google Scholar] [PubMed]
- De Bolle, L.; Naesens, L.; De Clercq, E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 2005, 18, 217–245. [Google Scholar] [CrossRef]
- Santoro, F.; Kennedy, P.E.; Locatelli, G.; Malnati, M.S.; Berger, E.A.; Lusso, P. CD46 is a cellular receptor for human herpesvirus 6. Cell 1999, 99, 817–827. [Google Scholar] [CrossRef]
- Sanyal, A.; Wallaschek, N.; Glass, M.; Flamand, L.; Wight, D.J.; Kaufer, B.B. The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome. Viruses 2018, 10, 401. [Google Scholar] [CrossRef]
- Liszewski, M.K.; Post, T.W.; Atkinson, J.P. Membrane cofactor protein (MCP or CD46): Newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol. 1991, 9, 431–455. [Google Scholar] [CrossRef]
- Liszewski, M.K.; Kemper, C.; Price, J.D.; Atkinson, J.P. Emerging roles and new functions of CD46. Springer Semin. Immunopathol. 2005, 27, 345–358. [Google Scholar] [CrossRef]
- Riley-Vargas, R.C.; Gill, D.B.; Kemper, C.; Liszewski, M.K.; Atkinson, J.P. CD46: Expanding beyond complement regulation. Trends Immunol. 2004, 25, 496–503. [Google Scholar] [CrossRef]
- Hansen, A.S.; Bundgaard, B.B.; Biltoft, M.; Rossen, L.S.; Hollsberg, P. Divergent tropism of HHV-6AGS and HHV-6BPL1 in T cells expressing different CD46 isoform patterns. Virology 2017, 502, 160–170. [Google Scholar] [CrossRef]
- Tang, H.; Serada, S.; Kawabata, A.; Ota, M.; Hayashi, E.; Naka, T.; Yamanishi, K.; Mori, Y. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc. Natl. Acad. Sci. USA 2013, 110, 9096–9099. [Google Scholar] [CrossRef]
- Weinberg, A.D.; Bourdette, D.N.; Sullivan, T.J.; Lemon, M.; Wallin, J.J.; Maziarz, R.; Davey, M.; Palida, F.; Godfrey, W.; Engleman, E.; et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat. Med. 1996, 2, 183–189. [Google Scholar] [CrossRef]
- Wyatt, L.S.; Balachandran, N.; Frenkel, N. Variations in the replication and antigenic properties of human herpesvirus 6 strains. J. Infect. Dis. 1990, 162, 852–857. [Google Scholar] [CrossRef]
- Tang, H.; Mori, Y. Glycoproteins of HHV-6A and HHV-6B. Adv. Exp. Med. Biol. 2018, 1045, 145–165. [Google Scholar] [CrossRef]
- Cermelli, C.; Pietrosemoli, P.; Meacci, M.; Pecorari, M.; Sabbatini, A.M.; Colombari, B.; Portolani, M. SupT-1: A cell system suitable for an efficient propagation of both HHV-7 and HHV-6 variants A and B. New Microbiol. 1997, 20, 187–196. [Google Scholar] [PubMed]
- Sadaoka, T.; Yamanishi, K.; Mori, Y. Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H. J. Gen. Virol. 2006, 87, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Akkapaiboon, P.; Yonemoto, S.; Koike, M.; Takemoto, M.; Sadaoka, T.; Sasamoto, Y.; Konishi, S.; Uchiyama, Y.; Yamanishi, K. Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J. Virol. 2004, 78, 4609–4616. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Hayashi, M.; Maeki, T.; Yamanishi, K.; Mori, Y. Human herpesvirus 6 glycoprotein complex formation is required for folding and trafficking of the gH/gL/gQ1/gQ2 complex and its cellular receptor binding. J. Virol. 2011, 85, 11121–11130. [Google Scholar] [CrossRef] [Green Version]
- Jasirwan, C.; Furusawa, Y.; Tang, H.; Maeki, T.; Mori, Y. Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol. Immunol. 2014, 58, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Mori, Y. Determinants of Human CD134 Essential for Entry of Human Herpesvirus 6B. J. Virol. 2015, 89, 10125–10129. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Wang, J.; Mahmoud, N.F.; Mori, Y. Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J. Virol. 2014, 88, 10875–10882. [Google Scholar] [CrossRef] [Green Version]
- Cirone, M.; Zompetta, C.; Angeloni, A.; Ablashi, D.V.; Salahuddin, S.Z.; Pavan, A.; Torrisi, M.R.; Frati, L.; Faggioni, A. Infection by human herpesvirus 6 (HHV-6) of human lymphoid T cells occurs through an endocytic pathway. AIDS Res. Hum. Retrovir. 1992, 8, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Isegawa, Y.; Nakano, K.; Haque, M.; Horiguchi, Y.; Yamanishi, K. Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J. Virol. 1999, 73, 5926–5933. [Google Scholar]
- Grinde, B. Herpesviruses: Latency and reactivation-viral strategies and host response. J. Oral Microbiol. 2013, 5, 22766. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, S.; Dollard, S.C.; Pellett, P.E.; Dambaugh, T.R. Identification of a lytic-phase origin of DNA replication in human herpesvirus 6B strain Z29. J. Virol. 1993, 67, 7680–7683. [Google Scholar] [PubMed]
- Inoue, N.; Dambaugh, T.R.; Rapp, J.C.; Pellett, P.E. Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J. Virol. 1994, 68, 4126–4136. [Google Scholar]
- Inoue, N.; Pellett, P.E. Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J. Virol. 1995, 69, 4619–4627. [Google Scholar]
- Boehmer, P.E.; Nimonkar, A.V. Herpes virus replication. IUBMB Life 2003, 55, 13–22. [Google Scholar] [CrossRef]
- Teo, I.A.; Griffin, B.E.; Jones, M.D. Characterization of the DNA polymerase gene of human herpesvirus 6. J. Virol. 1991, 65, 4670–4680. [Google Scholar]
- Lin, K.; Ricciardi, R.P. The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology 1998, 250, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Dewhurst, S. Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J. Virol. 1998, 72, 320–329. [Google Scholar]
- Turner, S.; DiLuca, D.; Gompels, U. Characterisation of a human herpesvirus 6 variant A ‘amplicon’ and replication modulation by U94-Rep ‘latency gene’. J. Virol. Methods 2002, 105, 331–341. [Google Scholar] [CrossRef]
- Mori, Y.; Koike, M.; Moriishi, E.; Kawabata, A.; Tang, H.; Oyaizu, H.; Uchiyama, Y.; Yamanishi, K. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 2008, 9, 1728–1742. [Google Scholar] [CrossRef] [Green Version]
- Maeki, T.; Mori, Y. Features of Human Herpesvirus-6A and -6B Entry. Adv. Virol. 2012, 384069, 23. [Google Scholar] [CrossRef] [Green Version]
- Cirone, M.; Campadelli-Fiume, G.; Foa-Tomasi, L.; Torrisi, M.R.; Faggioni, A. Human herpesvirus 6 envelope glycoproteins B and H-L complex are undetectable on the plasma membrane of infected lymphocytes. AIDS Res. Hum. Retrovir. 1994, 10, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, M.R.; Gentile, M.; Cardinali, G.; Cirone, M.; Zompetta, C.; Lotti, L.V.; Frati, L.; Faggioni, A. Intracellular transport and maturation pathway of human herpesvirus 6. Virology 1999, 257, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Luppi, M.; Marasca, R.; Barozzi, P.; Ferrari, S.; Ceccherini-Nelli, L.; Batoni, G.; Merelli, E.; Torelli, G. Three cases of human herpesvirus-6 latent infection: Integration of viral genome in peripheral blood mononuclear cell DNA. J. Med. Virol. 1993, 40, 44–52. [Google Scholar] [CrossRef]
- Arbuckle, J.H.; Medveczky, M.M.; Luka, J.; Hadley, S.H.; Luegmayr, A.; Ablashi, D.; Lund, T.C.; Tolar, J.; De Meirleir, K.; Montoya, J.G.; et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA 2010, 107, 5563–5568. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.H.; Pantry, S.N.; Medveczky, M.M.; Prichett, J.; Loomis, K.S.; Ablashi, D.; Medveczky, P.G. Mapping the telomere integrated genome of human herpesvirus 6A and 6B. Virology 2013, 442, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Kaufer, B.B.; Flamand, L. Chromosomally integrated HHV-6: Impact on virus, cell and organismal biology. Curr. Opin. Virol. 2014, 9, 111–118. [Google Scholar] [CrossRef]
- Kaufer, B.B.; Jarosinski, K.W.; Osterrieder, N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J. Exp. Med. 2011, 208, 605–615. [Google Scholar] [CrossRef]
- Wallaschek, N.; Sanyal, A.; Pirzer, F.; Gravel, A.; Mori, Y.; Flamand, L.; Kaufer, B.B. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog. 2016, 12, e1005666. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hidalgo-Bravo, A.; Zhang, E.; Cotton, V.E.; Mendez-Bermudez, A.; Wig, G.; Medina-Calzada, Z.; Neumann, R.; Jeffreys, A.J.; Winney, B.; et al. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res. 2014, 42, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Thomson, B.J.; Efstathiou, S.; Honess, R.W. Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature 1991, 351, 78–80. [Google Scholar] [CrossRef]
- Rapp, J.C.; Krug, L.T.; Inoue, N.; Dambaugh, T.R.; Pellett, P.E. U94, the human herpesvirus 6 homolog of the parvovirus nonstructural gene, is highly conserved among isolates and is expressed at low mRNA levels as a spliced transcript. Virology 2000, 268, 504–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trempe, F.; Gravel, A.; Dubuc, I.; Wallaschek, N.; Collin, V.; Gilbert-Girard, S.; Morissette, G.; Kaufer, B.B.; Flamand, L. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res. 2015, 43, 6084–6098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallaschek, N.; Gravel, A.; Flamand, L.; Kaufer, B.B. The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J. Gen. Virol. 2016, 97, 1899–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, V.; Flamand, L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. Viruses 2017, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Wight, D.J.; Wallaschek, N.; Sanyal, A.; Weller, S.K.; Flamand, L.; Kaufer, B.B. Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018, 10, 656. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Watanabe, K.; Ohye, T.; Suzuki, K.; Matsubara, T.; Shimizu, N.; Kurahashi, H.; Yoshikawa, T.; Katano, H.; Inoue, N.; et al. Molecular and Virological Evidence of Viral Activation From Chromosomally Integrated Human Herpesvirus 6A in a Patient With X-Linked Severe Combined Immunodeficiency. Clin. Infect. Dis. 2014, 59, 545–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.L.; Carlin, K.; Ljungman, P.; Politikos, I.; Boussiotis, V.; Boeckh, M.; Shaffer, M.L.; Zerr, D.M. Human Herpesvirus-6B Reactivation Is a Risk Factor for Grades II to IV Acute Graft-versus-Host Disease after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2018, 24, 2324–2336. [Google Scholar] [CrossRef] [Green Version]
- Oevermann, L.; Zimmermann, C.; Voigt, S.; Kunkele, A.; Lobitz, S.; Eggert, A.; Schulte, J.H.; Kaufer, B.B.; Deubzer, H.E. Transmission of chromosomally integrated human herpes virus-6A via haploidentical stem cell transplantation poses a risk for virus reactivation and associated complications. Bone Marrow Transplant. 2019, 1. [Google Scholar] [CrossRef]
- Gravel, A.; Hall, C.B.; Flamand, L. Sequence analysis of transplacentally acquired human herpesvirus 6 DNA is consistent with transmission of a chromosomally integrated reactivated virus. J. Infect. Dis. 2013, 207, 1585–1589. [Google Scholar] [CrossRef]
- Gravel, A.; Dubuc, I.; Wallaschek, N.; Gilbert-Girard, S.; Collin, V.; Hall-Sedlak, R.; Jerome, K.R.; Mori, Y.; Carbonneau, J.; Boivin, G.; et al. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration. J. Virol. 2017, 91, e00437-17. [Google Scholar] [CrossRef] [Green Version]
- Prusty, B.K.; Gulve, N.; Chowdhury, S.R.; Schuster, M.; Strempel, S.; Descamps, V.; Rudel, T. HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. npj Genom. Med. 2018, 3, 25. [Google Scholar] [CrossRef]
- Saviola, A.J.; Zimmermann, C.; Mariani, M.P.; Signorelli, S.A.; Gerrard, D.L.; Boyd, J.R.; Wight, D.J.; Morissette, G.; Gravel, A.; Dubuc, I.; et al. Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A. Front. Microbiol. 2019, 10, 1408. [Google Scholar] [CrossRef]
- Peddu, V.; Dubuc, I.; Gravel, A.; Xie, H.; Huang, M.-L.; Tenenbaum, D.; Jerome, K.R.; Tardif, J.-C.; Dubé, M.-P.; Flamand, L.; et al. Inherited chromosomally integrated HHV-6 demonstrates tissue-specific RNA expression in vivo that correlates with increased antibody immune response. J. Virol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, J. Determination and analysis of the complete nucleotide sequence of human herpesvirus. J. Virol. 1996, 70, 5975–5989. [Google Scholar]
- Megaw, A.G.; Rapaport, D.; Avidor, B.; Frenkel, N.; Davison, A.J. The DNA sequence of the RK strain of human herpesvirus 7. Virology 1998, 244, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Lusso, P.; Secchiero, P.; Crowley, R.W.; Garzino-Demo, A.; Berneman, Z.N.; Gallo, R.C. CD4 is a critical component of the receptor for human herpesvirus 7: Interference with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1994, 91, 3872–3876. [Google Scholar] [CrossRef] [Green Version]
- Prusty, B.K.; Gulve, N.; Rasa, S.; Murovska, M.; Hernandez, P.C.; Ablashi, D.V. Possible chromosomal and germline integration of human herpesvirus 7. J. Gen. Virol. 2017, 98, 266–274. [Google Scholar] [CrossRef]
- Zerr, D.M.; Meier, A.S.; Selke, S.S.; Frenkel, L.M.; Huang, M.-L.; Wald, A.; Rhoads, M.P.; Nguy, L.; Bornemann, R.; Morrow, R.A.; et al. A Population-Based Study of Primary Human Herpesvirus 6 Infection. N. Engl. J. Med. 2005, 352, 768–776. [Google Scholar] [CrossRef]
- Levy, J.A.; Ferro, F.; Greenspan, D.; Lennette, E.T. Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet 1990, 335, 1047–1050. [Google Scholar] [CrossRef]
- Okuno, T.; Takahashi, K.; Balachandra, K.; Shiraki, K.; Yamanishi, K.; Takahashi, M.; Baba, K. Seroepidemiology of human herpesvirus 6 infection in normal children and adults. J. Clin. Microbiol. 1989, 27, 651–653. [Google Scholar]
- Daibata, M.; Taguchi, T.; Taguchi, H.; Miyoshi, I. Integration of human herpesvirus 6 in a Burkitt’s lymphoma cell line. Br. J. Haematol. 1998, 102, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Pellett, P.E.; Ablashi, D.V.; Ambros, P.F.; Agut, H.; Caserta, M.T.; Descamps, V.; Flamand, L.; Gautheret-Dejean, A.S.; Hall, C.B.; Kamble, R.T.; et al. Chromosomally integrated human herpesvirus 6: Questions and answers. Rev. Med. Virol. 2012, 22, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B.; Caserta, M.T.; Schnabel, K.; Shelley, L.M.; Marino, A.S.; Carnahan, J.A.; Yoo, C.; Lofthus, G.K.; McDermott, M.P. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics 2008, 122, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, C.B.; Caserta, M.T.; Schnabel, K.C.; Shelley, L.M.; Carnahan, J.A.; Marino, A.S.; Yoo, C.; Lofthus, G.K. Transplacental congenital human herpesvirus 6 infection caused by maternal chromosomally integrated virus. J. Infect. Dis. 2010, 201, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Baillargeon, J.; Piper, J.; Leach, C.T. Epidemiology of human herpesvirus 6 (HHV-6) infection in pregnant and nonpregnant women. J. Clin. Virol. 2000, 16, 149–157. [Google Scholar] [CrossRef]
- Wyatt, L.S.; Rodriguez, W.J.; Balachandran, N.; Frenkel, N. Human herpesvirus 7: Antigenic properties and prevalence in children and adults. J. Virol. 1991, 65, 6260–6265. [Google Scholar] [PubMed]
- Krueger, G.R.; Koch, B.; Leyssens, N.; Berneman, Z.; Rojo, J.; Horwitz, C.; Sloots, T.; Margalith, M.; Conradie, J.D.; Imai, S.; et al. Comparison of seroprevalences of human herpesvirus-6 and -7 in healthy blood donors from nine countries. Vox Sang. 1998, 75, 193–197. [Google Scholar] [CrossRef]
- Black, J.B.; Inoue, N.; Kite-Powell, K.; Zaki, S.; Pellett, P.E. Frequent isolation of human herpesvirus 7 from saliva. Virus Res. 1993, 29, 91–98. [Google Scholar] [CrossRef]
- Hall, C.B.; Caserta, M.T.; Schnabel, K.C.; Boettrich, C.; McDermott, M.P.; Lofthus, G.K.; Carnahan, J.A.; Dewhurst, S. Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J. Pediatr. 2004, 145, 472–477. [Google Scholar] [CrossRef]
- Pellett Madan, R.; Hand, J. AST Infectious Diseases Community of Practice. Human herpesvirus 6, 7, and 8 in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13518. [Google Scholar] [CrossRef] [Green Version]
- Asano, Y.; Yoshikawa, T.; Suga, S.; Kobayashi, I.; Nakashima, T.; Yazaki, T.; Kajita, Y.; Ozaki, T. Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics 1994, 93, 104–108. [Google Scholar]
- Mohammadpour Touserkani, F.; Gainza-Lein, M.; Jafarpour, S.; Brinegar, K.; Kapur, K.; Loddenkemper, T. HHV-6 and seizure: A systematic review and meta-analysis. J. Med. Virol. 2017, 89, 161–169. [Google Scholar] [CrossRef]
- Epstein, L.G.; Shinnar, S.; Hesdorffer, D.C.; Nordli, D.R.; Hamidullah, A.; Benn, E.K.T.; Pellock, J.M.; Frank, L.M.; Lewis, D.V.; Moshe, S.L.; et al. Human herpesvirus 6 and 7 in febrile status epilepticus: The FEBSTAT study. Epilepsia 2012, 53, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.L.; Lautenschlager, I.; Razonable, R.R.; Munoz, F.M. HHV-6 in liver transplantation: A literature review. Liver Int. 2018, 38, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Yasui, T.; Suzuki, T.; Yoshikawa, T.; Yatsuya, H.; Kawamura, Y.; Miura, H.; Hara, F.; Watanabe, S.; Uga, N.; Naoe, A. Clinical course of human herpesvirus 6 infection in pediatric living donor liver transplantation. Pediatr. Transplant. 2018, 22, e13239. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, M.; Sugata, K.; Ihira, M.; Asano, Y.; Egawa, H.; Takada, Y.; Uemoto, S.; Yoshikawa, T. Human Herpesvirus 6 Infection in Adult Living Related Liver Transplant Recipients. Liver Transplant. 2008, 14, 100–109. [Google Scholar] [CrossRef]
- Scheurer, M.E.; Pritchett, J.C.; Amirian, E.S.; Zemke, N.R.; Lusso, P.; Ljungman, P. HHV-6 encephalitis in umbilical cord blood transplantation: A systematic review and meta-analysis. Bone Marrow Transplant. 2013, 48, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.A.; Zerr, D.; Sedlak, R.H.; Jerome, K.R.; Myerson, D. Hepatitis due to human herpesvirus 6 after hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2014, 20, S228–S229. [Google Scholar] [CrossRef] [Green Version]
- Potenza, L.; Luppi, M.; Barozzi, P.; Rossi, G.; Cocchi, S.; Codeluppi, M.; Pecorari, M.; Masetti, M.; Benedetto, F.D.; Gennari, W.; et al. HHV-6A in Syncytial Giant-Cell Hepatitis. N. Engl. J. Med. 2008, 359, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.A.; Vande Vusse, L.K.; Xie, H.; Chung, E.L.; Yeung, C.C.S.; Seo, S.; Stevens-Ayers, T.; Fisher, C.E.; Huang, M.L.; Stewart, F.M.; et al. Human Herpesvirus 6B and Lower Respiratory Tract Disease After Hematopoietic Cell Transplantation. J. Clin. Oncol. 2019, 37, 2670–2681. [Google Scholar] [CrossRef]
- Zhou, X.; O’Dwyer, D.N.; Xia, M.; Miller, H.K.; Chan, P.R.; Trulik, K.; Chadwick, M.M.; Hoffman, T.C.; Bulte, C.; Sekerak, K.; et al. First-Onset Herpesviral Infection and Lung Injury in Allogeneic Hematopoietic Cell Transplantation. Am. J. Respir. Crit. Care Med. 2019, 200, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Stefanski, H.E.; Thibert, K.A.; Pritchett, J.; Prusty, B.K.; Wagner, J.E.; Lund, T.C. Fatal Myocarditis Associated With HHV-6 Following Immunosuppression in Two Children. Pediatrics 2016, 137, e20151352. [Google Scholar] [CrossRef] [Green Version]
- Leveque, N.; Boulagnon, C.; Brasselet, C.; Lesaffre, F.; Boutolleau, D.; Metz, D.; Fornes, P.; Andreoletti, L. A fatal case of Human Herpesvirus 6 chronic myocarditis in an immunocompetent adult. J. Clin. Virol. 2011, 52, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Bortolotti, D.; Marci, R.; Rotola, A.; Gentili, V.; Soffritti, I.; D’Accolti, M.; Lo Monte, G.; Sicolo, M.; Barao, I.; et al. HHV-6A Infection of Endometrial Epithelial Cells Induces Increased Endometrial NK Cell-Mediated Cytotoxicity. Front. Microbiol. 2017, 8, 2525. [Google Scholar] [CrossRef]
- Marci, R.; Gentili, V.; Bortolotti, D.; Lo Monte, G.; Caselli, E.; Bolzani, S.; Rotola, A.; Di Luca, D.; Rizzo, R. Presence of HHV-6A in Endometrial Epithelial Cells from Women with Primary Unexplained Infertility. PLoS ONE 2016, 11, e0158304. [Google Scholar] [CrossRef]
- Leibovitch, E.C.; Jacobson, S. Evidence linking HHV-6 with multiple sclerosis: An update. Curr. Opin. Virol. 2014, 9, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagawa, F.; Nakamura, Y.; Miyashita, K.; Iioka, H.; Himuro, Y.; Ogawa, K.; Nishimura, C.; Nishikawa, M.; Mitsui, Y.; Ito, Y.; et al. Preferential expression of CD134, an HHV-6 cellular receptor, on CD4T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Derm. Sci. 2016, 83, 151–154. [Google Scholar] [CrossRef]
- Suzuki, Y.; Inagi, R.; Aono, T.; Yamanishi, K.; Shiohara, T. Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch. Derm. 1998, 134, 1108–1112. [Google Scholar] [CrossRef] [Green Version]
- Caselli, E.; Zatelli, M.C.; Rizzo, R.; Benedetti, S.; Martorelli, D.; Trasforini, G.; Cassai, E.; degli Uberti, E.C.; Di Luca, D.; Dolcetti, R. Virologic and Immunologic Evidence Supporting an Association between HHV-6 and Hashimoto’s Thyroiditis. PLoS Pathog. 2012, 8, e1002951. [Google Scholar] [CrossRef]
- Ogata, M.; Phan, T.L.; Fukuda, T. Antiviral therapy for the treatment of HHV-6-associated syndromes after transplant. Am. J. Transplant. 2019, 19, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Ogata, M.; Takano, K.; Moriuchi, Y.; Kondo, T.; Ueki, T.; Nakano, N.; Mori, T.; Uoshima, N.; Nagafuji, K.; Yamasaki, S.; et al. Effects of Prophylactic Foscarnet on Human Herpesvirus-6 Reactivation and Encephalitis in Cord Blood Transplant Recipients: A Prospective Multicenter Trial with an Historical Control Group. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2018, 24, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Readhead, B.; Haure-Mirande, J.V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; et al. Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus. Neuron 2018, 99, 64–82 e7. [Google Scholar] [CrossRef] [Green Version]
- Eimer, W.A.; Vijaya Kumar, D.K.; Navalpur Shanmugam, N.K.; Rodriguez, A.S.; Mitchell, T.; Washicosky, K.J.; Gyorgy, B.; Breakefield, X.O.; Tanzi, R.E.; Moir, R.D. Alzheimer’s Disease-Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron 2018, 99, 56–63 e3. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.A.; Magaret, A.S.; Hall-Sedlak, R.; Mikhaylova, A.; Huang, M.L.; Sandmaier, B.M.; Hansen, J.A.; Jerome, K.R.; Zerr, D.M.; Boeckh, M. Outcomes of hematopoietic cell transplantation using donors or recipients with inherited chromosomally integrated HHV-6. Blood 2017, 130, 1062–1069. [Google Scholar] [CrossRef]
- Razonable, R.R.; Burak, K.W.; Cruijsen, H.V.; Brown, R.A.; Charlton, M.R.; Smith, T.F.; Espy, M.J.; Kremers, W.; Wilson, J.A.; Groettum, C.; et al. The Pathogenesis of Hepatitis C Virus Is Influenced by Cytomegalovirus. Clin. Infect. Dis. 2002, 35, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Bonnafous, P.; Marlet, J.; Bouvet, D.; Salame, E.; Tellier, A.C.; Guyetant, S.; Goudeau, A.; Agut, H.; Gautheret-Dejean, A.; Gaudy-Graffin, C. Fatal outcome after reactivation of inherited chromosomally integrated HHV-6A (iciHHV-6A) transmitted through liver transplantation. Am. J. Transplant. 2018, 18, 1548–1551. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.Y.; Bakran, A.; Williams, H.; Cheung, C.Y.; Peiris, J.S. Association of human herpesvirus 7 with cytomegalovirus disease in renal transplant recipients. Transplantation 2000, 70, 213–216. [Google Scholar]
- Kidd, I.M.; Clark, D.A.; Sabin, C.A.; Andrew, D.; Hassan-Walker, A.F.; Sweny, P.; Griffiths, P.D.; Emery, V.C. Prospective study of human betaherpesviruses after renal transplantation: Association of human herpesvirus 7 and cytomegalovirus co-infection with cytomegalovirus disease and increased rejection. Transplantation 2000, 69, 2400–2404. [Google Scholar] [CrossRef]
- Chan, P.K.; Chik, K.W.; To, K.F.; Li, C.K.; Shing, M.M.; Ng, K.C.; Yuen, P.M.; Cheng, A.F. Case report: Human herpesvirus 7 associated fatal encephalitis in a peripheral blood stem cell transplant recipient. J. Med. Virol. 2002, 66, 493–496. [Google Scholar] [CrossRef]
- Schwartz, K.L.; Richardson, S.E.; Ward, K.N.; Donaldson, C.; MacGregor, D.; Banwell, B.; Mahant, S.; Bitnun, A. Delayed primary HHV-7 infection and neurologic disease. Pediatrics 2014, 133, e1541–e1547. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.N.; White, R.P.; Mackinnon, S.; Hanna, M. Human herpesvirus-7 infection of the CNS with acute myelitis in an adult bone marrow recipient. Bone Marrow Transplant. 2002, 30, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, T.; Yoshida, J.; Hamaguchi, M.; Kubota, T.; Akimoto, S.; Ihira, M.; Nishiyama, Y.; Asano, Y. Human herpesvirus 7-associated meningitis and optic neuritis in a patient after allogeneic stem cell transplantation. J. Med. Virol. 2003, 70, 440–443. [Google Scholar] [CrossRef]
- Hanson, D.J.; Hill, J.A.; Koelle, D.M. Advances in the Characterization of the T-Cell Response to Human Herpesvirus-6. Front. Immunol. 2018, 9, 1454. [Google Scholar] [CrossRef] [Green Version]
- Becerra, A.; Gibson, L.; Stern, L.J.; Calvo-Calle, J.M. Immune response to HHV-6 and implications for immunotherapy. Curr. Opin. Virol. 2014, 9, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Dagna, L.; Pritchett, J.C.; Lusso, P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol. 2013, 8, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Michalek, J.; Horvath, R.; Benedik, J.; Hrstkova, H. Human herpesvirus-6 infection in children with cancer. Pediatr. Hematol. Oncol. 1999, 16, 423–430. [Google Scholar] [CrossRef]
- Sultanova, A.; Chistjakovs, M.; Chapenko, S.; Donina, S.; Murovska, M. Possible interference of human beta-herpesviruses-6 and -7 in gastrointestinal cancer development. Exp. Oncol. 2013, 35, 93–96. [Google Scholar]
- Wang, F.Z.; Linde, A.; Dahl, H.; Ljungman, P. Human herpesvirus 6 infection inhibits specific lymphocyte proliferation responses and is related to lymphocytopenia after allogeneic stem cell transplantation. Bone Marrow Transplant. 1999, 24, 1201–1206. [Google Scholar] [CrossRef]
- Gobbi, A.; Stoddart, C.A.; Malnati, M.S.; Locatelli, G.; Santoro, F.; Abbey, N.W.; Bare, C.; Linquist-Stepps, V.; Moreno, M.B.; Herndier, B.G.; et al. Human herpesvirus 6 (HHV-6) causes severe thymocyte depletion in SCID-hu Thy/Liv mice. J. Exp. Med. 1999, 189, 1953–1960. [Google Scholar] [CrossRef]
- Wang, F.; Yao, K.; Yin, Q.Z.; Zhou, F.; Ding, C.L.; Peng, G.Y.; Xu, J.; Chen, Y.; Feng, D.J.; Ma, C.L.; et al. Human herpesvirus-6-specific interleukin 10-producing CD4+ T cells suppress the CD4+ T-cell response in infected individuals. Microbiol. Immunol. 2006, 50, 787–803. [Google Scholar] [CrossRef]
- Nastke, M.D.; Becerra, A.; Yin, L.; Dominguez-Amorocho, O.; Gibson, L.; Stern, L.J.; Calvo-Calle, J.M. Human CD4+ T cell response to human herpesvirus 6. J. Virol. 2012, 86, 4776–4792. [Google Scholar] [CrossRef] [Green Version]
- De Pagter, P.J.; Boelens, J.J.; Jacobi, R.; Schuurman, R.; Nanlohy, N.M.; Sanders, E.A.; van Baarle, D. Increased proportion of perforin-expressing CD8+ T-cells indicates control of herpesvirus reactivation in children after stem cell transplantation. Clin. Immunol. 2013, 148, 92–98. [Google Scholar] [CrossRef]
- Lusso, P.; Malnati, M.S.; Garzino-Demo, A.; Crowley, R.W.; Long, E.O.; Gallo, R.C. Infection of natural killer cells by human herpesvirus 6. Nature 1993, 362, 458–462. [Google Scholar] [CrossRef]
- Flamand, L.; Stefanescu, I.; Menezes, J. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15. J. Clin. Investig. 1996, 97, 1373–1381. [Google Scholar] [CrossRef] [Green Version]
- Schmiedel, D.; Tai, J.; Levi-Schaffer, F.; Dovrat, S.; Mandelboim, O. Human Herpesvirus 6B Downregulates Expression of Activating Ligands during Lytic Infection To Escape Elimination by Natural Killer Cells. J. Virol. 2016, 90, 9608–9617. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.L.; Pritchett, J.C.; Leifer, C.; Zerr, D.M.; Koelle, D.M.; Di Luca, D.; Lusso, P. HHV-6B infection, T-cell reconstitution, and graft-vs-host disease after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018, 53, 1508–1517. [Google Scholar] [CrossRef]
- Schwarz, C.M.; Strenger, V.; Strohmaier, H.; Singer, G.; Kaiser, M.; Raicht, A.; Schwinger, W.; Urban, C. HHV-6 Specific T-Cell Immunity in Healthy Children and Adolescents. Front. Pediatr. 2018, 6, 191. [Google Scholar] [CrossRef]
- Ablashi, D.V.; Berneman, Z.N.; Kramarsky, B.; Whitman, J., Jr.; Asano, Y.; Pearson, G.R. Human herpesvirus-7 (HHV-7): Current status. Clin. Diagn. Virol. 1995, 4, 1–13. [Google Scholar] [CrossRef]
- De Koning, C.; Admiraal, R.; Nierkens, S.; Boelens, J.J. Human herpesvirus 6 viremia affects T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Blood Adv. 2018, 2, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Admiraal, R.; de Koning, C.; Lindemans, C.A.; Bierings, M.B.; Wensing, A.M.; Versluys, A.B.; Wolfs, T.F.; Nierkens, S.; Boelens, J.J. Viral Reactivations and Associated Outcomes in Context of Immune Reconstitution after Pediatric Hematopoietic Cell Transplantation. J. Allergy Clin. Immunol. 2017, 140, 1643–1650 e9. [Google Scholar] [CrossRef] [Green Version]
- Appleton, A.L.; Sviland, L.; Peiris, J.S.; Taylor, C.E.; Wilkes, J.; Green, M.A.; Pearson, A.D.; Kelly, P.J.; Malcolm, A.J.; Proctor, S.J.; et al. Human herpes virus-6 infection in marrow graft recipients: Role in pathogenesis of graft-versus-host disease. Newcastle upon Tyne Bone Marrow Transport Group. Bone Marrow Transplant. 1995, 16, 777–782. [Google Scholar]
- Pichereau, C.; Desseaux, K.; Janin, A.; Scieux, C.; Peffault de Latour, R.; Xhaard, A.; Robin, M.; Ribaud, P.; Agbalika, F.; Chevret, S.; et al. The complex relationship between human herpesvirus 6 and acute graft-versus-host disease. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2012, 18, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foa-Tomasi, L.; Boscaro, A.; di Gaeta, S.; Campadelli-Fiume, G. Monoclonal antibodies to gp100 inhibit penetration of human herpesvirus 6 and polykaryocyte formation in susceptible cells. J. Virol. 1991, 65, 4124–4129. [Google Scholar]
- Liu, D.X.; Gompels, U.A.; Foa-Tomasi, L.; Campadelli-Fiume, G. Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Virology 1993, 197, 12–22. [Google Scholar] [CrossRef]
- Takeda, K.; Haque, M.; Sunagawa, T.; Okuno, T.; Isegawa, Y.; Yamanishi, K. Identification of a variant B-specific neutralizing epitope on glycoprotein H of human herpesvirus-6. J. Gen. Virol. 1997, 78, 2171–2178. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, A.; Oyaizu, H.; Maeki, T.; Tang, H.; Yamanishi, K.; Mori, Y. Analysis of a neutralizing antibody for human herpesvirus 6B reveals a role for glycoprotein Q1 in viral entry. J. Virol. 2011, 85, 12962–12971. [Google Scholar] [CrossRef] [Green Version]
- Foa-Tomasi, L.; Guerrini, S.; Huang, T.; Campadelli-Fiume, G. Characterization of human herpesvirus-6(U1102) and (GS) gp112 and identification of the Z29-specified homolog. Virology 1992, 191, 511–516. [Google Scholar] [CrossRef]
- Gerdemann, U.; Keukens, L.; Keirnan, J.M.; Katari, U.L.; Nguyen, C.T.; de Pagter, A.P.; Ramos, C.A.; Kennedy-Nasser, A.; Gottschalk, S.M.; Heslop, H.E.; et al. Immunotherapeutic strategies to prevent and treat human herpesvirus 6 reactivation after allogeneic stem cell transplantation. Blood 2013, 121, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Rowe, W.P.; Capps, W.I. A new mouse virus causing necrosis of the thymus in newborn mice. J. Exp. Med. 1961, 113, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.C.; Vernon, M.L.; Cross, S.S. Classification of mouse thymic virus as a herpesvirus. Infect. Immun. 1973, 7, 305–308. [Google Scholar]
- Morse, S.S. Mouse thymic necrosis virus: A novel murine lymphotropic agent. Lab. Anim. Sci. 1987, 37, 717–725. [Google Scholar]
- Morse, S.S.; Valinsky, J.E. Mouse thymic virus (MTLV). A mammalian herpesvirus cytolytic for CD4+ (L3T4+) T lymphocytes. J. Exp. Med. 1989, 169, 591–596. [Google Scholar] [CrossRef]
- Patel, S.J.; Zhao, G.; Penna, V.R.; Park, E.; Lauron, E.J.; Harvey, I.B.; Beatty, W.L.; Plougastel-Douglas, B.; Poursine-Laurent, J.; Fremont, D.H.; et al. A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.J.; Yokoyama, W.M. Reply to “Murine Roseolovirus, Historically Known as Murine Thymic Lymphotropic Virus”. J. Virol. 2017, 91, e00956-17. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wunderlich, M.; Henderson, K. Murine Roseolovirus, Historically Known as Murine Thymic Lymphotropic Virus. J. Virol. 2017, 91, e00943-17. [Google Scholar] [CrossRef] [Green Version]
- Gompels, U.A.; Macaulay, H.A. Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J. Gen. Virol. 1995, 76, 451–458. [Google Scholar] [CrossRef]
- Becker, S.D.; Bennett, M.; Stewart, J.P.; Hurst, J.L. Serological survey of virus infection among wild house mice (Mus domesticus) in the UK. Lab. Anim. 2007, 41, 229–238. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, Y.; Potworowski, E.F.; Lussier, G. Transmission of mouse thymic virus. J. Gen. Virol. 1987, 68, 1173–1176. [Google Scholar] [CrossRef]
- Cross, S.S.; Parker, J.C.; Rowe, W.P.; Robbins, M.L. Biology of mouse thymic virus, a herpesvirus of mice, and the antigenic relationship to mouse cytomegalovirus. Infect. Immun. 1979, 26, 1186–1195. [Google Scholar]
- Wood, B.A.; Dutz, W.; Cross, S.S. Neonatal infection with mouse thymic virus: Spleen and lymph node necrosis. J. Gen. Virol. 1981, 57, 139–147. [Google Scholar] [CrossRef]
- Athanassious, R.; Lussier, G. Mouse thymic virus infection: Ultrastructural and immunocytochemical studies of infected thymus cells. J. Exp. Anim. Sci. 1992, 35, 63–70. [Google Scholar]
- Patel, S.J.; Yokoyama, W.M. CD8(+) T Cells Prevent Lethality from Neonatal Murine Roseolovirus Infection. J. Immunol. 2017, 199, 3212–3221. [Google Scholar] [CrossRef] [Green Version]
- Morse, S.S.; Sakaguchi, N.; Sakaguchi, S. Virus and autoimmunity: Induction of autoimmune disease in mice by mouse T lymphotropic virus (MTLV) destroying CD4+ T cells. J. Immunol. 1999, 162, 5309–5316. [Google Scholar] [PubMed]
- Cohen, P.L.; Cross, S.S.; Mosier, D.E. Immunologic effects of neonatal infection with mouse thymic virus. J. Immunol. 1975, 115, 706–710. [Google Scholar]
- Cross, S.S.; Morse, H.C.; Asofsky, R. Neonatal infection with mouse thymic virus. Differential effects on T cells mediating the graft-versus-host reaction. J. Immunol. 1976, 117, 635–638. [Google Scholar]
- Morse, S.S. Mouse thymic virus (MTLV; murid herpesvirus 3) infection in athymic nude mice: Evidence for a T lymphocyte requirement. Virology 1988, 163, 255–258. [Google Scholar] [CrossRef]
- Morse, H.C., 3rd; Cross, S.S.; Baker, P.J. Neonatal infection with mouse thymic virus: Effects on cells regulating the antibody response to type III pneumococcal polysaccharide. J. Immunol. 1976, 116, 1613–1617. [Google Scholar]
- Lussier, G.; Guenette, D.; Shek, W.R.; Descoteaux, J.P. Detection of antibodies to mouse thymic virus by enzyme-linked immunosorbent assay. Can. J. Vet. Res. 1988, 52, 236–238. [Google Scholar]
- Morse, S.S. Comparative sensitivity of infectivity assay and mouse antibody production (MAP) test for detection of mouse thymic virus (MTLV). J. Virol. Methods 1990, 28, 15–23. [Google Scholar] [CrossRef]
- Morse, S.S. Critical factors in an enzyme immunoassay (ELISA) for antibodies to mouse thymic virus (MTLV). Lab. Anim. 1990, 24, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Zeng, N.; Zhou, L.; Ge, X.; Guo, X.; Yang, H. Genomic organization and molecular characterization of porcine cytomegalovirus. Virology 2014, 460–461, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Staczek, J. Animal cytomegaloviruses. Microbiol. Rev. 1990, 54, 247–265. [Google Scholar]
- Denner, J.; Tonjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef] [Green Version]
- Edington, N.; Wrathall, A.E.; Done, J.T. Porcine cytomegalovirus (PCMV) in early gestation. Vet. Microbiol. 1988, 17, 117–128. [Google Scholar] [CrossRef]
- Liu, X.; Liao, S.; Xu, Z.; Zhu, L.; Yang, F.; Guo, W. Identification and Analysis of the Porcine MicroRNA in Porcine Cytomegalovirus-Infected Macrophages Using Deep Sequencing. PLoS ONE 2016, 11, e0150971. [Google Scholar] [CrossRef]
- Liu, X.; Liao, S.; Zhu, L.; Xu, Z.; Zhou, Y. Molecular epidemiology of porcine Cytomegalovirus (PCMV) in Sichuan Province, China: 2010-2012. PLoS ONE 2013, 8, e64648. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Z.; Zhu, L.; Liao, S.; Guo, W. Transcriptome analysis of porcine thymus following porcine cytomegalovirus infection. PLoS ONE 2014, 9, e113921. [Google Scholar] [CrossRef]
- Liu, X.; Wei, H.; Liao, S.; Ye, J.; Zhu, L.; Xu, Z. MicroRNA transcriptome analysis of porcine vital organ responses to immunosuppressive porcine cytomegalovirus infection. Virol. J. 2018, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Guedes, M.I.; Risdahl, J.M.; Wiseman, B.; Molitor, T.W. Reactivation of porcine cytomegalovirus through allogeneic stimulation. J. Clin. Microbiol. 2004, 42, 1756–1758. [Google Scholar] [CrossRef] [Green Version]
- Fiebig, U.; Abicht, J.M.; Mayr, T.; Langin, M.; Bahr, A.; Guethoff, S.; Falkenau, A.; Wolf, E.; Reichart, B.; Shibahara, T.; et al. Distribution of Porcine Cytomegalovirus in Infected Donor Pigs and in Baboon Recipients of Pig Heart Transplantation. Viruses 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.J.; Barth, R.N.; Yamamoto, S.; Kitamura, H.; Patience, C.; Yamada, K.; Cooper, D.K.; Sachs, D.H.; Kaur, A.; Fishman, J.A. Activation of cytomegalovirus in pig-to-primate organ xenotransplantation. J. Virol. 2002, 76, 4734–4740. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.J.; Livingston, C.; Knosalla, C.; Barth, R.N.; Yamamoto, S.; Gollackner, B.; Dor, F.J.; Buhler, L.; Sachs, D.H.; Yamada, K.; et al. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation. J. Infect. Dis. 2004, 189, 1628–1633. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.H.; Li, R.C.; Li, J.; Huang, Z.B.; Xiao, C.T.; Luo, W.; Ge, M.; Jiang, D.L.; Yu, X.L. Seroprevalence of porcine cytomegalovirus and sapovirus infection in pigs in Hunan province, China. Arch. Virol. 2012, 157, 521–524. [Google Scholar] [CrossRef]
- Plotzki, E.; Keller, M.; Ivanusic, D.; Denner, J. A new Western blot assay for the detection of porcine cytomegalovirus (PCMV). J. Immunol. Methods 2016, 437, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, U.; Holzer, A.; Ivanusic, D.; Plotzki, E.; Hengel, H.; Neipel, F.; Denner, J. Antibody Cross-Reactivity between Porcine Cytomegalovirus (PCMV) and Human Herpesvirus-6 (HHV-6). Viruses 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, M.; Shibahara, T.; Miyazaki, A.; Tajima, T.; Shimizu, S.; Kabali, E.; Takano, Y.; Sasaki, Y.; Kubo, M. In situ hybridization and immunohistochemistry for the detection of porcine cytomegalovirus. J. Virol. Methods 2012, 179, 272–275. [Google Scholar] [CrossRef]
- Fryer, J.F.; Griffiths, P.D.; Emery, V.C.; Clark, D.A. Susceptibility of porcine cytomegalovirus to antiviral drugs. J. Antimicrob. Chemother. 2004, 53, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.J.; Sulling, K.; Gollackner, B.; Yamamoto, S.; Knosalla, C.; Wilkinson, R.A.; Kaur, A.; Sachs, D.H.; Yamada, K.; Cooper, D.K.; et al. Reduced efficacy of ganciclovir against porcine and baboon cytomegalovirus in pig-to-baboon xenotransplantation. Am. J. Transplant. 2003, 3, 1057–1064. [Google Scholar] [CrossRef]
- Cooper, D.K.; Satyananda, V.; Ekser, B.; van der Windt, D.J.; Hara, H.; Ezzelarab, M.B.; Schuurman, H.J. Progress in pig-to-non-human primate transplantation models (1998-2013): A comprehensive review of the literature. Xenotransplantation 2014, 21, 397–419. [Google Scholar] [CrossRef]
- Denner, J. Recent Progress in Xenotransplantation, with Emphasis on Virological Safety. Ann. Transplant. 2016, 21, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Denner, J. Xenotransplantation and Hepatitis E virus. Xenotransplantation 2015, 22, 167–173. [Google Scholar] [CrossRef]
- Denner, J. Xenotransplantation and porcine cytomegalovirus. Xenotransplantation 2015, 22, 329–335. [Google Scholar] [CrossRef]
- Denner, J. Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol. J. 2018, 15, 171. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Tasaki, M.; Sekijima, M.; Wilkinson, R.A.; Villani, V.; Moran, S.G.; Cormack, T.A.; Hanekamp, I.M.; Hawley, R.J.; Arn, J.S.; et al. Porcine cytomegalovirus infection is associated with early rejection of kidney grafts in a pig to baboon xenotransplantation model. Transplantation 2014, 98, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Sekijima, M.; Waki, S.; Sahara, H.; Tasaki, M.; Wilkinson, R.A.; Villani, V.; Shimatsu, Y.; Nakano, K.; Matsunari, H.; Nagashima, H.; et al. Results of life-supporting galactosyltransferase knockout kidneys in cynomolgus monkeys using two different sources of galactosyltransferase knockout Swine. Transplantation 2014, 98, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Whitteker, J.L.; Dudani, A.K.; Tackaberry, E.S. Human fibroblasts are permissive for porcine cytomegalovirus in vitro. Transplantation 2008, 86, 155–162. [Google Scholar] [CrossRef]
- Tucker, A.W.; Galbraith, D.; McEwan, P.; Onions, D. Evaluation of porcine cytomegalovirus as a potential zoonotic agent in xenotransplantation. Transpl. Proc. 1999, 31, 915. [Google Scholar] [CrossRef]
- Egerer, S.; Fiebig, U.; Kessler, B.; Zakhartchenko, V.; Kurome, M.; Reichart, B.; Kupatt, C.; Klymiuk, N.; Wolf, E.; Denner, J.; et al. Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation 2018, 25, e12449. [Google Scholar] [CrossRef]
- Mueller, N.J.; Kuwaki, K.; Dor, F.J.; Knosalla, C.; Gollackner, B.; Wilkinson, R.A.; Sachs, D.H.; Cooper, D.K.; Fishman, J.A. Reduction of consumptive coagulopathy using porcine cytomegalovirus-free cardiac porcine grafts in pig-to-primate xenotransplantation. Transplantation 2004, 78, 1449–1453. [Google Scholar] [CrossRef]
- Mueller, N.J.; Kuwaki, K.; Knosalla, C.; Dor, F.J.; Gollackner, B.; Wilkinson, R.A.; Arn, S.; Sachs, D.H.; Cooper, D.K.; Fishman, J.A. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation 2005, 12, 59–62. [Google Scholar] [CrossRef]
- Morozov, V.A.; Plotzki, E.; Rotem, A.; Barkai, U.; Denner, J. Extended microbiological characterization of Gottingen minipigs: Porcine cytomegalovirus and other viruses. Xenotransplantation 2016, 23, 490–496. [Google Scholar] [CrossRef]
- Hudson, A.W. Roseoloviruses and their modulation of host defenses. Curr. Opin. Virol. 2014, 9, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Breen, E.C.; Rezai, A.R.; Nakajima, K.; Beall, G.N.; Mitsuyasu, R.T.; Hirano, T.; Kishimoto, T.; Martinez-Maza, O. Infection with HIV is associated with elevated IL-6 levels and production. J. Immunol. 1990, 144, 480–484. [Google Scholar] [PubMed]
- Liu, Y.; de Waal Malefyt, R.; Briere, F.; Parham, C.; Bridon, J.M.; Banchereau, J.; Moore, K.W.; Xu, J. The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor. J. Immunol. 1997, 158, 604–613. [Google Scholar] [PubMed]
- Denner, J. The transmembrane proteins contribute to immunodeficiencies induced by HIV-1 and other retroviruses. AIDS 2014, 28, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Avota, E.; Gassert, E.; Schneider-Schaulies, S. Measles virus-induced immunosuppression: From effectors to mechanisms. Med. Microbiol. Immunol. 2010, 199, 227–237. [Google Scholar] [CrossRef]
- Denner, J.; Eschricht, M.; Lauck, M.; Semaan, M.; Schlaermann, P.; Ryu, H.; Akyuz, L. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1. PLoS ONE 2013, 8, e55199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Santoro, F.; Di Lullo, G.; Dagna, L.; Verani, A.; Lusso, P. Selective suppression of IL-12 production by human herpesvirus 6. Blood 2003, 102, 2877–2884. [Google Scholar] [CrossRef]
- Atabani, S.F.; Byrnes, A.A.; Jaye, A.; Kidd, I.M.; Magnusen, A.F.; Whittle, H.; Karp, C.L. Natural measles causes prolonged suppression of interleukin-12 production. J. Infect. Dis. 2001, 184, 1–9. [Google Scholar] [CrossRef]
- Lusso, P.; Crowley, R.W.; Malnati, M.S.; Di Serio, C.; Ponzoni, M.; Biancotto, A.; Markham, P.D.; Gallo, R.C. Human herpesvirus 6A accelerates AIDS progression in macaques. Proc. Natl. Acad. Sci. USA 2007, 104, 5067–5072. [Google Scholar] [CrossRef] [Green Version]
- Lusso, P.; Gallo, R.C. Human herpesvirus 6 in AIDS. Immunol. Today 1995, 16, 67–71. [Google Scholar] [CrossRef]
- Silvestri, G.; Paiardini, M.; Pandrea, I.; Lederman, M.M.; Sodora, D.L. Understanding the benign nature of SIV infection in natural hosts. J. Clin. Investig. 2007, 117, 3148–3154. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, J.M.; Jegou, J.F.; Welsch, J.C.; Horvat, B. Human herpesvirus 6A infection in CD46 transgenic mice: Viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J. Virol. 2014, 88, 5421–5436. [Google Scholar] [CrossRef] [Green Version]
- Charvet, B.; Reynaud, J.M.; Gourru-Lesimple, G.; Perron, H.; Marche, P.N.; Horvat, B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front. Immunol. 2018, 9, 2803. [Google Scholar] [CrossRef]
- Higashi, K.; Asada, H.; Kurata, T.; Ishikawa, K.; Hayami, M.; Spriatna, Y.; Sutarman; Yamanishi, K. Presence of antibody to human herpesvirus 6 in monkeys. J. Gen. Virol. 1989, 70, 3171–3176. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, V.; Verschoor, E.J.; Nerrienet, E.; Gessain, A. A novel homologue of Human herpesvirus 6 in chimpanzees. J. Gen. Virol. 2005, 86, 2135–2140. [Google Scholar] [CrossRef]
- Lacoste, V.; Mauclere, P.; Dubreuil, G.; Lewis, J.; Georges-Courbot, M.C.; Rigoulet, J.; Petit, T.; Gessain, A. Simian homologues of human gamma-2 and betaherpesviruses in mandrill and drill monkeys. J. Virol. 2000, 74, 11993–11999. [Google Scholar] [CrossRef] [Green Version]
- Leibovitch, E.; Wohler, J.E.; Cummings Macri, S.M.; Motanic, K.; Harberts, E.; Gaitan, M.I.; Maggi, P.; Ellis, M.; Westmoreland, S.; Silva, A.; et al. Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: Immunologic, virologic and radiologic characterization. PLoS Pathog 2013, 9, e1003138. [Google Scholar] [CrossRef]
- Reynaud, J.M.; Horvat, B. Animal models for human herpesvirus 6 infection. Front. Microbiol. 2013, 4, 174. [Google Scholar] [CrossRef] [Green Version]
- Mock, D.J.; Strathmann, F.; Blumberg, B.M.; Mayer-Proschel, M. Infection of murine oligodendroglial precursor cells with Human Herpesvirus 6 (HHV-6)--establishment of a murine in vitro model. J. Clin. Virol. 2006, 37, S17–S23. [Google Scholar] [CrossRef]
- Reanalysis of Alzheimer’s Brain Sequencing Data Reveals Absence of Purported HHV6A and HHV7. Available online: https://www.biorxiv.org/content/early/2019/11/13/830695.full.pdf (accessed on 29 November 2019).
Property | HHV-6A | HHV-6B | HHV-7 | MRV | PCMV/PRV |
---|---|---|---|---|---|
Natural host | Human | Human | Human | Mouse | Pig |
Prevalence | Unknown | Greater than 90% of adults | Widespread | 78% wild-caught house mice | Over 90% in a herd |
Length of genome | 159,322 bp | 162,114 bp | 153,080 bp | 173,861 bp | 128,367 bp |
Genes encoding unique proteins | 102 | 97 | 86 | 128 | 79 |
miRNA | 4 predicted | 4 | Unknown | Unknown | Unknown |
Initiation of replication | Origin-binding protein | Origin-binding protein | Origin-binding protein | Likely origin-binding protein | Unknown |
Cell surface receptor | CD46 | CD134 | CD4 | Unknown | Unknown |
Cell tropism | CD4+ T cells UCBL1, PBMC2 CD8+ T cells NK cells | CD4+ T cells UCBL1, PBMC2 | CD4+ T cells UCBL1, PBMC2 | Likely thymocytes and/or thymic stromal cells | Lymphocytes |
Transmission | Unknown | Saliva | Saliva | Saliva, breast milk | Body fluids |
Susceptible T cell lines | SupT-1, HSB2, Jjhan | Molt-3, Mt-4, SupT-1 | SupT-1 | Unknown | Unknown |
Replication in astrocytes | Productive | Low-level persistence | Unknown | Unknown | Unknown |
Integration into cellular DNA and vertical transmission | Yes, into host telomeres | Yes, into host telomeres | Yes, needs confirmation | Unknown | Unknown |
Disease associations in the natural host | Hashimoto’s thyroiditis Female infertility MS Encephalitis (rare) Alzheimer’s disease | Exanthem subitem febrile status epilepticus, febrile seizures, encephalitis | Exanthem subitem pityriasis rosea encephalitis (rare) | Asymptomatic T cell depletion, thymic atrophy, and failure to gain weight in infected neonates | Sub-clinical rhinitis, pneumonia, anemia, fever |
Causes Immunosuppression | Yes | Yes | Unknown, but likely | Yes | Yes |
Activated by immunosuppression | Yes | Yes | Unknown | Unknown | Possibly in xenotransplant recipient |
Trans-species transmission | Marmoset (Callithrix jacchus): neurologic symptoms | Marmoset (Callithrix jacchus): Asymptomatic African green monkeys cynomolgus and pig-tailed macaques | Unknown | Unknown | Reduction of xenotransplant survival in non-human primates3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denner, J.; Bigley, T.M.; Phan, T.L.; Zimmermann, C.; Zhou, X.; Kaufer, B.B. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019, 11, 1108. https://doi.org/10.3390/v11121108
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses. 2019; 11(12):1108. https://doi.org/10.3390/v11121108
Chicago/Turabian StyleDenner, Joachim, Tarin M. Bigley, Tuan L. Phan, Cosima Zimmermann, Xiaofeng Zhou, and Benedikt B. Kaufer. 2019. "Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species" Viruses 11, no. 12: 1108. https://doi.org/10.3390/v11121108