1st German Phage Symposium—Conference Report
Abstract
:1. Introduction
2. Summary of Scientific Sessions
2.1. Structure-Function Relationship
2.2. Host-Phage Interaction & Evolution of Microbial Communities
2.3. Clinical Applications
2.4. Application of Phages for Veterinary Practices, in the Food and Environmental Sector
2.5. Phage Lysins and Commercial Perspectives
3. Plenary Session with Panel Discussion “Quo Vadis, German Bacteriophage Research?”
- Lack of a clear regulatory framework;
- Lack of a clearly pre-defined phage product;
- Lack of clinical trials;
- Lack of financial incentives, particularly for start-ups and small companies;
- Lack of involvement of the pharma industry due to the low return on investment [122] as well as liability and reimbursement issues.
4. Conclusions and Perspectives
Supplementary Materials
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Ruska, H. Die Sichtbarmachung der Bakteriophagen Lyse im Übermikroskop. Naturwissen 1940, 28, 45–46. [Google Scholar] [CrossRef]
- Rohde, C.; Sikorski, J. Bakteriophagen. Vielfalt, Anwendung und ihre Bedeutung für die Wissenschaft vom Leben. Nat. Rundsch. 2011, 64, 5–14. [Google Scholar]
- Ray, D.S.; Bscheider, H.P.; Hofschneider, P.H. Replication of the single-stranded DNA of the male-specific bacteriophage M13. Isolation of intracellular forms of phage-specific DNA. J. Mol. Biol. 1966, 21, 473–483. [Google Scholar] [CrossRef]
- Georgieva, Y.; Konthur, Z. Design and screening of M13 phage display cDNA libraries. Molecules 2011, 16, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Doehn, J.M.; Fischer, K.; Reppe, K.; Gutbier, B.; Tschernig, T.; Hocke, A.C.; Fischetti, V.A.; Löffler, J.; Suttorp, N.; Hippenstiel, S.; et al. Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J. Antimicrob. Chemother. 2013, 68, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glünder, G.; Klein, G. Effect of bacteriophage application on Campylobacter JEJUNI loads in commercial broiler flocks. Appl. Environ. Microbiol. 2013, 79, 7525–7533. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, S.; Hammerl, J.A.; Appel, B.; Alter, T. Post-harvest application of lytic bacteriophages for biocontrol of foodborne pathogens and spoilage bacteria. Berliner und Münchener Tierärztliche Wochenschrift 2013, 126, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Charité Research Organization. Bacteriophages Join the Fight against Infection. Available online: https://www.charite-research.org/en/bacteriophages-join-fight-against-infection (accessed on 2 March 2018).
- Phage4Cure—Developing Bacteriophages as Approved Therapy against Bacterial Infection, Project Homepage. Available online: http://phage4cure.de/en/ (accessed on 16 February 2018).
- Torres-Barceló, C.; Kaltz, O.; Froissart, R.; Gandon, S.; Ginet, N.; Ansaldi, M. “French Phage Network”—Second Meeting Report. Viruses 2017, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Bamford, D.H. Do viruses form lineages across different domains of life? Res. Microbiol. 2003, 154, 231–236. [Google Scholar] [CrossRef]
- Nelson, D. Phage taxonomy: We agree to disagree. J. Bacteriol. 2004, 186, 7029–7031. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, E.M.; Wittmann, J.; Kuhn, J.H.; Turner, D.; Sullivan, M.B.; Dutilh, B.E.; Jang, H.B.; van Zyl, L.J.; Klumpp, J.; Lobocka, M.; et al. Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2017, 162, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, J. Phage genomics and taxonomy—Bringing order into chaos. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Arnaud, C.-A.; Effantin, G.; Vivès, C.; Engilberge, S.; Bacia, M.; Boulanger, P.; Girard, E.; Schoehn, G.; Breyton, C. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Commun. 2017, 8, 1953. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, P. Singularities of bacteriophage T5 structure and infection mechanism. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Broeker, N.K.; Barbirz, S. Not a barrier but a key: How bacteriophages exploit host’s O-antigen as an essential receptor to initiate infection. Mol. Microbiol. 2017, 105, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Tavares, P. Genome Replication and Assembly of the Bacteriophage SPP1 Particle in vivo. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October2017. [Google Scholar]
- Fernandes, S.; Labarde, A.; Baptista, C.; Jakutytè, L.; Tavares, P.; São-José, C. A non-invasive method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1 DNA entry in Bacillus subtilis cells. Virology 2016, 495, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Djacem, K.; Tavares, P.; Oliveira, L. Bacteriophage SPP1 PAC Cleavage: A Precise Cut without Sequence Specificity Requirement. J. Mol. Biol. 2017, 429, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Loh, B.; Haase, M.; Mueller, L.; Kuhn, A.; Leptihn, S. The Transmembrane Morphogenesis Protein GP1 of Filamentous Phages Contains Walker A and Walker B Motifs Essential for Phage Assembly. Viruses 2017, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, A.; Staals, R.H.J.; Taylor, C.; Watson, B.N.J.; Saha, S.; Fineran, P.C.; Maxwell, K.L.; Davidson, A.R. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 2016, 1, 16085. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, A.; Bondy-Denomy, J.; Cheung, V.H.W.; Maxwell, K.L.; Davidson, A.R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 2014, 5, e00896. [Google Scholar] [CrossRef] [PubMed]
- Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013, 493, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.; Jore, M.M.; Datsenko, K.A.; Semenova, A.; Westra, E.R.; Wanner, B.; van der Oost, J.; Brouns, S.J.J.; Severinov, K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 2011, 108, 10098–10103. [Google Scholar] [CrossRef] [PubMed]
- Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonté, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.; Moineau, S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Pyenson, N.C.; Gayvert, K.; Varble, A.; Elemento, O.; Marraffini, L.A. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Cell Host Microbe 2017, 22, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Paez-Espino, D.; Sharon, I.; Morovic, W.; Stahl, B.; Thomas, B.C.; Barrangou, R.; Banfield, J.F. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Bryson, A.L.; Hwang, Y.; Sherrill-Mix, S.; Wu, G.D.; Lewis, J.D.; Black, L.; Clark, T.A.; Bushman, F.D. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. mBio 2015, 6, e00648. [Google Scholar] [CrossRef] [PubMed]
- Vlot, M.; Houkes, J.; Lochs, S.J.A.; Swarts, D.C.; Zheng, P.; Kunne, T.; Mohanraju, P.; Anders, C.; Jinek, M.; van der Oost, J.; et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Nucleic Acids Res. 2018, 46, 873–885. [Google Scholar] [CrossRef] [PubMed]
- El Hassan, M.A.; Calladine, C.R. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol. 1996, 259, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.A.; McKenzie, R.E.; Fagerlund, R.D.; Kieper, S.N.; Fineran, P.C.; Brouns, S.J.J. CRISPR-Cas: Adapting to change. Science 2017, 356. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Wu, X.; Rao, V. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, J.; Velleman, M.; Schuster, H. The tripartite immunity system of Phages P1 and P7. FEMS Microbiol. Rev. 1995, 17, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ravin, V.; Ravin, N.; Casjens, S.; Ford, M.E.; Hatfull, G.F.; Hendrix, R.W. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 2000, 299, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Kahl, B.C. Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease. Int. J. Med. Microbiol. 2010, 300, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Nielsen, L.N.; Hvitved, A.; Haaber, J.K.; Wirtz, C.; Andersen, P.S.; Larsen, J.; Wolz, C.; Ingmer, H. Commercial Biocides Induce Transfer of Prophage Φ13 from Human Strains of Staphylococcus aureus to Livestock CC398. Front. Microbiol. 2017, 8, 2418. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, J.; Bathe, B.; Bartels, D.; Bischoff, N.; Bott, M.; Burkovski, A.; Dusch, N.; Eggeling, L.; Eikmanns, B.J.; Gaigalat, L.; et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J. Biotechnol. 2003, 104, 5–25. [Google Scholar] [CrossRef]
- Helfrich, S.; Pfeifer, E.; Krämer, C.; Sachs, C.C.; Wiechert, W.; Kohlheyer, D.; Nöh, K.; Frunzke, J. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. Mol. Microbiol. 2015, 98, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, E.; Gätgens, C.; Polen, T.; Frunzke, J. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 2017, 7, 16780. [Google Scholar] [CrossRef] [PubMed]
- Wendling, C.C.; Piecyk, A.; Refardt, D.; Chibani, C.; Hertel, R.; Liesegang, H.; Bunk, B.; Overmann, J.; Roth, O. Tripartite species interaction: Eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. BMC Evol. Biol. 2017, 17, 98. [Google Scholar] [CrossRef] [PubMed]
- Research Group Heiko Liesegang. Group Website. Available online: http://appmibio.uni-goettingen.de/index.php?sec=agl (accessed on 2 March 2018).
- Wendling, C.C.; Chibani, C.; Hertel, R.; Bunk, B.; Dietrich, S.; Overmann, J.; Liesegang, H.; Roth, O. Tripartite Species Interaction: The Impact of Phage/Bacteria Co-Evolution within a Eukaryotic Host on the Genome Structure of Inoviridae. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Deng, L.; Ignacio-Espinoza, J.C.; Gregory, A.C.; Poulos, B.T.; Weitz, J.S.; Hugenholtz, P.; Sullivan, M.B. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 2014, 513, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Feichtmayer, J.; Deng, L.; Griebler, C. Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems. Front. Microbiol. 2017, 8, 2192. [Google Scholar] [CrossRef] [PubMed]
- Deng, L. Assess the role of viruses in contaminant biodegradation through metagenomics. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Gillis, A.; Mahillon, J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, present and future. Viruses 2014, 6, 2623–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, A.; Mahillon, J. Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl. Environ. Microbiol. 2014, 80, 7620–7630. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, A.; Gillis, A.; Sanchis, V.; Nielsen-LeRoux, C.; Mahillon, J.; Lereclus, D.; Sorokin, A. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Microbiol. Res. 2017, 168, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Gillis, A.; Mahillon, J. Tectiviruses infecting members of the Bacillus cereus group. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Tomasello, G.; Mazzola, M.; Leone, A.; Sinagra, E.; Zummo, G.; Farina, F.; Damiani, P.; Cappello, F.; Gerges Geagea, A.; Jurjus, A.; et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Acta Univ. Palacki. Olomuc. Fac. Med. 2016, 160, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. CMLS 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed]
- COUNTERSTRIKE: COUNTERacting Sarcopenia with ProTeins and ExeRcise—Screening the CALM Cohort for Lipoprotein Biomarkers, Project Website. Available online: http://counterstrike.ku.dk/ (accessed on 3 February 2017).
- Castro-Mejía, J.L.; Jacobsen, R.; Krych, L.; Kot, W.; Hansen, L.H.; Reitelseder, S.; Holm, L.; Engelsen, S.B.; Vogensen, F.K.; Nielsen, D.S. Elucidating phage-bacterium interactions that trigger changes in bacterial composition and functional profile in the gut of older adults. Presented at the 1st German Phage Symposium, Stuttgart, Germany, 9–10 October 2017. Unpublished work. [Google Scholar]
- Wagner, P.L.; Livny, J.; Neely, M.N.; Acheson, D.W.K.; Friedman, D.I.; Waldor, M.K. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 2002, 44, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Nubling, S.; Eisele, T.; Stober, H.; Funk, J.; Polzin, S.; Fischer, L.; Schmidt, H. Bacteriophage 933 W encodes a functional esterase downstream of the Shiga toxin 2a operon. Int. J. Med. Microbiol. 2014, 304, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Saile, N.; Voigt, A.; Kessler, S.; Stressler, T.; Klumpp, J.; Fischer, L.; Schmidt, H. Escherichia coli O157:H7 Strain EDL933 Harbors Multiple Functional Prophage-Associated Genes Necessary for the Utilization of 5-N-Acetyl-9-O-Acetyl Neuraminic Acid as a Growth Substrate. Appl. Environ. Microbiol. 2016, 82, 5940–5950. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H. Bacteriophages of Shiga toxin producing E. coli—small molecules with high impact. Presented at the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017; University of Hohenheim, 2017. Available online: https://1st-german-phage-symposium.uni-hohenheim.de/fileadmin/einrichtungen/1st-german-phage-symposium/Presentations/Schmidt_1st-German-Phage-Symposium_web.pdf (accessed on 16 February 2018).
- Leitner, L.; Sybesma, W.; Chanishvili, N.; Goderdzishvili, M.; Chkhotua, A.; Ujmajuridze, A.; Schneider, M.P.; Sartori, A.; Mehnert, U.; Bachmann, L.M.; et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Kutadeladze, M. Bacteriophages for Treatment of Infectious Diseases. Presented at the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. Unpublished work. [Google Scholar]
- Fitzgerald-Hughes, D.; Bolkvadze, D.; Balarjishvili, N.; Leshkasheli, L.; Ryan, M.; Burke, L.; Stevens, N.; Humphreys, H.; Kutateladze, M. Susceptibility of extended-spectrum- β-lactamase-producing Escherichia coli to commercially available and laboratory-isolated bacteriophages. J. Antimicrob. Chemother. 2014, 69, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Sybesma, W.; Zbinden, R.; Chanishvili, N.; Kutateladze, M.; Chkhotua, A.; Ujmajuridze, A.; Mehnert, U.; Kessler, T.M. Bacteriophages as Potential Treatment for Urinary Tract Infections. Front. Microbiol. 2016, 7, 465. [Google Scholar] [CrossRef] [PubMed]
- Tevdoradze, E.; Farlow, J.; Kotorashvili, A.; Skhirtladze, N.; Antadze, I.; Gunia, S.; Balarjishvili, N.; Kvachadze, L.; Kutateladze, M. Whole genome sequence comparison of ten diagnostic brucellaphages propagated on two Brucella abortus hosts. Virol. J. 2015, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Kokashvili, T.; Whitehouse, C.A.; Tskhvediani, A.; Grim, C.J.; Elbakidze, T.; Mitaishvili, N.; Janelidze, N.; Jaiani, E.; Haley, B.J.; Lashkhi, N.; et al. Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia. Front. Public Health 2015, 3, 232. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.A.; Baldwin, C.; Sampath, R.; Blyn, L.B.; Melton, R.; Li, F.; Hall, T.A.; Harpin, V.; Matthews, H.; Tediashvili, M.; et al. Identification of pathogenic Vibrio species by multilocus PCR-electrospray ionization mass spectrometry and its application to aquatic environments of the former soviet republic of Georgia. Appl. Environ. Microbiol. 2010, 76, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Merabishvili, M.; Monserez, R.; van Belleghem, J.; Rose, T.; Jennes, S.; de Vos, D.; Verbeken, G.; Vaneechoutte, M.; Pirnay, J.-P. Stability of bacteriophages in burn wound care products. PLoS ONE 2017, 12, e0182121. [Google Scholar] [CrossRef] [PubMed]
- Zhvania, P.; Hoyle, N.S.; Nadareishvili, L.; Nizharadze, D.; Kutateladze, M. Phage Therapy in a 16-Year-Old Boy with Netherton Syndrome. Front. Med. 2017, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Latz, S.; Krüttgen, A.; Häfner, H.; Buhl, E.M.; Ritter, K.; Horz, H.-P. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses 2017, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Horz, H.-P. Phage therapy: An alternative to antibiotics? In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017.
- Viertel, T.M.; Ritter, K.; Horz, H.-P. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J. Antimicrob. Chemother. 2014, 69, 2326–2336. [Google Scholar] [CrossRef] [PubMed]
- Wahida, A.; Ritter, K.; Horz, H.-P. The Janus-Face of Bacteriophages across Human Body Habitats. PLoS Pathog. 2016, 12, e1005634. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.; Verbeken, G.; de Vos, D.; Merabishvili, M.; Vaneechoutte, M.; Lavigne, R.; Jennes, S.; Zizi, M.; Pirnay, J.P. Experimental phage therapy of burn wound infection: Difficult first steps. Int. J. Burns Trauma 2014, 4, 66–73. [Google Scholar] [PubMed]
- Verbeken, G.; Huys, I.; de Vos, D.; de Coninck, A.; Roseeuw, D.; Kets, E.; Vanderkelen, A.; Draye, J.P.; Rose, T.; Jennes, S.; et al. Access to bacteriophage therapy: Discouraging experiences from the human cell and tissue legal framework. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed]
- PHOSA. Project Website. Available online: http://www.phosa.eu/ (accessed on 16 February 2018).
- Pherecydes Pharma. PneumoPhage: A Collaborative Research Project for the Development of an Effective Phage Therapy Treatment against Respiratory Tract Infections. Available online: http://www.pherecydes-pharma.com/pneumophage.html (accessed on 16 February 2018).
- PhagoBurn. Project Website. Available online: http://www.PhagoBurn.eu/ (accessed on 16 February 2018).
- Rose, T. Key issues in phage therapy. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.W.; Rose, T.; Keersebilck, E.; Soete, O.; François, P.-M.; Teodorescu, S.; Verween, G.; et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—A case report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; de Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Truog, R.D. The United Kingdom Sets Limits on Experimental Treatments: The Case of Charlie Gard. JAMA 2017, 318, 1001–1002. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Artym, J.; Kocieba, M.; Weber-Dabrowska, B.; Borysowski, J.; Górski, A. Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol. 2009, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Przerwa, A.; Zimecki, M.; Switała-Jeleń, K.; Dabrowska, K.; Krawczyk, E.; Łuczak, M.; Weber-Dabrowska, B.; Syper, D.; Miedzybrodzki, R.; Górski, A. Effects of bacteriophages on free radical production and phagocytic functions. Med. Microbiol. Immunol. 2006, 195, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Borysowski, J. Phage therapy in allergic disorders? Exp. Biol. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Dąbrowska, K.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Łusiak-Szelachowska, M.; Jończyk-Matysiak, E.; Borysowski, J. Phages and immunomodulation. Future Microbiol. 2017, 12, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Borysowski, J. The Potential of Phage Therapy in Sepsis. Front. Immunol. 2017, 8, 1783. [Google Scholar] [CrossRef] [PubMed]
- McCallin, S.; Alam Sarker, S.; Barretto, C.; Sultana, S.; Berger, B.; Huq, S.; Krause, L.; Bibiloni, R.; Schmitt, B.; Reuteler, G.; et al. Safety analysis of a Russian phage cocktail: From metagenomic analysis to oral application in healthy human subjects. Virology 2013, 443, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral Phage Therapy of Acute Bacterial Diarrhea with Two Coliphage Preparations: A Randomized Trial in Children from Bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.A.; Brüssow, H. From bench to bed and back again: Phage therapy of childhood Escherichia coli diarrhea. Ann. N. Y. Acad. Sci. 2016, 1372, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.M.; Nelson, D.; Fischetti, V.A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294, 2170–2172. [Google Scholar] [CrossRef] [PubMed]
- Witzenrath, M.; Schmeck, B.; Doehn, J.M.; Tschernig, T.; Zahlten, J.; Loeffler, J.M.; Zemlin, M.; Müller, H.; Gutbier, B.; Schütte, H.; et al. Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit. Care Med. 2009, 37, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Witzenrath, M. Bacteriophage therapy in lung infections. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Rohde, C. Pro’s and con’s of the phage applications. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Debarbieux, L.; Pirnay, J.; Verbeken, G.; de Vos, D.; Merabishvili, M.; Huys, I.; Patey, O.; Schoonjans, D.; Vaneechoutte, M.; Zizi, M.; et al. A bacteriophage journey at the European Medicines Agency. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed]
- Denyes, J.M.; Dunne, M.; Steiner, S.; Mittelviefhaus, M.; Weiss, A.; Schmidt, H.; Klumpp, J.; Loessner, M.J. Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, J.; Loessner, M.J. Listeria phages: Genomes, evolution, and application. Bacteriophage 2013, 3, e26861. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, S.; Volckaert, A.; Venneman, S.; Declercq, B.; Vandenheuvel, D.; Allonsius, C.N.; van Malderghem, C.; Jang, H.B.; Briers, Y.; Noben, J.P.; et al. Characterization of Novel Bacteriophages for Biocontrol of Bacterial Blight in Leek Caused by Pseudomonas syringae pv. porri. Front. Microbiol. 2016, 7, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luján Quiberoni, A.D.; Reinheimer, J.A. (Eds.) Bacteriophages in Dairy Processing; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2012; ISBN 978-1-61324-517-0. [Google Scholar]
- Szymczak, P.; Janzen, T.; Neves, A.R.; Kot, W.; Hansen, L.H.; Lametsch, R.; Neve, H.; Franz Charles, M.A.P.; Vogensen, F.K. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Brinks, E.; Samtlebe, M.; Hinrichs, J.; Atamer, Z.; Kot, W.; Franz, C.M.A.P.; Neve, H.; Heller, K.J. Whey powders are a rich source and excellent storage matrix for dairy bacteriophages. Int. J. Food Microbiol. 2017, 241, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Ghugare, G.S.; Nair, A.; Nimkande, V.; Sarode, P.; Rangari, P.; Khairnar, K. Membrane filtration immobilization technique—A simple and novel method for primary isolation and enrichment of bacteriophages. J. Appl. Microbiol. 2017, 122, 531–539. [Google Scholar] [CrossRef]
- Atamer, Z.; Samtlebe, M.; Neve, H.; Heller, K.J.; Hinrichs, J. Review: Elimination of bacteriophages in whey and whey products. Front. Microbiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Jäckel, C.; Hammerl, J.A.; Rau, J.; Hertwig, S. A multiplex real-time PCR for the detection and differentiation of Campylobacter phages. PLoS ONE 2017, 12, e0190240. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, S. Characterization of Campylobacter phages and their application. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Moore, J.E.; Corcoran, D.; Dooley, J.S.G.; Fanning, S.; Lucey, B.; Matsuda, M.; McDowell, D.A.; Mégraud, F.; Millar, B.C.; O’Mahony, R.; et al. Campylobacter. Vet. Res. 2005, 36, 351–382. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.Z.; Kittler, R.; White, K.P.; Kreitman, M. Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness. PLoS Genet. 2011, 7, e1002364. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glünder, G.; Klein, G. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks. PLoS ONE 2014, 9, e94782. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G.; Sorek, R. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018, 359. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.A.; Kelly, W.J.; Altermann, E.; Leahy, S.C.; Minchin, C.; Ouwerkerk, D.; Klieve, A.V. Toward Understanding Phage: Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria. Front. Microbiol. 2017, 8, 2340. [Google Scholar] [CrossRef] [PubMed]
- Samtlebe, M.; Denis, S.; Chalancon, S.; Atamer, Z.; Wagner, N.; Neve, H.; Franz, C.; Schmidt, H.; Blanquet-Diot, S.; Hinrichs, J. Bacteriophages as modulator for the human gut microbiota. LWT 2018, 91, 235–241. [Google Scholar] [CrossRef]
- Beims, H.; Wittmann, J.; Bunk, B.; Spröer, C.; Rohde, C.; Günther, G.; Rohde, M.; von der Ohe, W.; Steinert, M. Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae. Appl. Environ. Microbiol. 2015, 81, 5411–5419. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, S.; Coffey, A.; Meaney, W.J.; Fitzgerald, G.F.; Ross, R.P. Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett. Appl. Microbiol. 2005, 41, 274–279. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, S.; Ross, R.P.; Coffey, A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol. Rev. 2009, 33, 801–819. [Google Scholar] [CrossRef] [PubMed]
- Keary, R.; Sanz-Gaitero, M.; van Raaij, M.; O’Mahony, J.; Fenton, M.; McAuliffe, O.; Hill, C.; Paul Ross, R.; Coffey, A. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus. CPPS 2016, 17, 183–190. [Google Scholar] [CrossRef]
- Fenton, M.; Casey, P.G.; Hill, C.; Gahan, C.G.; Ross, R.P.; McAuliffe, O.; O’Mahony, J.; Maher, F.; Coffey, A. The truncated phage lysin CHAP(K) eliminates Staphylococcus aureus in the nares of mice. Bioeng. Bugs 2010, 1, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Coffey, A. Characterization and applications of bacteriophage-derived peptidoglycan hydrolase enzymes targeting MRSA and antibiotic resistant Clostridium difficile. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Love, M.J.; Bhandari, D.; Dobson, R.C.J.; Billington, C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Idelevich, E.A.; von Eiff, C.; Friedrich, A.W.; Iannelli, D.; Xia, G.; Peters, G.; Peschel, A.; Wanninger, I.; Becker, K. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage Endolysin. Antimicrob. Agents Chemother. 2011, 55, 4416–4419. [Google Scholar] [CrossRef] [PubMed]
- Hagens, S. Phages to combat Listeria and Salmonella. In Proceedings of the 1st German Phage Symposium, Stuttgart, Germany, 9–11 October 2017. [Google Scholar]
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures. FAQ Phage Therapy. Available online: https://www.dsmz.de/home/news-and-events/faq-phage-therapy.html (accessed on 16 February 2018).
- Cooper, C.J.; Khan Mirzaei, M.; Nilsson, A.S. Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics. Front. Microbiol. 2016, 7, 1209. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). SME Office, Set up by the Article 11 of the Commission Regulation (EC) No 2049/2005. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005R2049 (accessed on 16 February 2018).
- European Medicines Agency (EMA). PRIME—Priority Medicines. Available online: http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000660.jsp&mid=WC0b01ac05809f8439 (accessed on 16 February 2018).
- DZIF—German Center for Infection Research. Project Start: New Active Substance Targeting Dreaded Hospital Pathogens. Available online: http://www.dzif.de/en/about_us/dzif_people/view/detail/artikel/project_start_new_active_substance_targeting_dreaded_hospital_pathogens/ (accessed on 16 February 2018).
- Idelevich, E.A.; Schaumburg, F.; Knaack, D.; Scherzinger, A.S.; Mutter, W.; Peters, G. The Recombinant Bacteriophage Endolysin HY-133 Exhibits in Vitro Activity against Different African Clonal Lineages of the Staphylococcus aureus Complex, Including Staphylococcus schweitzeri. Antimicrob. Agents Chemother. 2016, 60, 2551–2553. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium für Bildung und Forschung (BMBF). Globale Gesundheitskrisen Verhindern, Pressemitteilung. Available online: https://www.bmbf.de/de/globale-gesundheitskrisen-verhindern-4506.html (accessed on 15 February 2018).
- Berlin Declaration of the G20 Health Ministers. Together Today for a Healthy Tomorrow. Available online: https://www.bundesgesundheitsministerium.de/ministry/g20-health-ministers-meeting.html (accessed on 16 February 2018).
- World Health Organization 2015: Global Action Plan on Antimicrobial Resistance. Available online: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ (accessed on 16 February 2018).
- Kittler, S.; Wittmann, J.; Mengden, R.; Klein, G.; Rohde, C.; Lehnherr, H. The use of bacteriophages as One-Health approach to reduce multidrug-resistant bacteria. Sustain. Chem. Pharm. 2017, 5, 80–83. [Google Scholar] [CrossRef]
- Paul-Ehrlich-Institut. Medicinal Products. Available online: https://www.pei.de/EN/medicinal-products/medicinal-products-node.html (accessed on 16 February 2018).
- Lerner, A.; Matthias, T.; Aminov, R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front. Immunol. 2017, 8, 1630. [Google Scholar] [CrossRef] [PubMed]
- Miller-Ensminger, T.; Garretto, A.; Brenner, J.; Thomas-White, K.; Zambom, A.; Wolfe, A.J.; Putonti, C. Bacteriophages of the Urinary Microbiome. J. Bacteriol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yutin, N.; Makarova, K.S.; Gussow, A.B.; Krupovic, M.; Segall, A.; Edwards, R.A.; Koonin, E.V. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 2018, 3, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Kieser, S.; Sarker, S.A.; Berger, B.; Sultana, S.; Chisti, M.J.; Islam, S.B.; Foata, F.; Porta, N.; Betrisey, B.; Fournier, C.; et al. Antibiotic Treatment Leads to Fecal Escherichia coli and Coliphage Expansion in Severely Malnourished Diarrhea Patients. Cell Mol. Gastroenterol. Hepatol. 2018, 5. [Google Scholar] [CrossRef]
- Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Bae, J.W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Leigh, B.A.; Djurhuus, A.; Breitbart, M.; Dishaw, L.J. The gut virome of the protochordate model organism, Ciona intestinalis subtype A. Virus Res. 2018, 244, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Morella, N.M.; Gomez, A.L.; Wang, G.; Leung, M.S.; Koskella, B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol. Ecol. 2018. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, I.; Potapova, K.; Kuhn, A.; Schmidt, H.; Hinrichs, J.; Rohde, C.; Beyer, W. 1st German Phage Symposium—Conference Report. Viruses 2018, 10, 158. https://doi.org/10.3390/v10040158
Huber I, Potapova K, Kuhn A, Schmidt H, Hinrichs J, Rohde C, Beyer W. 1st German Phage Symposium—Conference Report. Viruses. 2018; 10(4):158. https://doi.org/10.3390/v10040158
Chicago/Turabian StyleHuber, Irene, Katerina Potapova, Andreas Kuhn, Herbert Schmidt, Jörg Hinrichs, Christine Rohde, and Wolfgang Beyer. 2018. "1st German Phage Symposium—Conference Report" Viruses 10, no. 4: 158. https://doi.org/10.3390/v10040158