Virus–Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences
Abstract
:1. Introduction
2. Implications and Applications for Foodborne and Waterborne Pathogens
3. Applications and Promise in the Horticultural Sciences
4. Virus–Bacteria Relationships in Food Animals
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Almand, E.A.; Moore, M.D.; Jaykus, L.A. Virus-bacteria interactions: An emerging topic in human infection. Viruses 2017, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, J.K.; Virgin, H.W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 2016, 351, aad5872. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A.; Guthmiller, J.M.; Taylor, C.E. Human polymicrobial infections. Lancet 2005, 365, 253–255. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Dopfer, D.; Fazil, A.; FIscher-Walker, C.L.; Hald, T.; et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.D.; Goulter, R.M.; Jaykus, L.-A. Human norovirus as a foodborne pathogen: Challenges and developments. Annu. Rev. Food Sci. Technol. 2015, 6, 411–433. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinje, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Sano, D.; Suenaga, A.; Yoshimura, T.; Fuzawa, M.; Nakagomi, T.; Nakagomi, O.; Okabe, S. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J. Virol. 2013, 87, 9441–9451. [Google Scholar] [CrossRef] [PubMed]
- Rubio-del-Campo, A.; Coll-Marqués, J.M.; Yebra, M.J.; Buesa, J.; Pérez-Martínez, G.; Monedero, V.; Rodríguez-Díaz, J. Noroviral P-particles as an in vitro model to assess the interactions of noroviruses with probiotics. PLoS ONE 2014, 9, e89586. [Google Scholar] [CrossRef] [PubMed]
- Almand, E.A.; Moore, M.D.; Outlaw, J.; Jaykus, L.-A. Human norovirus binding to select bacteria representative of the human gut microbiota. PLoS ONE 2017, 12, e0173124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Huang, P.; Zou, L.; Lowary, T.L.; Tan, M.; Jiang, X. Tulane Virus Recognizes the A Type 3 and B Histo-Blood Group Antigens. J. Virol. 2015, 89, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Wei, C.; Huang, P.; Fan, Q.; Quigley, C.; Xia, M.; Fang, H.; Zhang, X.; Zhong, W.; Klassen, J.S.; et al. Tulane virus recognizes sialic acids as cellular receptors. Sci. Rep. 2015, 5, 11784. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Samuel, H.; Twitchell, E.; Bui, T.; Ramesh, A.; Wen, K.; Weiss, M.; Li, G.; Yang, X.; Jiang, X.; et al. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Sci. Rep. 2016, 6, 25017. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Ramesh, A.; Twitchell, E.; Wen, K.; Bui, T.; Weiss, M. High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs. Front. Microbiol. 2016, 7, 1699. [Google Scholar] [CrossRef] [PubMed]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.; Qu, L.; et al. Replication of human noroviruses in stem cell–derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Nice, T.J.; Robinson, B.A.; van Winkle, J.A. The role of interferon in persistent viral infection: Insights from murine norovirus. Trends Microbiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wilen, C.B.; Orvedahl, A.; McCune, B.T.; Kim, K.W.; Orchard, R.C.; Peterson, S.T.; Nice, T.J.; Baldridge, M.T.; Virgin, H.W. Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine. Cell Host Microbe 2017, 22, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Changotra, H.; Jia, Y.; Moore, T.N.; Liu, G.; Kahan, S.M.; Sosnovtsev, S.V.; Karst, S.M. Type I and type II interferons inhibit the translation of murine norovirus proteins. J. Virol. 2009, 83, 5683–5692. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.; Bauman, N.; Perman, J.; Yolken, R.; Saavedra, J.; Bauman, N.; Oung, I. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet 1994, 344, 1046–1049. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Shao, L.; Kandasamy, S.; Fischer, D.D.; Rauf, A.; Langel, S.N.; Chattha, K.S.; Kumar, A.; Huang, H.C.; Rajashekara, G.; et al. Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK-cell responses. Eur. J. Immunol. 2016, 46, 2426–2437. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.; Kumar, A.; Chattha, K.S.; Rauf, A.; Shao, L.; Langel, S.N.; Rajashekara, G.; Saif, L.J. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity. J. Immunol. 2016, 196, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, R.; Chassaing, B.; Zhang, B.; Gewirtz, A.T. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J. Infect. Dis. 2014, 210, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Botić, T.; Klingberg, T.D.; Weingartl, H.; Cencič, A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int. J. Food Microbiol. 2007, 115, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Wachsman, M.B.; Castilla, V.; de Ruiz Holgado, A.P.; de Torres, R.A.; Sesma, F.; Coto, C.E. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir. Res. 2003, 58, 17–24. [Google Scholar] [CrossRef]
- Erickson, A.K.; Jesudhasan, P.R.; Mayer, M.J.; Narbad, A.; Winter, S.E.; Pfeiffer, J.K. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 2017. [Google Scholar] [CrossRef] [PubMed]
- Kuss, S.K.; Best, G.T.; Etheredge, C.A.; Pruijssers, A.J.; Frierson, J.M.; Hooper, L.V.; Dermody, T.S.; Pfeiffer, J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011, 334, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.M.; Jesudhasan, P.R.; Pfeiffer, J.K. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014, 15, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Breiman, A.; le Pendu, J.; Uyttendaele, M. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress. Front. Microbiol. 2015, 6, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamichhane, J.R.; Venturi, V. Synergisms between microbial pathogens in plant disease complexes: A growing trend. Front. Plant Sci. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Syller, J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 2012, 13, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Tollenaere, C.; Lacombe, S.; Wonni, I.; Barro, M.; Ndougonna, C.; Gnacko, F.; Sérémé, D.; Jacobs, J.M.; Hebrard, E.; Cunnac, S.; et al. Virus-bacteria rice co-infection in Africa: Field estimation, reciprocal effects, molecular mechanisms, and evolutionary implications. Front. Plant Sci. 2017, 8, 645. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, L.R.; Salvaudon, L.; Mauck, K.E.; Pulido, H.; de Moraes, C.M.; Stephenson, A.G.; Mescher, M.C. Disease interactions in a shared host plant: Effects of pre-existing viral infection on cucurbit plant defense responses and resistance to bacterial wilt disease. PLoS ONE 2013, 8, e77393. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, V.; Viswanathan, R.; Raguchander, T.; Prakasam, V.; Samiyappan, R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 2001, 20, 1–11. [Google Scholar] [CrossRef]
- Zehnder, G.W.; Murphy, J.F.; Sikora, E.J.; Kloepper, J.W. Aplication of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 2001, 107, 39–50. [Google Scholar] [CrossRef]
- Murphy, J.F.; Reddy, M.S.; Ryu, C.-M.; Kloepper, J.W.; Li, R. Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 2003, 93, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.M.; Murphy, J.F.; Mysore, K.S.; Kloepper, J.W. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 2004, 39, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.M.; Murphy, J.F.; Reddy, M.S.; Kloepper, J.W. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 2007, 17, 280–286. [Google Scholar] [PubMed]
- Maurhofer, M.; Reimmann, C.; Schmidli-Sacherer, P.; Heeb, S.; Haas, D.; Défago, G. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain p3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 1998, 88, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Damayanti, T.A.; Pardede, H.; Mubarik, N.R. Utilization of root-colonizing bacteria to protect hot-pepper against tobacco mosaic tobamovirus. HAYATI J. Biosci. 2007, 14, 105–109. [Google Scholar] [CrossRef]
- Lee, G.H.; Ryu, C.-M. Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant Dis. 2016, 100, 2099–2105. [Google Scholar] [CrossRef]
- Esseili, M.A.; Gao, X.; Tegtmeier, S.; Saif, L.J.; Wang, Q. Abiotic stress and phyllosphere bacteria influence the survival of human norovirus and its surrogates on preharvest leafy greens. Appl. Environ. Microbiol. 2016, 82, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Cliver, D. Antiviral effects of bacteria isolated from manure. Microb. Ecol. 1995, 30, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 2013, 3, 757–793. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.J.; Wikswo, M.E.; Pringle, K.; Gould, L.H.; Parashar, U.D. Vital signs: Foodborne norovirus outbreaks-United States, 2009–2012. Morb. Mortal. Wkly. Rep. 2014, 63, 491–495. [Google Scholar]
- Gould, L.H.; Walsh, K.A.; Vieira, A.R.; Herman, K.; Williams, I.T.; Hall, A.J.; Cole, D. Surveillance for foodborne disease outbreaks-United States, 1998–2008. MMWR Surveill. Summ. 2013, 62, 1–34. [Google Scholar] [PubMed]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Zivanovic, S.; D’Souza, D.H.; Davidson, P.M. Effectiveness of chitosan on the inactivation of enteric viral surrogates. Food Microbiol. 2012, 32, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, S.N.; Il’ina, A.V.; Surgucheva, N.A.; Letunova, E.V.; Varitsev, Y.A.; Tatarinova, N.Y.; Varlamov, V.P. Effect of Chitosan on systemic viral infection and some defense responses in potato plants. Russ. J. Plant Physiol. 2001, 48, 774–779. [Google Scholar] [CrossRef]
- Kulikov, S.N.; Chirkov, S.N.; Il’ina, A.V.; Lopatin, S.A.; Varlamov, V.P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol. 2006, 42, 200–203. [Google Scholar] [CrossRef]
- Roossinck, M.J. Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. J. Virol. 2015, 89, 6532–6535. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. A new look at plant viruses and their potential beneficial roles in crops. Mol. Plant Pathol. 2015, 16, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Marquez, L.M.; Redman, R.S.; Rodriguez, R.; Roossinck, M. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 2007, 315, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Gayral, P.; Iskra-Caruana, M.L. Phylogeny of banana streak virus reveals recent and repetitive endogenization in the genome of its banana host (musa sp.). J. Mol. Evol. 2009, 69, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Chabannes, M.; Baurens, F.-C.; Duroy, P.-O.; Bocs, S.; Vernerey, M.-S.; Rodier-Goud, M.; Barbe, V.; Gayral, P.; Iskra-Caruana, M.-L. Three infectious viral species lying in wait in the banana genome. J. Virol. 2013, 87, 8624–8637. [Google Scholar] [CrossRef] [PubMed]
- Blomme, G.; Dita, M.; Jacobsen, K.S.; Pérez Vicente, L.; Molina, A.; Ocimati, W.; Poussier, S.; Prior, P. Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches toward sustainable management. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Iskra-Caruana, M.-L.; Baurens, F.-C.; Gayral, P.; Chabannes, M. A four-partner plant–virus interaction: Enemies can also come from within. Mol. Plant-Microbe Interact. 2010, 23, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Lacey, L.A.; Shapiro-Ilan, D.I. The potential role for microbial control of orchard insect pests in sustainable agriculture. Food Agric. Environ. 2003, 1, 326–331. [Google Scholar]
- Teixeira, L.; Ferreira, Á.; Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008, 6, e2. [Google Scholar] [CrossRef] [PubMed]
- Son, V.M.; Chang, C.-C.; Wu, M.-C.; Guu, Y.-K.; Chiu, C.-H.; Cheng, W. Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol. 2009, 26, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Nácher-Vázquez, M.; Ballesteros, N.; Canales, Á.; Rodríguez Saint-Jean, S.; Pérez-Prieto, S.I.; Prieto, A.; Aznar, R.; López, P. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr. Polym. 2015, 124, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The impact of co-infections on fish: A review. Vet. Res. 2016, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pakingking, R., Jr.; Takano, R.; Nishizawa, T.; Mori, K.-I.; Iida, Y.; Arimoto, M.; Muroga, K. Experimental coinfection with aquabirnavirus and viral hemorrhagic septicemia virus (VHSV), Edwardsiella tarda or Streptococcus iniae in Japanese flounder Paralichthys olivaceus. Fish Pathol. 2003, 38, 15–21. [Google Scholar] [CrossRef]
- Johansen, L.H.; Sommer, A.I. Infectious pancreatic necrosis virus infection in Atlantic salmon Salmo salar post-smolts affects the outcome of secondary infections with infectious salmon anaemia virus or Vibrio salmonicida. Dis. Aquat. Org. 2001, 47, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Yang, T.I.; Liu, P.C.; Wu, J.L.; Hsu, Y.L. Dual challenges of infectious pancreatic necrosis virus and Vibrio carchariae in the grouper, Epinephelus sp. Virus Res. 1999, 63, 131–134. [Google Scholar] [CrossRef]
- Phuoc, L.H.; Corteel, M.; Thanh, N.C.; Nauwynck, H.; Pensaert, M.; Alday-Sanz, V.; den Broeck, W.; van Sorgeloos, P.; Bossier, P. Effect of dose and challenge routes of Vibrio spp. on co-infection with white spot syndrome virus in Penaeus vannamei. Aquaculture 2009, 290, 61–68. [Google Scholar] [CrossRef]
- Leite, F.; Sylte, M.J.; O’Brien, S.; Schultz, R.; Peek, S.; van Reeth, K.; Czuprynski, C.J. Effect of experimental infection of cattle with bovine herpesvirus-1 (BHV-1) on the ex vivo interaction of bovine leukocytes with Mannheimia (Pasteurella) haemolytica leukotoxin. Vet. Immunol. Immunopathol. 2002, 84, 97–110. [Google Scholar] [CrossRef]
- Biswas, S.; Bandyopadhyay, S.; Dimri, U.; Patra, P.H. Bovine herpesvirus-1 (BHV-1)-a re-emerging concern in livestock: A revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet. Q. 2013, 33, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Burciaga-Robles, L.O.; Step, D.L.; Krehbiel, C.R.; Holland, B.P.; Richards, C.J.; Montelongo, M.A.; Confer, A.W.; Fulton, R.W. Effects of exposure to calves persistently infected with bovine viral diarrhea virus type 1b and subsequent infection with mannheima haemolytica on clinical signs and immune variables: Model for bovinerespiratory disease via viral and bacterial interactio. J. Anim. Sci. 2010, 88, 2166–2178. [Google Scholar] [CrossRef] [PubMed]
- Ringø, E.; Løvmo, L.; Kristiansen, M.; Bakken, Y.; Salinas, I.; Myklebust, R.; Olsen, R.E.; Mayhew, T.M. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: A review. Aquac. Res. 2010, 41, 451–467. [Google Scholar] [CrossRef]
- Oh, M.J.; Kim, W.S.; Kitamura, S.I.; Lee, H.K.; Son, B.W.; Jung, T.S.; Jung, S.J. Change of pathogenicity in Olive flounder Paralichthys olivaceus by co-infection of Vibrio harveyi, Edwardsiella tarda and marine birnavirus. Aquaculture 2006, 257, 156–160. [Google Scholar] [CrossRef]
- Jung, S.J.; Kim, S.R.; Joung, I.Y.; Kitamura, S.I.; Ceong, H.T.; Oh, M.J. Distribution of marine birnavirus in cultured olive flounder Paralichthys olivaceus in Korea. J. Microbiol. 2008, 46, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Yates, W.D. A review of infectious bovine rhinotracheitis, shipping fever pneumonia and viral-bacterial synergism in respiratory disease of cattle. Can. J. Comp. Med. 1982, 46, 225–263. [Google Scholar] [PubMed]
Virus(es) | Bacteria | Interactions | Reference |
---|---|---|---|
Human norovirus, murine norovirus | Enterobacter cloacae; Unidentified bacteria in unfiltered stool | Norovirus infection of B cells assisted by bacteria; Viral attachment to host cells increased by presence of bacteria; bacteria may assist viral translocation across epithelial cells | [6] |
Human norovirus | Enterobacter cloacae | Human noroviruses bind bacteria; bacteria expresses similar carbohydrates to human versions historically suspected of being receptors | [7] |
Human norovirus | E. cloacae, Escherichia coli Nissle 1917, Lactobacillus rhamnosus GG | Reduced viral shedding was observed in gnotobiotic pigs colonized with bacteria; potentially reduced viral infection via innate and adaptive immune activation | [12,13] |
Human norovirus capsid subdomains | 10 lactic acid bacteria (probiotic and non-probiotic), E. coli Nissle 1917 | Observe some degree of binding of virus proteins to all 11 bacteria; viral binding to intestinal cell line (HT-29) increased or decreased with introducton of bacteria depending on whether bacteria are pre-incubated with virus before introduction to cells | [8] |
Human norovirus; Tulane virus | 5 representative enteric bacterial isolates from stool, E. cloacae, Staphylococcus aureus | Observe and quantify binding of different infectious human norovirus strains to 7 enteric bacteria, showing binding to most strains at high efficiency; find binding is considerably affected by bacterial culture media; only selective binding to certain bacteria for related norovirus surrogate Tulane virus | [9] |
Poliovirus | 41 bacterial strains scanned | Poliovirus bound most bacterial strains; viral attachment to host cells enhanced by bacteria; some evidence bacterial co-infection increased viral co-infection efficiency and promoted viral recombination | [25] |
Poliovirus | N-acetylglucosamine containing bacterial polysaccharides (lipopolysaccharide and peptidoglycan) | Exposure of virus to lipopolysaccharide and peptidoglycan increased virion stability/replication at elevated temperature (42 °C) and after exposure to bleach; evidence that exposure to these polysaccharides affects capsid conformational change and RNA release | [26,27] |
Human norovirus | 2 E. coli strains that bind virus, 1 E. coli strain with reduced binding | Found some evidence suggesting that exposure of virus capsids to virus-binding strains increased stability of capsid after heat treatment (90 °C, 2 min) compared to reduced binding E. coli | [28] |
Multiple viruses | Multiple lactic acid bacteria | A review of antiviral effects of lactic acid bacteria through multiple mechanisms, including immune activation, bacteriocin inactivation of virus, and direct bacterial binding/capture by bacteria | [22] |
Rotavirus | E. coli Nissle 1917, L. rhamnosus GG | Colonization with E. coli Nissle 1917 lowered rotavirus infectivity and enhanced innate and humoral immune response in gnotobiotic pigs | [19,20] |
Rotavirus | Bifidobacterium bifidum, Streptococus thermophilus | Infants fed formula supplemented with probiotic cocktail displayed significantly less frequent diarrheal episodes and rotavirus shedding | [18] |
Rotavirus | Unidentified bacterial microbiota | Microbiota depletion in mice by administration of antibiotics reduced rotavirus infectivity; likely due to less enhancement of viral binding and uncoating stage; microbiota-depleted mice diplayed more robust IgA response to rotavirus than control | [21] |
Virus(es) | Bacteria | Interactions | Reference |
---|---|---|---|
Rice yellow mottle virus | Xanthomonas oryzae | Survey of numerous rice fields in Africa found 18.8% of sampled plants had indications of co-infection; Presence of bacterial pathogen in co-infection significantly reduced the viral titers in the rice; evidence that X. oryzae promotes antiviral RNA silencing pathway | [31] |
Zucchini yellow mosaic virus | Erwinia tracheiphila | The wilt caused by E. tracheiphila generally reduced in virus-infected plants; some evidence viral infection induces phytohormone (salicyclic acid) in plants that causes phenotypic changes in plant that reduces plant attractiveness to cucumber beetle vectors that carry E. tracheiphila | [32] |
Different plant viruses | Different rhizobacteria | Two reviews covering how rhizobacteria promote resistance to different plant pathogens | [33,34] |
Cucumber mosaic virus | Combinations of Bacillus spp. | Application of bacteria has antiviral effect in Arabidopsis thaliana and tomato; mechanism is likely independent of salicyclic acid in one study | [35,36,37] |
Tobacco necrosis virus | Pseudomonas aeruginosa, Pseudomonas fluorescens | Some evidence that P. aeruginosa may directly produce salicyclic acid to aid plant resistance to virus; when salicyclic acid-producing enzymes cloned into P. fluorescens strain that did not produce it or have antiviral activity, P. fluorscens demonstrated some viral inhibition | [38] |
Tobacco mosaic tobamovirus | Multiple rhizobacteria isolated from hot pepper | Some isolated strains showed antiviral effect and resulted in plants with favorable traits: increased height, flower and fruit number, and fruit flesh weight | [39] |
Cucumber mosaic virus | Bacillus amyloliquefaciens | B. amyloliquefaciens isolated from cherry tree leaf decreased severity and levels of virus when sprayed onto pepper and tobacco plants; also reduced naturally circulating pepper mottle virus and broad bean wilt virus in peppers | [40] |
Human norovirus | Cultivable aerobic bacteria present in lettuce and spinach | Survival of human noroviruses in spinach significantly positively corresponded to bacterial levels; however not the case for lettuce | [41] |
Hepatitis A | 31 strains of bacteria isolated from manure | 10 of the isolated strains reduced virus titers by >1 log10 in less than 10 days at 37 °C | [42] |
Virus(es) | Bacteria | Interactions | Reference |
---|---|---|---|
Grouper iridovirus | Lactobacillus plantarum | Found that grouper fed different doses of bacteria had a generally higher survival rate to the virus | [59] |
Infectious pancreatic necrosis virus (IPNV), infectious hematopoietic necrosis virus (IHNV) | Dextrans isolated from the exopolysaccharide (EPS) of Lactobacillus sakei MN1, Leuconostoc mesenteroides RTF10 | Antiviral effect of the EPS and one commercial dextran (T2000) observed in vitro and in rainbow trout with L. sakei EPS; some evidence that mechanism was innate and adaptive immune activation | [60] |
Multiple fish viruses | Multiple bacterial fish pathogens | A review of co-infections and their interactions in fish. | [61] |
Aquabirnaviruses | Edwardsiella tarda, Streptococcus inae, Vibrio harveyi | Co-infection of a bacterial pathogen with virus resulted in increased mortality rates in different flounder | [62] |
Infectious pancreatic necrosis virus | Vibrio salmonicida, Vibrio carchariae | Virus–bacterial co-infection resulted in higher mortality than infection by single pathogen in Atlantic salmon and grouper | [63,64] |
White spot syndrome virus | Vibrio campbellii | Co-infection with virus and bacteria resulted in significantly higher mortality and levels of bacteria compared to shrimp without virus | [65] |
Bovine herpesvirus 1, bovine viral diarrhea virus | Manheimia haemolytica | Viral infection results in immunosuppression that enables secondary infection; bovine herpesvirus infection of cattle resulted in increased leukocytes and receptors on leukocytes for an M. haemolytica leukotoxin to bind that results in leukocyte death | [66,67,68] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, M.D.; Jaykus, L.-A. Virus–Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses 2018, 10, 61. https://doi.org/10.3390/v10020061
Moore MD, Jaykus L-A. Virus–Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses. 2018; 10(2):61. https://doi.org/10.3390/v10020061
Chicago/Turabian StyleMoore, Matthew D., and Lee-Ann Jaykus. 2018. "Virus–Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences" Viruses 10, no. 2: 61. https://doi.org/10.3390/v10020061