Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review
Abstract
:1. Introduction
2. Methods of Literature Collection
3. Role of Agroforestry in C Sequestration and Reducing Greenhouse Gas Emissions
4. Management Intervention to Enhance C Sequestration and Reduce GHG Emissions
4.1. Impacts of Enrichment Planting on C Sequestration and GHG Emissions
4.2. Impact of Organic Soil Amendment on C Sequestration and Greenhouse Gas Emissions
4.2.1. Impacts of Biochar Applications
4.2.2. Impacts of Raw Manure, Composted Manure, and Manure Pellets
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- McIntyre, B.D.; Herren, H.R.; Wakhungu, J.; Watson, R.T. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD): Global Report; Island Press, The Center for Resource Economics: Washington, DC, USA, 2009. [Google Scholar]
- Stavi, I.; Lal, R. Agroforestry and biochar to offset climate change: A review. Agron. Sustain. Dev. 2013, 33, 81–96. [Google Scholar] [CrossRef]
- Schoeneberger, M.; Bentrup, G.; de Gooijer, H.; Soolanayakanahally, R.; Sauer, T.; Brandle, J.; Zhou, X.; Current, D. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. J. Soil Water Conserv. 2012, 67, 128A–136A. [Google Scholar] [CrossRef]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Bork, E.W.; Carlyle, C.N. The potential of agroforestry to reduce atmospheric greenhouse gases in Canada: Insight from pairwise comparisons with traditional agriculture, data gaps and future research. For. Chron. 2017, 93, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Newaj, R.; Chaturvedi, O.P.; Handa, A.K. Recent development in agroforestry research and its role in climate change adaptation and mitigation. Indian J. Agrofor. 2016, 18, 1–9. [Google Scholar]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar]
- Kumar, B.M.; Nair, P.K.R. Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Springer: Berlin, Germany, 2011; Volume 8. [Google Scholar]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281. [Google Scholar]
- Nuberg, I.; Reid, R.; George, B. Agroforestry as Integrated Natural Resource Management; CSIRO Publishing: Collingwood, Australia, 2009. [Google Scholar]
- Paquette, A.; Hawryshyn, J.; Senikas, A.; Potvin, C. Enrichment planting in secondary forests: A promising clean development mechanism to increase terrestrial carbon sinks. Ecol. Soc. 2009, 14, 31. [Google Scholar] [CrossRef]
- Suryanto, P.; Putra, E.T.S. Traditional enrichment planting in agroforestry marginal land Gunung Kidul, Java, Indonesia. J. Sustain. Dev. 2012, 5, 77. [Google Scholar] [CrossRef]
- Sonoki, T.; Furukawa, T.; Mizumoto, H.; Jindo, K.; Aoyama, M.; Sanchez-Monedero, M.A. Impacts of biochar addition on methane and carbon dioxide emissions during composting of cattle manure. In Proceedings of the Asia Pacific Biochar Conference, Kyoto, Japan, 15–18 September 2011. [Google Scholar]
- Zhongqi, H.E.; Pagliari, P.H.; Waldrip, H.M. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 2016, 26, 779–816. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Ball, B.C.; McTaggart, I.P.; Scott, A. Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Manag. 2004, 20, 287–295. [Google Scholar] [CrossRef]
- Hayakawa, A.; Akiyama, H.; Sudo, S.; Yagi, K. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem. 2009, 41, 521–529. [Google Scholar] [CrossRef]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 4. [Google Scholar]
- Hansen, V.; Müller-Stöver, D.; Munkholm, L.J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L.S. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma 2016, 269, 99–107. [Google Scholar] [CrossRef]
- Stavi, I. Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int. J. Sustain. Dev. World Ecol. 2013, 20, 166–181. [Google Scholar] [CrossRef]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change and Forestry. A Special Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University: Cambridge, UK, 2000. [Google Scholar]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Possu, W.B.; Brandle, J.R.; Domke, G.M.; Schoeneberger, M.; Blankenship, E. Estimating carbon storage in windbreak trees on U.S. agricultural lands. Agrofor. Syst. 2016, 90, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, P. Agroforestry systems: Integrated land use to store and conserve carbon. Clim. Res. 1993, 3, 53–60. [Google Scholar] [CrossRef]
- Mutuo, P.K.; Cadisch, G.; Albrecht, A.; Palm, C.A.; Verchot, L. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr. Cycl. Agroecosyst. 2005, 71, 43–54. [Google Scholar] [CrossRef]
- Kandji, S.T.; Verchot, L.V.; Mackensen, J.; Boye, A.; Van Noordwijk, M.; Tomich, T.P.; Ong, C.K.; Albrecht, A.; Palm, C.A.; Garrity, D.P. Opportunities for linking climate change adaptation and mitigation through agroforestry systems. In World Agroforestry into the Future; World Agroforestry Centre, ICRAF: Nairobi, Kenya, 2006; pp. 113–121. [Google Scholar]
- Unruh, J.; Houghton, R.; Lefebvre, P. Carbon storage in agroforestry: An estimate for sub-Saharan Africa. Clim. Res. 1993, 3, 39–52. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Barthès, B.G.; Saby, N.P.A.; Parent, T.; Dupraz, C.; Bernoux, M.; Chenu, C. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—A case study in a Mediterranean context. Geoderma 2015, 259, 288–299. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Carlyle, C.N.; Bork, E.W.; Chang, S.X. Trees increase soil carbon and its stability in three agroforestry systems in central Alberta, Canada. For. Ecol. Manag. 2014, 328, 131–139. [Google Scholar] [CrossRef]
- Wang, G.; Welham, C.; Feng, C.; Chen, L.; Cao, F. Enhanced Soil Carbon Storage under Agroforestry and Afforestation in Subtropical China. Forests 2015, 6, 2307–2323. [Google Scholar] [CrossRef] [Green Version]
- Baah-Acheamfour, M.; Carlyle, C.N.; Lim, S.-S.; Bork, E.W.; Chang, S.X. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2016, 571, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Chenu, C.; Cardinael, R.; Chevallier, T.; Germon, A.; Jourdan, C.; Dupraz, C.; Barthès, B.; Bernoux, M. The contribution of agroforestry systems to climate change mitigation—Assessment of C storage in soils in a Mediterranean context. In Our Common Future under Climate Change; CFCC: Paris, France, 2015. [Google Scholar]
- Oelbermann, M.; Voroney, R.P.; Gordon, A.M. Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and southern Canada. Agric. Ecosyst. Environ. 2004, 104, 359–377. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Carbon Sequestration in Agroforestry Systems. In Tropical Agroforestry; Springer: Dordrecht, The Netherlands, 2014; pp. 217–225. [Google Scholar]
- He, Y.; Qin, L.; Li, Z.; Liang, X.; Shao, M.; Tan, L. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 2013, 295, 193–198. [Google Scholar] [CrossRef]
- Paquette, A.; Bouchard, A.; Cogliastro, A. Survival and growth of under-planted trees: A meta-analysis across four biomes. Ecol. Appl. 2006, 16, 1575–1589. [Google Scholar] [CrossRef]
- Schoeneberger, M.M. Agroforestry: Working trees for sequestering carbon on agricultural lands. Agrofor. Syst. 2009, 75, 27–37. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Remme, R.P.; Rusch, G.M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 2016, 92, 263–273. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Chang, S.X.; Carlyle, C.N.; Bork, E.W. Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada. Agric. Ecosyst. Environ. 2015, 213, 105–113. [Google Scholar] [CrossRef]
- Dixon, R.K. Agroforestry systems: Sources of sinks of greenhouse gases? Agrofor. Syst. 1995, 31, 99–116. [Google Scholar] [CrossRef]
- Montagnini, F.; Eibl, B.; Grance, L.; Maiocco, D.; Nozzi, D. Enrichment planting in overexploited subtropical forests of the Paranaense region of Misiones, Argentina. For. Ecol. Manag. 1997, 99, 237–246. [Google Scholar] [CrossRef]
- McGuire, J.P.; Mitchell, R.J.; Moser, E.B.; Pecot, S.D.; Gjerstad, D.H.; Hedman, C.W. Gaps in a gappy forest: Plant resources, longleaf pine regeneration, and understory response to tree removal in longleaf pine savannas. Can. J. For. Res. 2001, 31, 765–778. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Haile, S.G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 2009, 12, 1099–1111. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, J.; Ma, Z.; Zhao, Y.; Su, J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Ann. For. Sci. 2014, 71, 427–435. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Rondon, M.A.; Fernandes, E.; Riha, S.J.; Wandelli, E. Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecol. Appl. 2004, 14, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kammann, C.; Cayuela, M.; Singh, B.P.; Joseph, S.; Kimber, S.; Donne, S.; Clough, T.; Spokas, K.A. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Thomazini, A.; Spokas, K.; Hall, K.; Ippolito, J.; Lentz, R.; Novak, J. GHG impacts of biochar: Predictability for the same biochar. Agric. Ecosyst. Environ. 2015, 207, 183–191. [Google Scholar] [CrossRef]
- Pokharel, P.; Kwak, J.-H.; Ok, Y.S.; Chang, S.X. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Sci. Total Envirn. 2018, 625, 1247–1256. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Wang, M.; Yuan, W.; Shah, S.; Shi, W.; Meng, X.; Ju, X.; Yang, B. N2O emission and nitrogen transformation in chicken manure and biochar co-composting. Trans. Am. Soc. Agric. Biol. Eng. 2016, 59, 1277–1283. [Google Scholar]
- Jia, X.; Wang, M.; Yuan, W.; Ju, X.; Yang, B. The influence of biochar addition on chicken manure composting and associated methane and carbon dioxide emissions. BioResources 2016, 11, 5255–5264. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Wu, F.; Jia, Z.; Wang, S.; Chang, S.X.; Startsev, A. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils 2013, 49, 555–565. [Google Scholar] [CrossRef]
- Troy, S.M.; Lawlor, P.G.; O’Flynn, C.J.; Healy, M.G. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol. Biochem. 2013, 60, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. For. Ecosyst. 2016, 3, 21. [Google Scholar] [CrossRef]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario, Canada. J. For. Res. 2015, 26, 799–809. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 2009, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.W.L.; Morris, S.G.; Singh, B.P.; Grace, P.R.; Scheer, C.; Rust, J.; Downie, A.E.; Cowie, A.L. Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci. Total Environ. 2013, 465, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.E.; Zheng, J.; Botte, J.; Cotrufo, M.F. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 2013, 5, 153–164. [Google Scholar] [CrossRef]
- Borken, W.; Muhs, A.; Beese, F. Application of compost in spruce forests: Effects on soil respiration, basal respiration and microbial biomass. For. Ecol. Manag. 2002, 159, 49–58. [Google Scholar] [CrossRef]
- De Urzedo, D.I.; Franco, M.P.; Pitombo, L.M.; do Carmo, J.B. Effects of organic and inorganic fertilizers on greenhouse gas (GHG) emissions in tropical forestry. For. Ecol. Manag. 2013, 310, 37–44. [Google Scholar] [CrossRef]
- Sistani, K.R.; Warren, J.G.; Lovanh, N. Quantification of Greenhouse Gas Emissions from Soil Applied Swine Effluent by Different Methods. In Livestock Environment VIII, 31 August–4 September 2008, Iguassu Falls, Brazil; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008; p. 26. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Bertrand, N.; Côté, D. Carbon dioxide and nitrous oxide emissions following fall and spring applications of pig slurry to an agricultural soil. Soil Sci. Soc. Am. J. 2004, 68, 1410–1420. [Google Scholar] [CrossRef]
- Rochette, P.; van Bochove, E.; Prévost, D.; Angers, D.A.; Bertrand, N. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year II. Nitrous oxide fluxes and mineral nitrogen. Soil Sci. Soc. Am. J. 2000, 64, 1396–1403. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year I. Carbon dioxide fluxes and microbial biomass carbon. Soil Sci. Soc. Am. J. 2000, 64, 1389–1395. [Google Scholar] [CrossRef]
- Shah, A.; Lamers, M.; Streck, T. N2O and CO2 emissions from South German arable soil after amendment of manures and composts. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Chiang, S.C.; Merka, W.C.; Pancorbo, O.C.; Thompson, S.A. Nitrous oxide and carbon dioxide emissions from pelletized and nonpelletized poultry litter incorporated into soil. Plant Soil 1994, 163, 189–195. [Google Scholar] [CrossRef]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 2011, 166, 514–531. [Google Scholar] [CrossRef]
- Huang, G.F.; Wu, Q.T.; Wong, J.W.C.; Nagar, B.B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Zafari, A.; Kianmehr, M.H. Effect of temperature, pressure and moisture content on durability of cattle manure pellet in open-end die method. J. Agric. Sci. 2012, 4, 203. [Google Scholar] [CrossRef]
- Eghball, B.; Ginting, D. Carbon Sequestration Following Beef Cattle Feedlot Manure, Compost, and Fertilizer Applications; Nebraska Beef Cattle Reports; University of Nebraska: Lincoln, NE, USA, 2003. [Google Scholar]
- Yamane, T. Denitrifying bacterial community in manure compost pellets applied to an Andosol upland field. Soil Sci. Plant Nutr. 2013, 59, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Biala, J.; Rowlings, D.W.; De Rosa, D.; Grace, P. Effects of using raw and composted manures on nitrous oxide emissions: A review. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17–22 August 2014; pp. 425–430. [Google Scholar]
- Alemi, H.; Kianmehr, M.; Borghaee, A. Effect of pellet processing of fertilizer on slow-release nitrogen in soil. Asian J. Plant Sci. 2010, 9, 74. [Google Scholar] [CrossRef]
- Nair, P.K.R. The coming of age of agroforestry. J. Sci. Food Agric. 2007, 87, 1613–1619. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.K.R. Agroforestry Systems and Environmental Quality. J. Environ. Qual. 2011, 40, 784–790. [Google Scholar] [CrossRef] [PubMed]
Agroforestry/Management Activities/Location | Carbon/GHG Data | Reference |
---|---|---|
Above- and below-ground vegetation C sequestration rate (Mg C ha−1 y−1) | ||
Fodder bank, West Africa (7.5 years) | 0.3 | [9] |
Tree-based inter-cropping, Canada (13 years) | 0.8 | |
Agroforest, Western Oregon, USA (11 years) | 1.1 | |
Agrisilviculture, India (5 years) | 1.3 | |
Silvopasture, India (5 years) | 6.6 | |
Home gardens, Togo (23 years) | 4.3 | |
Shaded coffee, Togo (13 years) | 6.3 | |
Home gardens, Indonesia (13 years) | 8.0 | |
Cacao agroforest, Cameroon (26 years) | 5.9 | |
Cacao Agroforest, Costa Rica (5 years) | 10.3 | |
Cacao Agroforest, Costa Rica (10 years) | 11.1 | |
Woodlots, Puerto Rico (4 years) | 12.0 | |
Median C storage in different ecoregions | [27] | |
Semi-arid (5 years) | 2.6 | |
Sub-humid (8 years) | 6.1 | |
Humid (5 years) | 10.0 | |
Temperate (30 years) | 3.9 | |
Windbreak in U.S. ecoregions | [26] | |
Conifers | 2.0–2.9 | |
Broadleaved | 2.7–6.1 | |
Shifting cultivation * in Peruvian Amazon and Indonesia | 3.5 | [28] |
Improved fallow ** | [4] | |
12-month-old fallow | 5.3–13.2 | |
18-month-old fallow | 17.4–31.9 | |
22-month-old fallow | 21.3–30.5 | |
Vegetation C stock (Mg C ha−1) | ||
Improved fallow in Mediterranean | 70 | [28,29] |
Potential C storage in six continents | ||
Africa, agrosilvicultural | 29–53 | |
South America, agrosilvicultural | 39–195 | |
Southeast Asia, agrosilvicultural | 12–228 | |
Australia, silvopastoral | 28–51 | |
North America, silvopastoral | 90–198 | |
Northern Asia, silvopastoral | 15–18 | |
Different agroforestry systems in sub-Saharan Africa: | [30] | |
Arid and semi-arid silvopastoral: | ||
pastoral/fruit | 0.8–3.9 | |
pastoral/fuelwood | 3.9–19.4 | |
pastoral/shelterbelt | 1.7–1.8 | |
Humid silvopastoral: | ||
pastoral/fruit | 2.0–8.6 | |
pastoral/fuelwood | 5.1–24.7 | |
pastoral/shelterbelt | 2.8–6.5 | |
Fruit/fuelwood | 4.6–23.0 | |
Fruit/timber | 33.3–71.3 | |
Fruit/shelterbelt | 2.4–5.4 | |
Fuelwood/timber | 36.4–86.8 | |
Fuelwood/shelterbelt | 5.5–20.9 | |
Soil C sequestration rate (Mg C ha−1 y−1) | ||
Alley cropping, France (equivalent mass basis) | [31] | |
26–29 cm | 0.25 | |
93–98 cm | 0.35 | |
Improved fallow in Mediterranean | 1.6 | [28] |
Soil C stock (Mg C ha−1) | ||
Three agroforestry systems, Alberta, Canada | [32] | |
0–10 cm | ||
Hedgerow (natural forest + crop) | 77 | |
Shelterbelt (planted forest + crop) | 67 | |
Silvopasture (natural forest + grassland) | 101 | |
0–30 cm | ||
Hedgerow (natural forest + crop) | 178 | |
Shelterbelt (planted forest + crop) | 163 | |
Silvopasture (natural forest + grassland) | 201 | |
Inter-cropping in sub-tropical China, 0–80 cm | [33] | |
Tree + shrub | 93 | |
Tree + legume & cereal | 79 | |
Tree + Oilseed & legume | 74 | |
Humid tropics, 0–20 cm | 25 | [28] |
Different agroforestry systems in Canada | [5] | |
Alley cropping, 0–40 cm (13–25 years) | 71.1–125.4 | |
Alley cropping, 0–30 cm (8–9 years) | 43.5–113.2 | |
Shelterbelt, 0–30 cm (various ages) | 15–208 | |
GHG emission rates (kg ha−1 y−1) | ||
Different agroforestry systems in Peruvian Amazon and Indonesia | [28] | |
Shifting cultivation | ||
N2O-N emission | ||
CH4-C flux | 0.8 | |
CO2-C emission | −2.0 | |
Multi-strata agroforestry | 5.9 | |
N2O-N emission | ||
CH4-C flux | 0.5 | |
CO2-C emission | −2.0 | |
Peach-palm agroforestry | 5.5 | |
N2O-N emission | ||
CH4-C flux | 0.9 | |
CO2-C emission | −1.5 | |
5.8 | ||
CO2-C emission from agroforestry systems in Alberta | [34] | |
Hedgerow (natural forest + crop) | 16,425 | |
Shelterbelt (planted forest + crop) | 10,950 | |
Silvopasture (natural forest + grassland) | 13,505 | |
CH4-C emission | ||
Hedgerow (natural forest + crop) | −2.2 | |
Shelterbelt (planted forest + crop) | −1.8 | |
Silvopasture (natural forest + grassland) | −2.9 | |
Different agroforestry systems in Canada | [5] | |
Alley Cropping | ||
CO2-C emission | 4900–6240 | |
Shelterbelts (combined with annual crops) | ||
CO2-C emission | 1900–4000 | |
CH4-C efflux | −0.15–−0.9 | |
N2O-N efflux | 0.25–3.0 | |
Shade coffee agroforestry, Sumatra | [4] | |
N2O-N | 16 | |
CH4-C | −1.0 |
Location | Experiment/Analysis | Variable | CO2 (%) | CH4 (%) | N2O (%) | Reference | Remarks |
---|---|---|---|---|---|---|---|
Australia | Corn cropped red ferrosol amended with poultry litter (PL), PL biochar (PLB) and urea. Measured cumulative emissions for 57 days | PLB Raw PL Urea PLB + urea | 1.3% 2.0% 1.4% 1.6% | NA * | 0.04% 0.27% 0.16% 0.10% | [64] | Estimated CO2-C and CH4-C as percentage of TOC and N2O-N as % of TN in 20 cm plough layer after biochar and manure addition. |
Ireland | Pig manure (PM) added to soil and further amended with biochar from pig manure (PMB) or spruce wood (WB). Cumulative emissions evaluated over 28 days 10 weeks after PM addition. | PM + PMB PM + WB PM | 2.3% 2.1% 5.5% | 0.02% 0.01% 0.06% | 3.8% 4.1% 2.1% | [60] | Estimated CO2-C and CH4-C as percentage of TOC and N2O-N as % of TN in 20 cm plough layer after biochar and manure addition. |
Global | Meta-analysis on role of biochar from different feedstocks in regulating N2O emissions in laboratory or field conditions. Feedstocks–biowaste 1 (BW), biosolids 2 (BS), manures or manure-based materials (MM),wood (W), herbaceous (H), lignocellulosic waste (LW). | Mean BW BS MM W H LW | NA | NA | −60 to 48% −40% NS −46 to +39% −60% −60% −40% | [50] | 1 Biowaste = Municipal solid waste; 2 Biosolids = sewage sludge from water treatment plants. |
Global | Meta-analysis of published data on biochar application in soils from laboratory or field experiments. | Lab results Field results Mean | NA | NA | −60% −40% −50% | [51] | |
USA | Fast pyrolysed (550 °C) Oak biochar (BC) applied to temperate soils from Colorado, Iowa, Michigan, and Minnesota, and 2 years incubation study for GHG emissions. Comparisons are to control treatments (lacking BC). | 1% BC 5% BC 10% BC 20% BC | 8% 36% 88% 226% | NA | −53.9% −72.4% −76.3% −83.5% | [65] | |
USA | Biochar produced at 550 °C from hardwood sawdust applied to soils from various locations. | Forest soils Agricultural soils | 120% 75% | 4.2% −0.9% | −58.2% −54.4% | [52] | % of change in GHG emissions after biochar addition compared to controlled soil with no biochar; Forest soils, N = 2; Agricultural soils, N = 8. |
Canada | Biochars produced at 300 and 550 °C with and without steam activation (BC-S) applied to forest and grassland soils at 1.5% mass basis. Comparisons are to control soils. | Forest soils BC300 BC300-S BC500 BC500-S Grassland soils BC300 BC300-S BC500 BC500-S | −0.1% 4.2% −16.4% −5.7% −2.7% −2.4% −4.3% −2.2% | 0.7% 12.6% 18.1% 15.1% 1.0% −0.4% 4.3% 3.5% | −3.0% −30.1% −27.5% −31.5% −3.3% −7.4% −14.8% −11.7% | [53] | |
Germany | Manure compost from organic household wastes applied to 115-year old Norway Spruce plantation in silty and sandy soils at the rate of 6.3 kg m−2. | Year 1 Silty soils Sandy soils Year 2 Silty soils Sandy soils | 24% 67% 20% 45% | [66] | % CO2 emissions in fertilized area compared to control plots. Annual CO2 emissions from control plots were 5.1 and 4.2 Mg C ha−1 y−1 in silty and sandy soils, respectively, in year 1, and 5.0 and 4.0 in year 2. | ||
Brazil | Sewage sludge compost (SSC), sewage sludge (SS), mineral fertilizer (MF), and control (Ctrl) at the rate of 20 kg available N ha−1. | SSC SS MF | 90% 60% 13% | NS ** | 85% 37% 9% | [67] | % GHG emissions in fertilized area compared to control plots. CO2 emission from control plots were 31.1 kg CO2-C and 0.005 N2O N (Mg ha−1). |
Location | Experiment | Treatment | CO2 (kg ha−1) | CH4 (kg ha−1) | N2O (kg ha−1) | Reference | Remarks |
---|---|---|---|---|---|---|---|
Saskatchewan, Canada | Surface application, direct injection, and injection with soil aeration of swine effluent at 200 kg N ha−1 in no-till corn grain production. | Surface application Direct injection Combination with soil aeration | 6900 8470 7370 | 1.2 2.6 2.1 | 7.3 4.7 6.9 | [68] | Cumulative emissions for 141 days. |
Quebec, Canada | Pig slurry applied to agricultural soils at 200 kg N ha−1 in spring and fall. | Fall Spring | 997 1874 | NA * | 10.2 18.8 | [69] | Seasonal cumulative measurement. |
Quebec, Canada | Pig slurry (PS) applied for 19-year in loamy soil at 60 (PS60) or 120 (PS120) Mg ha−1 y−1. | PS60 PS120 | 2820 6079 | NA | 4.9 13.1 | [70,71] | 12-month cumulative. |
Germany | Soil amendments (50 mg N kg−1) with cow manure (CM), poultry manure (PM), sheep and wheat straw compost (SWC), bio-waste compost (BWC) or calcium ammonium nitrate (CAN) in a laboratory experiment. | CM PM SWC BWC CAN Controlled | 8118 2706 1804 6314 3608 1624 | NA | 0.4 0.4 0.1 0.1 0.1 0.0 | [72] | |
Japan | Poultry manure (PM) and pelleted poultry (PP) manure application in Andisol at 120 kg N ha−1 in field and lab incubation experiment at two different water filled porosity (WFP) levels. Cumulative emission for 365 days. | Field condition PM PP Incubation—0.3 WFP Intact PP Ground PP Incubation—0.5 WFP Intact PP Ground PP | NA 549 634 882 1060 | NA | 1.3 5.0 0.9 4.4 10.1 67.8 | [19] | Converted efflux to kg ha−1 at 5 cm soil depth (bulk density = 0.56 g cm−3) |
USA | Incubation experiment with fine poultry manure (FPM) and pelleted poultry (PP) manure application in Cecil loamy sand at 55% and 90% of water filled porosity (WFP). N application rate was 307 kg N ha−1 equivalent. | 55% WFP FPM PP 90% WFP FPM PP | 6584 6584 5267 4316 | 53.3 65.8 1.6 15.7 | [73] | Converted efflux to kg ha−1 at 15 cm soil depth (bulk density = 1.33 g cm−3). | |
Scotland | Combination of dry pelleted and composted sewage sludge compared with liquid cattle slurry mixed with digested sewage sludge. Treatments were broadcasted sewage sludge pellet (DP): 15–17.5 t ha−1, broadcasted compost sewage sludge (CP): 52–63.4 t ha−1, injected digested liquid sewage sludge (LS) 60–120 t ha−1, injected cattle slurry (CS) 5.9–10 t ha−1. | Spring application DP CP LS CS Summer application DP CP LS CS | 10,633 11,367 11,367 13,200 18,700 22,000 20,900 22,000 | 0.8 3.5 2.5 9.1 3.8 5.0 3.1 9.7 | [18] | Manuring rate in grassland soils varied from year to year (kg N ha−1); DP: 508–510, CP: 462–615, LS: 15–116, CS: 190–240. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.M.; Chang, S.X.; Bork, E.W.; Carlyle, C.N. Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests 2018, 9, 369. https://doi.org/10.3390/f9060369
Shrestha BM, Chang SX, Bork EW, Carlyle CN. Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests. 2018; 9(6):369. https://doi.org/10.3390/f9060369
Chicago/Turabian StyleShrestha, Bharat M., Scott X. Chang, Edward W. Bork, and Cameron N. Carlyle. 2018. "Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review" Forests 9, no. 6: 369. https://doi.org/10.3390/f9060369
APA StyleShrestha, B. M., Chang, S. X., Bork, E. W., & Carlyle, C. N. (2018). Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests, 9(6), 369. https://doi.org/10.3390/f9060369