Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate and Forest Vegetation Data
2.3. Description of the CART Model
2.4. Calculation of CSP
3. Results
3.1. Prediction Accuracy and Contribution of Climate Variables
3.2. Distribution Area of Current Forest Vegetation
3.3. Potential Forest Vegetation Distribution
3.4. Carbon Storage and CSP
4. Discussion
4.1. Model Accuracy Test
4.2. The Status of Forest Vegetation Carbon Storage in Yunnan
4.3. The Effects of Temperature Increases on Forest Vegetation Carbon Storage and CSP
4.4. The CSP of Warm-Hot Coniferous Forest
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Climate change and carbon sequestration in forest ecosystems. In Handbook of Climate Change Mitigation and Adaptation; Springer: Cham, Germany, 2017; pp. 555–594. [Google Scholar]
- Weng, E.; Zhou, G. Modeling distribution changes of vegetation in China under future climate change. Environ. Model. Assess. 2006, 11, 45–58. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Liu, Y.C.; Yu, G.R.; Wang, Q.F.; Zhang, Y.J.; Xu, Z.H. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Sci. China Life Sci. 2014, 57, 1218–1229. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Guo, Z.D.; Shilong, P.; Fang, J.Y. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Wen, D.; Zhu, J.; Tang, X.; Xu, L.; Zhang, L.; Hu, H.; Huang, M.; Yu, G. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, S.; Guo, Z.; Xu, B.; Fang, J. The stage-classified matrix models project a significant increase in biomass carbon stocks in china’s forests between 2005 and 2050. Sci. Rep. 2015, 5, 11203. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhou, X.; Zhao, S.; Wang, X.; Zhu, B.; Piao, S.; Fang, J. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Glob. Planet. Chang. 2009, 66, 179–194. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, S. Analysis of the current status and dynamics of forest carbon storage in Yunnan Province. For. Invent. Plan. 2016, 41, 17–23. [Google Scholar]
- Cai, L.S. Study on Carbon Storage of Forest Vegetation and Its Changes in Yunnan Province. Master’s Thesis, Southwest Forestry University, Kunming, China, 2009. [Google Scholar]
- Li, L. Dynamic Change and Carbon Sequestration of Forest Vegetation Carbon Potential Analysis from 1992 to 2007 in Yunnan. Master’s Thesis, Yunnan University of Finance and Economics, Kunming, China, 2012. [Google Scholar]
- Solomon, A.M.; Shugart, H. Vegetation Dynamics & Global Change; Springer Science & Business Media: Charlottesville, VA, USA, 1993. [Google Scholar]
- Holdridge, L.R. Life Zone Ecology; Tropical Sciences Centre: San Jose, Costa Rica, 1967. [Google Scholar]
- Sykes, M.T.; Prentice, I.C.; Laarif, F. Quantifying the impact of global climate change on potential natural vegetation. Clim. Chang. 1999, 41, 37–52. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Sitch, S.; Vertenstein, M.; Oleson, K.W. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Glob. Chang. Biol. 2003, 9, 1543–1566. [Google Scholar] [CrossRef]
- Yates, D.N.; Kittel, T.G.F.; Cannon, R.F. Comparing the correlative holdridge model to mechanistic biogeographical models for assessing vegetation distribution response to climatic change. Clim. Chang. 2000, 44, 59–87. [Google Scholar] [CrossRef]
- Chipman, H.A.; George, E.I.; Mcculloch, R.E. Bayesian CART model search. J. Am. Stat. Assoc. 2012, 93, 935–948. [Google Scholar] [CrossRef]
- Matsui, T.; Yagihashi, T.; Nakaya, T.; Tanaka, N.; Taoda, H. Climatic controls on distribution of fagus crenata forests in Japan. J. Veg. Sci. 2004, 15, 57–66. [Google Scholar] [CrossRef]
- Michaelsen, J.; Schimel, D.S.; Friedl, M.A.; Davis, F.W.; Dubayah, R.C. Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. J. Veg. Sci. 1994, 5, 673–686. [Google Scholar] [CrossRef]
- Vayssières, M.P.; Plant, R.E.; Allen-Diaz, B.H. Classification trees: An alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 2000, 11, 679–694. [Google Scholar] [CrossRef]
- Schellnhuber, H.J.; Rahmstorf, S.; Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Chang. 2016, 6, 649–653. [Google Scholar] [CrossRef]
- New, M. Arctic climate change with a 2 °C global warming. In Evidence and Implications of Dangerous Climate Change in the Arctic; WWF International Arctic Program: Oslo, Norway, 2005; pp. 1–15. [Google Scholar]
- Eriksson, M.; Vesterberg, A. When Not in the Best of Worlds: Uncertainty and Forest Carbon Sequestration. Available online: https://ssrn.com/abstract=2766236 (accessed on 22 March 2016).
- Rashid, I.; Romshoo, S.A.; Chaturvedi, R.K.; Ravindranath, N.; Sukumar, R.; Jayaraman, M.; Lakshmi, T.V.; Sharma, J. Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Clim. Chang. 2015, 132, 601–613. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.; Fischlin, A. Climate change impacts on forests. In Climate Change 1995—Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Contribution of Working Group to the Second Assessment Report of the Intergovern Mental Panel of Climate Change; Watson, R., Zinyowera, M.C., Moss, R.H., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 95–129. [Google Scholar]
- Levin, S.; Harvey, J. Fragile Dominion: Complexity and the Commons; Perseus Reading: Cambridge, UK, 1999. [Google Scholar]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. A consideration of climax theory: The climax as a population and pattern. Ecol. Monogr. 1953, 23, 41–78. [Google Scholar] [CrossRef]
- Yang, Y.M.; Wang, J.H.; Liu, N. Yunnan Zoogeography (Local Chronicles of Yunnan-Geography); Yunnan People’s Publishing House: Kunming, China, 1998; pp. 381–384, 401–419. [Google Scholar]
- Zhang, M.; Zhou, Z.; Chen, W.; Slik, J.F.; Cannon, C.H.; Raes, N. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biol. Conserv. 2012, 153, 257–264. [Google Scholar] [CrossRef]
- Guo, H.J.; Long, C.L. Biodiversity of Yunnan; Yunnan Science and Technology Press: Kunming, China, 1998; Volume 10, pp. 56, 61, 65–68. [Google Scholar]
- Yang, Y.; Tian, K.; Hao, J.; Pei, S.; Yang, Y. Biodiversity and biodiversity conservation in Yunnan, China. Biodivers. Conserv. 2004, 13, 813–826. [Google Scholar] [CrossRef]
- Nakao, K.; Higa, M.; Tsuyama, I.; Matsui, T.; Horikawa, M.; Tanaka, N. Spatial conservation planning under climate change: Using species distribution modeling to assess priority for adaptive management of Fagus crenata in Japan. J. Nat. Conserv. 2013, 21, 406–413. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.; Higa, M.; Tanaka, N.; Matsui, T.; Tang, C.Q.; Ou, X.; Zhou, R.; Wang, C.; Yan, H. Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan Province, Southwestern China. J. Mt. Sci. 2016, 13, 1411–1422. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; An, W.; Song, L.; Zhang, W.; Catto, N.; Wang, Y.; Wang, S.; Liu, H.; Cao, W. Climate and glacier change in Southwestern China during the past several decades. Environ. Res. Lett. 2011, 6, 1–24. [Google Scholar] [CrossRef]
- Kong, F.; Wang, Y.F.; Fang, J.; Lv, L.L.; Zhang, L.L.; Wang, Z.N. Projected regional difference of the rainfall with different intensities and their contribution to total rainfall under the RCP6.0 scenario in China during 2006–2100. Trop. Geogr. 2018, 1, 48–60. [Google Scholar]
- Li, W.; Peng, M.; Pan, H.; Wang, C.; Peng, Z.; Qin, R. Landscape pattern in Honghe River basin based on moving window method. J. Anhui Agric. Sci. 2013, 41, 4455–4457. [Google Scholar]
- Pan, H.; Peng, M.; Wang, C.; Li, W.; Peng, Z.; Qin, R. Landscape ecological patterns analysis of Nanpan River basin (Yunnan part) based on eCongnition and LAOS images. J. Anhui Agric. Sci. 2013, 41, 4467–4470. [Google Scholar]
- Timilsina, N.; Cropper, W.; Escobedo, F.; Lima, J. Predicting understory species richness from stand and management characteristics using regression trees. Forests 2013, 4, 122–136. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, M.; Tsuyama, I.; Matsui, T.; Kominami, Y.; Tanaka, N. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landsc. Ecol. 2009, 24, 115–128. [Google Scholar] [CrossRef]
- Waggoner, P.E. Using the forest identity to grasp and comprehend the swelling mass of forest statistics. Int. For. Rev. 2008, 10, 689–694. [Google Scholar] [CrossRef]
- Dang, C.L.; Wu, Z.L. Studies on the net primary production for Castanopsis echidnocarpa community of monsoon Evergreen broad-leaved forest. J. Yunnan Univ. (Nat. Sci.) 1992, 14, 108–119. [Google Scholar]
- Dang, C.L.; Wu, Z.L.; Zhang, Z. Studies on the biomass of Cyclobalanopsis delavayi community. J. Yunnan Univ. (Nat. Sci.) 1994, 16, 205–209. [Google Scholar]
- Xie, S.; Liu, W.; Li, S.; Yang, G. Preliminary studies on the biomass of middle-mountain moist evergreen broadleaved forests in Ailao Mountain, Yunnan. Acta Phytoecol. Sin. 1995, 20, 167–176. [Google Scholar]
- Wu, Z.L.; Dang, C.L. The biomass of Pinus kesiya var. Langbianensis stands in Pu’er district, Yunnan. J. Yunnan Univ. (Nat. Sci.) 1992, 14, 167–176. [Google Scholar]
- Dang, C.L.; Wu, Z.L. Studies on the biomass of Pinus yunnanensis forest. Acta Bot Yunnanica 1991, 13, 59–64. [Google Scholar]
- Jiang, H. A study on the biomass and production of Picea purpurea forest communities. Geobot. Sin. 1986, 10, 146–152. [Google Scholar]
- Feng, Z.W. The Forest Ecosystem Biomass and Productivity in China; Science Press: Beijing, China, 1999. [Google Scholar]
- Gifford, R.M. National Carbon Accounting System Technical Report No. 22. Carbon Contents of above-Ground Tissues of Forest and Woodland Trees; Australian Greenhouse Office: Canberra, Australian, 2000. [Google Scholar]
- Peng, C.L.; Guiot, J.; Van Campo, E. Estimating changes in terrestrial vegetation and carbon storage: Using palaeoecological data and models. Quat. Sci. Rev. 1998, 17, 719–735. [Google Scholar] [CrossRef]
- Cramer, W.; Shugart, H.; Noble, I.; Woodward, F.; Bugmann, H.; Bondeau, A.; Foley, J.; Gardner, R.; Lauenroth, W.; Pitelka, L. Ecosystem composition and structure. In The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems; Walker, B.H., Steffen, W.L., Canadell, J., Ingram, J.S.I., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 190–228. [Google Scholar]
- Friedlingstein, P.; Prentice, K.C.; Fung, I.Y.; John, J.G.; Brasseur, G.P. Carbon-biosphere-climate interactions in the last glacial maximum climate. J. Geophys. Res. Atmos. 1995, 100, 7203–7221. [Google Scholar] [CrossRef]
- Olson, J.S.; Watts, J.A.; Allison, L.J. Carbon in Live Vegetation of Major World Ecosystems; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1983. [Google Scholar]
- Melillo, J.M.; Borchers, J.; Chaney, J. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 1995, 9, 407–437. [Google Scholar]
- Fang, J.Y.; Guo, Z.; Piao, S.L.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Yu, Z.L.; Zhao, S.D. Carbon storage and budget of major Chinese forest types. Acta Phytoecol. Sin. 2000, 24, 518–522. [Google Scholar]
- Peckham, S.D.; Gower, S.T.; Buongiorno, J. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S. Carbon Balance Manag. 2012, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alexeyev, V.; Birdsey, R.; Stakanov, V.; Korotkov, I. Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution. Water Air Soil Pollut. 1995, 82, 271–282. [Google Scholar] [CrossRef]
- Nabuurs, G.; Mohren, G. Carbon in Dutch forest ecosystems. Neth. J. Agric. Sci. 1993, 41, 309–326. [Google Scholar]
- Dymond, C.C.; Beukema, S.; Nitschke, C.R.; Coates, K.D.; Scheller, R.M. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 2016, 13, 1933–1947. [Google Scholar] [CrossRef]
- Brienen, R.J.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkin, M. Rising temperatures “will stunt rainforest growth”. Nature 2007. Available online: https://www.nature.com/ news/2007/070806/full/news070806-13.html (accessed on 12 October 2008). [CrossRef]
- Lenihan, J.M.; Drapek, R.; Bachelet, D.; Neilson, R.P. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 2003, 13, 1667–1681. [Google Scholar] [CrossRef]
- Wang, H.; Ni, J.; Prentice, I.C. Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Reg. Environ. Chang. 2011, 11, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Lutz, D.A.; Shugart, H.H.; White, M.A. Sensitivity of Russian forest timber harvest and carbon storage to temperature increase. Forestry 2013, 86, 283–293. [Google Scholar] [CrossRef]
- Grant, R.; Arain, A.; Arora, V.; Barr, A.; Black, A.; Chen, J.; Wang, S.; Yuan, F.; Zhang, Y. Modelling temperature effects on CO2 and energy exchange in temperate and boreal coniferous forests. In AGU Spring Meeting; American Geophysical Union: San Francisco, CA, USA, 2004. [Google Scholar]
- Way, D.A.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Piao, S.L.; Field, C.B.; Pan, Y.; Guo, Q.; Zhou, L.; Peng, C.; Tao, S. Increasing net primary production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19, 1–16. [Google Scholar] [CrossRef]
- Marcus, L.; Michael, M.; Sigrid, N.; Antoine, K.; Anna, B.; Jordi, G.G.; Rupert, S.; Sylvain, D.; Piermaria, C.; Marja, K. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar]
- Yu, Y.; Chen, J.M.; Yang, X.G.; Fan, W.Y.; Li, M.Z.; He, L.M. Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE 2017, 12, e0177084. [Google Scholar] [CrossRef] [PubMed]
- Zaehle, S.; Sitch, S.; Prentice, I.C.; Liski, J.; Cramer, W.; Erhard, M.; Hickler, T.; Smith, B. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 2006, 16, 1555–1574. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Wang, Q.; Zhang, Y. Huge carbon sequestration potential in global forests. J. Resour. Ecol. 2012, 3, 193–201. [Google Scholar]
- Ma, J.; Hu, Y.; Bu, R.; Chang, Y.; Deng, H.; Qin, Q. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in Northeastern China. PLoS ONE 2014, 9, e96157. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Baker, B.; Bachelet, D.; Daly, C.; Ma, J.; Liu, J. Impact of climate change in the Hengduan Mountains of Northwestern Yunnan, P.R. China: Vegetation distribution change in the foretime and future. In Earth Observing Systems XI; The International Society for Optical Engineering: San Diego, CA, USA, 2006. [Google Scholar]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Walker, A.P.; Zaehle, S.; Medlyn, B.E.; De Kauwe, M.G.; Asao, S.; Hickler, T.; Lomas, M.R.; Pak, B.C.; Parton, W.J.; Quegan, S. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO2. A multi-model structural analysis. In AGU Fall Meeting; American Geophysical Union: San Francisco, CA, USA, 2013. [Google Scholar]
- He, L.; Chen, J.M.; Croft, H.; Gonsamo, A.; Luo, X.; Liu, J.; Zheng, T.; Liu, R.G.; Liu, Y. Nitrogen availability dampens the positive impacts of CO2 fertilization on terrestrial ecosystem carbon and water cycles. Geophys. Res. Lett. 2017, 44, 11590–11600. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Baishya, R.; Barik, S.K. Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in North-eastern India. Ann. For. Sci. 2011, 68, 727–736. [Google Scholar] [CrossRef]
- Wu, Z. A review of the research status of Pinus kesiya var. Langbianensis in Southwestern China. Sci. Silvae Sin. 1994, 30, 151–157. [Google Scholar]
- Wu, Z.; Zhu, Y.; Jiang, H. Vegetation of Yunnan; Science Press: Beijing, China, 1987. [Google Scholar]
- Patricio, J.; Tulod, A. Carbon sequestration potential of Benguet pine (Pinus kesiya) plantations in Bukidnon, Philippines. J. Nat. Stud. 2010, 9, 99–104. [Google Scholar]
- Cao, X.; Zhang, Y. Analysis on the China certified emission reductions, economic value and its sensitivity of Pinus kesiya var. Langbianensis afforestation project in Yunnan Province. Ecol. Environ. Sci. 2017, 26, 234–242. [Google Scholar]
Band | Band Name | Spectral Range (nm) | Spatial Resolution (m) |
---|---|---|---|
1 | Blue | 420~520 | 10 |
2 | Green | 520~600 | 10 |
3 | Red | 610~690 | 10 |
4 | Near-infrared | 760~890 | 10 |
Panchromatic | Panchromatic | 520~770 | 2.5 |
Forest Vegetation | Representative Tree Species |
---|---|
MEB | Castanopsis hystrix J. D. Hooker et Thomson ex A. De Candolle; Castanopsis indica (Roxburgh ex Lindley) A. DC.; Castanopsis fleuryi Hickel et A. Camus; Lithocarpus truncatu (King ex Hook. f.); Schima wallichii (DC.) Korth.; Anneslea fragrans Wall. |
SEB | Cyclobalanopsis glaucoides Rehder & E.H.Wilson; Cyclobalanopsis xanthotricha (A. Camus) Y. C. Hsu et H. W. Jen; Castanopsis delavayi Franch.; Castanopsis orthacantha Franch; Magnolia delavayi Franch. |
MHEB | Lithocarpus craibianus Barn.; Lithocarpus variolosus (Franchet) Chun; Manglietia insignis (Wall.) Blume; Machilus shweliensis W. W. Sm.; Rhododendron excellens Hemsl. et Wils. |
WHC | Pinus kesiya Royle ex Gordon; Toona ciliata M. Roem. |
WTC | Pinus yunnanensis Franch.; Alnus nepalensis D.Don |
TCC | Tsuga dumosa (D. Don) Eichler; Pinus armandii Franch.; Abies ernestii Rehd. |
CTC | Picea likiangensis (Franch.) E.Pritz.; Abies georgei Orr; Abies delavayi Franch.; Abies forrestii C. C. Rogers; Larix potaninii Batalin |
Forest Vegetation | Mean Aboveground Biomass (Mg/ha) | Reference |
---|---|---|
MEB | 129.92 | [45] |
SEB | 135.91 | [46] |
MHEB | 400.81 | [47] |
WHC | 142.06 | [48] |
WTC | 35.91 | [49] |
TCC | 285.90 | [50] |
CTC | 182.27 | [51] |
Simulation Scenario | TMW | TMS | PRS | PRW | AUC | CI (95%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
DWS | % | DWS | % | DWS | % | DWS | % | |||
T0.0 | 13,438.89 | 46.21 | 2022.92 | 19.82 | 7442.62 | 23.19 | 1986.18 | 10.78 | 0.8486 | 0.8437–0.8532 |
T0.5 | 19,462.31 | 54.38 | 1372.32 | 12.80 | 5519.09 | 23.70 | 3142.26 | 9.12 | 0.8514 | 0.8471–0.8555 |
T1.0 | 19,334.05 | 54.45 | 1553.08 | 12.97 | 5496.66 | 23.44 | 3150.82 | 9.14 | 0.8509 | 0.8462–0.8556 |
T1.5 | 18,857.37 | 50.95 | 1965.65 | 15.39 | 5558.53 | 23.79 | 3190.05 | 9.88 | 0.8529 | 0.8480–0.8577 |
T2.0 | 20,002.74 | 57.08 | 1399.22 | 12.30 | 5552.20 | 22.76 | 2914.18 | 7.86 | 0.8579 | 0.8527–0.8628 |
Forest Vegetation | T0.0–Current | T0.5–T0.0 | T1.0–T0.0 | T1.5–T0.0 | T2.0–T0.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | Area | Rate of Change | |
MEB | 12.13 | 38.35 | −7.19 | −16.44 | −6.22 | −14.24 | −8.26 | −18.88 | −6.76 | −15.44 |
SEB | 4.37 | 29.71 | −10.42 | −54.66 | −10.33 | −54.17 | −8.69 | −45.59 | −10.35 | −54.28 |
MHEB | 2.64 | 69.67 | −0.64 | −9.97 | −2.39 | −37.18 | −2.39 | −37.18 | −1.82 | −28.33 |
WHC | 111.01 | 572.30 | −7.61 | −5.83 | −6.37 | −4.89 | −7.61 | −5.83 | −77.94 | −59.76 |
WTC | 87.32 | 90.77 | 59.76 | 32.56 | 50.15 | 27.32 | 61.60 | 33.57 | 57.92 | 31.56 |
TCC | 14.99 | 211.00 | −5.32 | −24.07 | −6.22 | −28.13 | −6.42 | −29.04 | −5.00 | −22.63 |
CTC | 10.51 | 77.93 | −3.96 | −16.46 | −4.46 | −18.56 | −5.45 | −22.69 | −3.72 | −15.49 |
Mean | 242.98 | 130.42 | 24.63 | 5.74 | 14.15 | 3.30 | 22.79 | 5.31 | −47.66 | −11.10 |
Forest Vegetation | T0.0 | T0.5 | T1.0 | T1.5 | T2.0 |
---|---|---|---|---|---|
MEB | 78.79 | 32.05 | 38.32 | 25.14 | 34.89 |
SEB | 29.69 | −41.14 | −40.51 | −29.39 | −40.66 |
MHEB | 52.89 | 40.05 | 5.00 | 5.00 | 16.40 |
WHC | 567.62 | 734.52 | 743.28 | 734.52 | 234.96 |
WTC | 156.78 | 212.72 | 193.30 | 209.68 | 260.36 |
TCC | 119.00 | 76.79 | 69.66 | 68.06 | 79.32 |
CTC | 95.84 | 59.83 | 55.24 | 46.18 | 61.96 |
Sum. | 1100.61 | 1114.82 | 1064.29 | 1059.19 | 647.24 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Li, W.; Zhang, Y.; Peng, M.; Wang, C.; Sha, L.; Liu, Y.; Song, Q.; Fei, X.; Jin, Y.; et al. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests 2018, 9, 227. https://doi.org/10.3390/f9050227
Zhou R, Li W, Zhang Y, Peng M, Wang C, Sha L, Liu Y, Song Q, Fei X, Jin Y, et al. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests. 2018; 9(5):227. https://doi.org/10.3390/f9050227
Chicago/Turabian StyleZhou, Ruiwu, Wangjun Li, Yiping Zhang, Mingchun Peng, Chongyun Wang, Liqing Sha, Yuntong Liu, Qinghai Song, Xuehai Fei, Yanqiang Jin, and et al. 2018. "Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China" Forests 9, no. 5: 227. https://doi.org/10.3390/f9050227
APA StyleZhou, R., Li, W., Zhang, Y., Peng, M., Wang, C., Sha, L., Liu, Y., Song, Q., Fei, X., Jin, Y., Gao, J., Lin, Y., Grace, J., & Wang, S. (2018). Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests, 9(5), 227. https://doi.org/10.3390/f9050227