Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling
2.3. Physical and Chemical Analyses
2.4. Organic Matter Fractionation
2.5. Bioassay of Auxin-Like Activity of the Humic Substances
2.6. Statistical Analysis
3. Results
3.1. Soil Morphology
3.2. General Properties
3.3. Response of Auxin-Like Activity of Humic Substances
4. Discussion
4.1. Morphology and General Properties of the Selected Soils
4.2. Hormone-Like Activity of HA and FA
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Gökbulak, F.; Özcan, M. Hydro-physical properties of soils developed from different parent materials. Geoderma 2008, 145, 376–380. [Google Scholar] [CrossRef]
- Sierra, M.; Martínez, F.J.; Sierra, C.; Aguilar, J. Correlations between pedological parameters in relation to lithology and soil type in Almería (SE Spain). J. Arid Environ. 2009, 73, 493–498. [Google Scholar] [CrossRef]
- Anderson, D.W. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 1988, 5, 71–97. [Google Scholar] [CrossRef]
- Anda, M.; Suryani, E.; Husnain; Subardja, D. Strategy to reduce fertilizer application in volcanic paddy soils: Nutrient reserves approach from parent materials. Soil Tillage Res. 2015, 150, 10–20. [Google Scholar] [CrossRef]
- Cocco, S.; Agnelli, A.; Gobran, G.R.; Corti, G. Changes induced by the roots of Erica arborea L. to create a suitable environment in a soil developed from alkaline and fine-textured marine sediments. Plant Soil 2013, 368, 297–313. [Google Scholar] [CrossRef]
- Leonard, J.; Medina, A.; Neary, D.; Tecle, A. The influence of parent material on vegetation response 15 years after the Dude Fire, Arizona. Forests 2015, 6, 613–635. [Google Scholar] [CrossRef]
- Canfora, L.; Bacci, G.; Pinzari, F.; Lo Papa, G.; Dazzi, C.; Benedetti, A. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 2014, 9, e106662. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, A.M.; Jongejans, J.; Sevink, J. Parent material effects on Mediterranean woodland ecosystems in NE Spain. Catena 2005, 59, 55–68. [Google Scholar] [CrossRef]
- Da Silva, Y.J.A.B.; do Nascimento, C.W.A.; van Straaten, P.; Biondi, C.M.; de Souza Júnior, V.S. Effect of I- and S-type granite parent material mineralogy and geochemistry on soil fertility: A multivariate statistical and Gis-based approach. Catena 2017, 149, 64–72. [Google Scholar] [CrossRef]
- Palumbo, B.; Angelone, M.; Bellanca, A.; Dazzi, C.; Hauser, S.; Neri, R.; Wilson, J. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 2000, 95, 247–266. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Oze, C.; Bandara, W.M.A.T.; Weerasooriya, R. Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 2012, 189, 1–9. [Google Scholar] [CrossRef]
- Vithanage, M.; Rajapaksha, A.U.; Oze, C.; Rajakaruna, N.; Dissanayake, C.B. Metal release from serpentine soils in Sri Lanka. Environ. Monit. Assess. 2014, 186, 3415–3429. [Google Scholar] [CrossRef] [PubMed]
- Brady, K.U.; Kruckeberg, A.R.; Bradshaw, H.D.J. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 243–266. [Google Scholar] [CrossRef]
- Baumeister, J.L.; Hausrath, E.M.; Olsen, A.A.; Tschauner, O.; Adcock, C.T.; Metcalf, R.V. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation. Appl. Geochem. 2015, 54, 74–84. [Google Scholar] [CrossRef]
- Caillaud, J.; Proust, D.; Philippe, S.; Fontaine, C.; Fialin, M. Trace metals distribution from a serpentine weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef] [PubMed]
- Bini, C.; Maleci, C. The “serpentine syndrome” (H. Jenny, 1980): A proxy for soil remediation. Int. J. Environ. Qual. EQA 2014, 15, 1–13. [Google Scholar]
- Gonnelli, C.; Renella, G. Nickel and Chromium. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Availability; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 335–366. [Google Scholar]
- Doubková, P.; Suda, J.; Sudová, R. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol. Biochem. 2012, 44, 56–64. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Reniero, F.; Rascio, N. Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Sci. Soc. Am. J. 2000, 64, 639–645. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Cocco, S.; Francioso, O.; Ferrari, E.; Cardinali, A.; Nardi, S.; Agnelli, A.; Corti, G. Snow vole (Chionomys nivalis Martins) affects the redistribution of soil organic matter and hormone-like activity in the alpine ecosystem: Ecological implications. Ecol. Evol. 2015, 5, 4542–4554. [Google Scholar] [CrossRef] [PubMed]
- Pizzeghello, D.; Francioso, O.; Ertani, A.; Muscolo, A.; Nardi, S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Explor. 2013, 129, 70–75. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Zanella, A.; Carletti, P.; Nardi, S. Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere 2006, 65, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Pizzeghello, D.; Nicolini, G.; Nardi, S. Hormone-like activities of humic substances in different forest ecosystems. New Phytol. 2002, 155, 393–402. [Google Scholar] [CrossRef]
- Guitián, F.; Carballas, T. Suelos de la zona hứmeda española. V. Factores de formacion: Material geologico. An. Edafol. Agrobiol. 1969, 28, 191–204. [Google Scholar]
- Ibáñez, J.J.; Zinck, J.A.; Dazzi, C. Soil geography and diversity of the European biogeographical regions. Geoderma 2013, 192, 142–153. [Google Scholar] [CrossRef]
- Macías, F.; de Anta, R.C.; García, C.; García-Rodeja, E.; Silva, B. El material original: Su formación e influencia en las propiedades de los suelos de Galicia. An. Edafol. Agrobiol. 1982, 41, 1747–1768. [Google Scholar]
- Eimil-Fraga, C.; Álvarez-Rodríguez, E.; Rodríguez-Soalleiro, R.; Fernández-Sanjurjo, M.J. Influence of parent material on the aluminium fractions in acidic soils under Pinus pinaster in Galicia (NW Spain). Geoderma 2015, 255, 50–57. [Google Scholar] [CrossRef]
- Li, W.; Johnson, C.E. Relationships among pH, aluminum solubility and aluminum complexation with organic matter in acid forest soils of the Northeastern United States. Geoderma 2016, 271, 234–242. [Google Scholar] [CrossRef]
- Van der Born, G.J.; Buurman, P. Soil formation on mafic rocks of north Galicia, Spain 1. Soil and classification. Neth. J. Agric. Sci. 1985, 33, 62–64. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA–Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Soil Survey Staff Field Book for Describing and Sampling Soils; Version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2012.
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In USDA Circular; U.S. Government Printing Office: Washington, DC, USA, 1854; p. 19. [Google Scholar]
- Agnelli, A.; Cocco, S.; Massaccesi, L.; Courchesne, F.; Ugolini, F.C.; Corti, G. Features of skeleton water-extractable fines from different acidic soils. Geoderma 2017, 289, 82–96. [Google Scholar] [CrossRef]
- Corti, G.; Agnelli, A.; Ugolini, F.C. Release of Al by hydroxy-interlayered vermiculite and hydroxy-interlayered smectite during determination of cation exchange capacity in fine earth and rock fragments fractions. Eur. J. Soil Sci. 1997, 48, 249–262. [Google Scholar] [CrossRef]
- Hollis, J.M.; Jones, R.J.A.; Palmer, R. The effects of organic matetr and particle size on the water retention properties of some soils in West Midlands of England. Geoderma 1977, 17, 225–238. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Chapter 3. Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Allison, L.E. Wet-combustion apparatus and procedure for organic and inorganic carbon in soil. Soil. Sci. Soc. Am. Proc. 1960, 24, 36–40. [Google Scholar] [CrossRef]
- Audus, L.J. Plant Growth Substances: Chemistry and Physiology. In Plant Science Monograph; Hill, L. Publisher: London, UK, 1972. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; Available online: http//www.cran.r-project.org (accessed on 6 January 2016).
- Rodríguez-Lado, L.; Rial, M.; Taboada, T.; Martínez Cortizas, A. A pedotransfer function to map soil bulk density from limited data. Procedia Environ. Sci. 2015, 27, 45–48. [Google Scholar] [CrossRef]
- Lessovaia, S.N.; Polekhovsky, Y.S. Mineralogical composition of shallow soils on basic and ultrabasic rocks of east Fennoscandia and of the Ural mountains, Russia. Clays Clay Miner. 2009, 57, 476–485. [Google Scholar] [CrossRef]
- Meeker, G.P.; Lowers, H.A.; Swayze, G.A.; Van Gosen, B.S.; Sutley, S.J.; Brownfield, I.K. Mineralogy and morphology of amphiboles observed in soils and rocks in El Dorado Hills, California. In Geological Survey Open-File Report 2006-1362; U.S Environmental Protection Agency Region 9 IAG DW1492190501-2; U.S. Department of the Interior & U.S. Geological Survey: Reston, VI, USA, 2006; p. 47. [Google Scholar]
- Bonifacio, E.; Falsone, G.; Catoni, M. Influence of serpentine abundance on the vertical distribution of available elements in soils. Plant Soil 2013, 368, 493–506. [Google Scholar] [CrossRef]
- Galán, E.; Fernández-Caliani, J.C.; González, I.; Aparicio, P.; Romero, A. Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. J. Geochem. Explor. 2008, 98, 89–106. [Google Scholar] [CrossRef]
- Pal, D.K.; Wani, S.P.; Sahrawat, K.L.; Srivastava, P. Red ferruginous soils of tropical Indian environments: A review of the pedogenic processes and its implications for edaphology. Catena 2014, 121, 260–278. [Google Scholar] [CrossRef]
- Fernández Sanjurjo, M.J.; Corti, G.; Ugolini, F.C. Chemical and mineralogical changes in a polygenetic soil of Galicia, NW Spain. Catena 2001, 43, 251–265. [Google Scholar] [CrossRef]
- DeGrood, S.H.; Claassen, V.P.; Scow, K.M. Microbial community composition on native and drastically disturbed serpentine soils. Soil Biol. Biochem. 2005, 37, 1427–1435. [Google Scholar] [CrossRef]
- Alexander, E.B.; DuShey, J. Topographic and soil differences from peridotite to serpentinite. Geomorphology 2011, 135, 271–276. [Google Scholar] [CrossRef]
- Bonifacio, E.; Zanini, E.; Boero, V.; Franchini-Angela, M. Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 1997, 75, 33–51. [Google Scholar] [CrossRef]
- Corti, G. Influenza dell′alterazione dei minerali primari nella determinazione della capacità di scambio cationico nei suoli su rocce ofiolitiche. Agrochimica 1993, 37, 388–399. [Google Scholar]
- Anda, M. Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental compositions of parent rocks. Geoderma 2012, 189–190, 388–396. [Google Scholar] [CrossRef]
- Jenny, H. The Soil Resource: Origin and Behaviour; Springer: New York, NY, USA, 1980. [Google Scholar]
- Roberts, B.A.; Proctor, J. (Eds.) The Ecology of Areas with Serpentinized Rocks—A World View; Springer Science + Business Media: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Kunito, T.; Isomura, I.; Sumi, H.; Park, H.-D.; Toda, H.; Otsuka, S.; Nagaoka, K.; Saeki, K.; Senoo, K. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biol. Biochem. 2016, 97, 23–30. [Google Scholar] [CrossRef]
- Calvo de Anta, R.; Luís Calvo, E.; Casás Sabarís, F.; Galiñanes Costa, J.M.; Matilla Mosquera, N.; Macías Vázquez, F.; Camps Arbestain, M.; Vázquez García, N. Soil organic carbon in northern Spain (Galicia, Asturias, Cantabria and País Vasco). Span. J. Soil Sci. 2015, 5, 41–53. [Google Scholar]
- Lopez-Sangila, L.; Rovira, P. Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes. Soil Biol. Biochem. 2013, 62, 57–67. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The composition of plant and microbial residues as inputs of soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Kraus, T.E.C.; Zasoski, R.J.; Dahlgren, R.A.; Horwath, W.R.; Preston, C.M. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol. Biochem. 2004, 36, 309–321. [Google Scholar] [CrossRef]
Horizon a | Depth (cm) | Color b | Structure c | Roots d | Boundary e | Thickness (cm) | Other Observations |
---|---|---|---|---|---|---|---|
Parent rock: Amphibolite | |||||||
Location: Arzúa (La Coruña). Soil use: Pinus radiata D. Don. wood. Altitude: 386 m. Mean annual precipitation: 1619 mm; mean annual air temperature: 12.2 °C; absolute minimum temperature: 2.9 °C; absolute maximum temperature: 24.6 °C. Vegetation: Pinus radiata, Eucalyptus globulus, Quercus robur, Betula pubescens. Understory: Pteridium aquilinum, Ulex europaeus, Erica arborea, Rubus sp., Gramineae. Soil: coarse-loamy, mixed, mesic, Typic Udorthent [32]. | |||||||
Oi1 | 9–5 | - | - | 0 | aw | 3–7 | Stems, leaves, and bark of P. radiata and E. globulus, stems and leaves of Q. robur, B. pubescens, U. europaeus, and P. aquilinum; few mesofauna, mostly midges. |
Oi2 | 5–1 | - | - | v1, vf, f | cw | 3–6 | Stems, leaves, and bark of P. radiata and E. globulus, stems and leaves of Q. robur, B. pubescens, U. europaeus, and P. aquilinum. |
Oi3 | 1–0 | - | - | 0 | aw | 1–2 | Fragmented stems, leaves, and bark of different species. |
A | 0–26 | 7.5YR 2.5/2 | 3 f,m cr, fr | 3 mi,vf,f,m,co | cw | 23–30 | - |
Bw | 26–38 | 7.5YR 4/2 | 3 m sbk, fr | 3 mi,vf,f,m; 2 co | cw | 10–15 | - |
BC | 38–48 | 7.5YR 5/2 | 2 f abk, fr | 2 mi,vf,f,m,co | cw | 7–10 | - |
Cr | 48–56+ | 7.5YR 5/2 | - | 1 mi,vf,f; 2 m,co | - | - | - |
Parent rock: Serpentinite. | |||||||
Location: Melide (La Coruña). Soil use: Natural environment. Altitude: 454 m. Mean annual precipitation: 1195 mm; mean annual air temperature: 11.9 °C; absolute minimum temperature: −4.4 °C; absolute maximum temperature: 33.2 °C. Vegetation: Erica umbellata, Erica scoparia, Calluna vulgaris, Ulex europaeus, Pinus radiata (scrawny), Rubus ideaus, gramineae, Cladonia lichen enveloping the E. umbellata stems. Soil: loamy-skeletal, mixed, mesic, Oxyaquic Udorthent [32]. | |||||||
Oi | 2–0 | - | - | 0 | aw | 1–2 | Stems and leaves mostly of E. umbellata, E. scoparia, and U. europaeus; very few mesofauna, mostly ants. |
A1 | 0–2 | 10YR 4/4 | 3 f m cr, fr | 2 mi,vf,f,m | cw | 1–5 | In the micro-depressions there is a thin crust. |
A2 | 2–8 | 10YR 5/4 | 2 f,m cr, fr | 1 mi,vf,f,m | cw | 4–6 | - |
BCg | 8–17 | 10YR 6/3 | 2 f,m abk-sbk, fr | 0 | cw | 4–9 | Abundant mottles; small pockets of translocated fines. |
R | 17–22+ | 10YR 4/2 | - | 0 | - | - | Thick cutans of translocated fines at the surface of the rock. |
Parent rock: Phyllite. | |||||||
Location: Guntín (Lugo). Soil use: Natural environment. Altitude: 460 m. Mean annual precipitation: 845 mm; mean annual air temperature: 11.7 °C; absolute minimum temperature: −6.6 °C; absolute maximum temperature: 32.0 °C. Vegetation: Erica scoparia, Erica umbellata, Erica cinerea, Calluna vulgaris, Pterospartum tridentatum, Ulex europaeus, Quercus robur, Betula pubescens, Erica scoparia, Halimium lasianthum. Soil: loamy-skeletal, mixed, mesic, Typic Udorthent [32]. | |||||||
Oi1 | 3–2 | - | - | 0 | cw | 1–3 | Stems and leaves mostly of E. scoparia, E. umbellata, E. cinerea, C. vulgaris, P. tridentatum, and U. europaeus; very few mesofauna, mostly ants. |
Oi2 | 2–0 | - | - | 3 mi,vf | aw | 2–3 | Stems and leaves mostly of E. scoparia, E. umbellata, E. cinerea, C. vulgaris, P. tridentatum, and U. europaeus. |
A1 | 0–8 | 7.5YR 3/4 | 2-3 f,m,c cr, vfr + sg | 3 f,m; 2 mi,vf,co | cw | 6–8 | Skeleton: 30%. |
A2 | 8–14 | 7.5YR 4/4 | 3 f,m cr, vfr + sg | 2 mi,vf,f,m | cw | 5–8 | Skeleton: 60%. |
A/C | 14–23 | 7.5YR 4/2 | sg to 1 f,m cr, vfr | v1 mi,vf,f | cw | 5–8 | - |
Cr | 23–44 | 2.5Y 4/2 | - | v1 mi,vf | cw | 15–22 | - |
C | 44–80+ | 2.5Y 4/2 | - | 0 | - | - | - |
Parent rock: Granite. | |||||||
Location: Mount Segade (Lugo). Soil use: Former Pinus sylvestris L. plantation that was cut four years before this study. Altitude: 397 m. Mean annual precipitation: 845 mm; mean annual air temperature: 10.5 °C; absolute minimum temperature: −6.8 °C; absolute maximum temperature: 29.2 °C. Vegetation: seedlings of Quercus robur, Pteridium aquilinum, Calluna vulgaris, Ulex europaeus, Lotus corniculatus, Rubus sp., Lonicera periclymenum, Cytisus sp., Hedera elix. Soil: loamy, mixed, mesic, Typic Humudept [32]. | |||||||
Oi | 1–0 | - | - | 0 | cw | 1–2 | Remainders of the P. sylvestris wood and cut, stems and leaves of Q. robur, P. aquilinum, C. vulgaris, U. europaeus. |
A1 | 0–9 | 10YR 2/1 | 2 fcr, fr | 3 mi,vf,f,m; 2 co | cw | 8–11 | - |
A2 | 9–27 | 10YR 2/2 | 2 f,m cr, fr | 2 mi,vf,f; 1 m | cw | 16–19 | - |
AB | 27–40 | 10YR 3/4 | 2 f,m sbk-cr, fr | 2 mi,vf,f,m | cw | 13–15 | - |
Stone line | 40–45 | 10YR 4/4 | 2 f,m sbk, fr | 2 mi,vf,f,m | cw | 5–7 | Mostly made of quartzite stones. |
Bw1 | 45–58 | 10YR 5/6 | 2 f,m abk, fr | 2 mi,vf,f | cw | 12–15 | - |
Bw2 | 58–77 | 10YR 6/6 | 2 f,m abk, fr | 1 mi,vf,f | cw | 18–21 | - |
Cr | 77–84+ | 10YR 7/310YR 6/3 | - | v1 mi, vf | - | - | - |
Location: Mount Segade (Lugo). Soil use: Quercus robur L. wood 40–60 years old. Altitude: 423 m. Mean annual precipitation: 845 mm; mean annual air temperature: 10.5 °C; absolute minimum temperature: −6.8 °C; absolute maximum temperature: 29.2 °C. Vegetation: Quercus robur. Understory: few Quercus robur seedling. Soil: loamy, mixed, mesic, Typic Humudept [32]. | |||||||
Oi | 8–5 | - | - | 0 | cw | 3–4 | Stems and leaves of Q. robur. |
Oe | 5–0 | - | - | 1 vf,f | cw | 5–7 | - |
A1 | 0–22 | 10YR 4/2 | 3 f,m,c cr, fr | 3 mi,vf,f,m,co | cw | 20–22 | - |
A2 | 22–37 | 10YR 4/3 | 2 f cr, vfr | 3 mi,vf,f,m; 2 co | cw | 13–16 | - |
AB | 37–48 | 10YR 3/3 | 2 f,m cr-sbk, vfr | 2 mi,vf,f,m,co | cw | 10–13 | - |
Bw1 | 48–61 | 10YR 4/4 | 2 f,m sbk, vfr | 2 mi,vf,f; 1 m,co | cw | 12–15 | - |
Bw2 | 61–81 | 10YR 4/6 | 2 f,m sbk, vfr | 1 mi,vf,f,m | cw | 17–22 | - |
Cr | 81–91+ | 10YR 7/410YR 7/3 | - | v1 mi,vf,f | - | - | - |
Parent Rock | Q | Pl | Mi | C | K | S | CM | Ma | T | Pp | Am | Ab | Py |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amphibolite | +(+) | ++++ | tr | tr | tr | +++ | + | ||||||
Serpentinite | + | + | - | +(+) | ++ | tr | tr | tr | +(+) | + | +(+) | ||
Phyllite | +++++(+) | +++ | + | (+) | tr | tr | |||||||
Granite—P. sylvestris | +++ | +++(+) | +++ | (+) | tr | ||||||||
Granite—Q. robur | +++ | +++ | +++ | + | tr |
Parent Rock | pHH2O | pHKCl | Available P | Exchangeable Cations | ECEC | Al Saturation | BS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | Na | K | Al | H | |||||||
mg kg−1 | cmol(+) kg−1 | % | % | |||||||||
Amphibolite | 5.50 a | 4.59 b | 2.9 a | 0.22 cd | 0.24 c | 0.62 a | 0.39 a | 4.58 a | 0.64 a | 6.69 b | 68.5 a | 22.0 b |
−0.35 | −0.01 | −1.8 | −0.05 | −0.03 | −0.01 | 0 | −3.15 | −0.09 | −3.07 | −18.2 | −17.9 | |
Serpentinite | 5.97 a | 5.06 a | 6.1 a | 3.26 a | 16.08 a | 0.38 bc | 0.46 a | 0.18 b | 0.73 a | 21.09 a | 0.9 b | 95.7 a |
−0.16 | −0.01 | −2.4 | −0.22 | −2.29 | −0.08 | −0.29 | −0.04 | −0.11 | −0.28 | −0.2 | −0.4 | |
Phyllite | 4.69 a | 3.91 c | 9.6 a | 1.14 ac | 0.38 c | 0.33 bc | 0.39 a | 6.59 a | 0.68 a | 9.51 b | 69.3 a | 23.6 b |
−1.1 | −0.3 | −7.9 | −0.17 | −0.12 | −0.05 | −0.01 | −0.19 | −0.07 | −0.05 | −0.7 | −0.6 | |
Granite-P. sylvestris | 5.31 a | 4.80 ac | 5.3 a | 0.98 bc | 2.64 b | 0.29 c | 0.27 a | 3.94 a | 0.43 b | 8.55 ab | 46.1 a | 48.9 ab |
−0.32 | −0.23 | −4.3 | −0.68 | −1.65 | −0.05 | −0.01 | −0.64 | −0.1 | −3.94 | −14.2 | −9.9 | |
Granite-Q. robur | 5.13 a | 4.39 c | 2.7 a | 0.30 bc | 0.07 d | 0.52 ab | 0.35 a | 3.97 a | 0.52 ab | 5.73 b | 69.3 a | 21.6 b |
−0.06 | −0.01 | −0.5 | −0.12 | −0.01 | −0.13 | −0.01 | −0.41 | −0.13 | −1.37 | −4.2 | −4.7 |
Parent Rock | TN | TOC | C/N | WEOC | POC | HA | FA | NEOC |
---|---|---|---|---|---|---|---|---|
g kg−1 | ||||||||
Amphibolite | 6.64 a | 104.63 a | 15.76 c | 0.55 a | 1.26 bc | 14.44a | 6.49 a | 81.89 a |
−0.37 | −7.8 | −2.81 | −0.14 | −0.78 | −7.18 | −0.86 | −0.9 | |
Serpentinite | 4.00 b | 110.68 a | 27.67 b | 1.34 a | 5.22 ad | 36.06 a | 11.46 a | 56.60 b |
−0.35 | −29.16 | −1.93 | −0.08 | −1.31 | −28.29 | −8.77 | −8.42 | |
Phyllite | 4.98 ab | 131.89 a | 26.48 b | 1.15 a | 2.68 bd | 37.23 a | 10.16 a | 80.67 a |
−1.23 | −35.84 | −5.85 | −0.58 | −2.46 | −15.37 | −60.9 | −14.54 | |
Granite—P. sylvestris | 3.14 bc | 53.34 b | 16.99 c | 0.45 a | 0.09 c | 13.97 a | 4.68 a | 34.15 bc |
−0.46 | −5.43 | −2.16 | −0.32 | −0.01 | −3.39 | −1.81 | −1.46 | |
Granite—Q. robur | 2.74 c | 110.67 a | 40.39 a | 0.42 a | 15.22 a | 38.87 a | 15.37 a | 40.79 bc |
−0.18 | −29.95 | −1.72 | −0.11 | −7.18 | −17.95 | −11.6 | −8.36 |
Parent Rock | Treatment | a | b | R2 | p≤ |
---|---|---|---|---|---|
IAA | 7.439 | −1.687 | 0.980 | 0.000 | |
Amphibolite | HA | 20.472 | −0.117 | 0.965 | 0.001 |
FA | 21.610 | −0.099 | 0.989 | 0.043 | |
Serpentinite | HA | 19.190 | −0.182 | 0.986 | 0.000 |
FA | 22.572 | −0.062 | 0.937 | 0.009 | |
Phyllite | HA | 20.840 | −0.121 | 0.834 | 0.000 |
FA | 22.329 | −0.066 | 0.969 | 0.050 | |
Granite—P. sylvestris | HA | 21.848 | −0.086 | 0.951 | 0.016 |
FA | 11.373 | −0.080 | 0.904 | 0.027 | |
Granite—Q. robur | HA | 22.471 | −0.059 | 0.945 | 0.010 |
FA | 12.549 | −0.053 | 0.985 | 0.015 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardelli, V.; Cocco, S.; Agnelli, A.; Nardi, S.; Pizzeghello, D.; Fernández-Sanjurjo, M.J.; Corti, G. Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia). Forests 2017, 8, 135. https://doi.org/10.3390/f8040135
Cardelli V, Cocco S, Agnelli A, Nardi S, Pizzeghello D, Fernández-Sanjurjo MJ, Corti G. Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia). Forests. 2017; 8(4):135. https://doi.org/10.3390/f8040135
Chicago/Turabian StyleCardelli, Valeria, Stefania Cocco, Alberto Agnelli, Serenella Nardi, Diego Pizzeghello, Maria J. Fernández-Sanjurjo, and Giuseppe Corti. 2017. "Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia)" Forests 8, no. 4: 135. https://doi.org/10.3390/f8040135
APA StyleCardelli, V., Cocco, S., Agnelli, A., Nardi, S., Pizzeghello, D., Fernández-Sanjurjo, M. J., & Corti, G. (2017). Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia). Forests, 8(4), 135. https://doi.org/10.3390/f8040135