Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch) in the Mu Us Desert of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Research Site
2.3. Experimental Design and Data Collection
2.4. Model Development, Selection, and Evaluation
- (i)
- For Jin et al. [27] (39°29′ N, 110°11′ E, northeastern Mu Us Desert), we evaluated aboveground biomass (kg) (Biomass = 0.010 × (D × H)1.234) and ANPP (kg) (ANPP = 0.053 × (D × H)0.886) with (D × H) as independent variables. D represents crown diameter, and is the mean value of C1 and C2.
- (ii)
- For Liu et al. [28] (37°30′–39°20′ N, 107°20′–111°30′ E, eastern Mu Us Desert), we evaluated aboveground biomass (kg) (Biomass = 0.028 + 1.693V and Biomass = 1.154 × CA1.257) with V and CA as independent variables. The models of Liu et al. [28] were general models combining data from three habitats (fixed dune, semi-fixed dune and shifting dune).
3. Results
Dependent Variable | Model | Habitat | Observed Mean (g) | %Bias | %Ae |
---|---|---|---|---|---|
Aboveground biomass (CA) UL = 39.0% | Power | FC (n = 31) | 469.2 | 33.6 S | 43.1 |
FD (n = 31) | 318.4 | −10.9 | 27.2 | ||
SF (n = 31) | 348.6 | −44.1 S | 52.2 | ||
All (n = 93) | 378.7 | −2.7 | 41.4 | ||
ANPP (CA) UL = 23.4% | Linear | FC (n = 31) | 83.0 | 23.9 S | 40.1 |
FD (n = 31) | 66.0 | −22.5 S | 42.1 | ||
SF (n = 31) | 108.9 | −4.5 | 49.7 | ||
All (n = 93) | 86.0 | 0.0 | 44.7 | ||
Aboveground biomass (V) UL = 42.6% | Power | FC (n = 31) | 469.2 | 42.2 S | 44.5 |
FD (n = 31) | 318.4 | −3.8 | 28.3 | ||
SF (n = 31) | 348.6 | −43.1 S | 49.4 | ||
All (n = 93) | 378.7 | 3.1 | 41.5 | ||
ANPP (V) UL = 21.4% | Power | FC (n = 31) | 83.0 | 25.2 S | 30.9 |
FD (n = 31) | 66.0 | −16.9 | 43.5 | ||
SF (n = 31) | 108.9 | −2.4 | 49.6 | ||
All (n = 93) | 86.0 | 2.8 | 42.0 |
Model | Dependent Variable | Independent Variable | Habitat | n | Observed Mean (g) | %Bias | %Ae |
---|---|---|---|---|---|---|---|
Liu et al. [28] UL = 101.3% | Aboveground biomass | CA | FC | 31 | 469.2 | −70.0 | 70.4 |
FD | 31 | 318.4 | −194.1 | 194.1 | |||
SF | 31 | 348.6 | −270.7 | 270.7 | |||
All | 93 | 378.7 | −166.3 | 166.5 | |||
UL = 106.7% | V | FC | 31 | 469.2 | −58.9 | 66.3 | |
FD | 31 | 318.4 | −190.1 | 190.1 | |||
SF | 31 | 348.6 | −270.3 | 270.3 | |||
All | 93 | 378.7 | −160.5 | 163.6 | |||
Jin et al. [27] UL = 0.7% | Aboveground biomass | D*H | FC | 31 | 469.2 | 99.0 | 99.0 |
FD | 31 | 318.4 | 98.1 | 98.1 | |||
SF | 31 | 348.6 | 97.7 | 97.7 | |||
All | 93 | 378.7 | 98.3 | 98.3 | |||
UL = 8.9% | ANPP | FC | 31 | 83.0 | 64.7 | 67.0 | |
FD | 31 | 66.0 | 47.3 | 51.7 | |||
SF | 31 | 108.9 | 59.5 | 65.8 | |||
All | 93 | 85.95 | 58.0 | 62.6 |
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mosseler, A.; Major, J.E.; Labrecque, M.; Larocque, G.R. Allometric relationships in coppice biomass production for two North American willows (Salix spp.) across three different sites. For. Ecol. Manag. 2014, 320, 190–196. [Google Scholar] [CrossRef]
- Mugasha, W.A.; Eid, T.; Bollandsas, O.M.; Malimbwi, R.E.; Chamshama, S.A.O.; Zahabu, E.; Katani, J.Z. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of tanzania. For. Ecol. Manag. 2013, 310, 87–101. [Google Scholar] [CrossRef]
- Paul, K.I.; Roxburgh, S.H.; Ritson, P.; Brooksbank, K.; England, J.R.; Larmour, J.S.; Raison, R.J.; Peck, A.; Wildy, D.T.; Sudmeyer, R.A.; et al. Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern australia. For. Ecol. Manag. 2013, 310, 1005–1015. [Google Scholar] [CrossRef]
- Beets, P.; Kimberley, M.; Oliver, G.; Pearce, S. The application of stem analysis methods to estimate carbon sequestration in arboreal shrubs from a single measurement of field plots. Forests 2014, 5, 919–935. [Google Scholar] [CrossRef]
- Conti, G.; Enrico, L.; Casanoves, F.; Diaz, S. Shrub biomass estimation in the semiarid chaco forest: A contribution to the quantification of an underrated carbon stock. Ann. For. Sci. 2013, 70, 515–524. [Google Scholar] [CrossRef]
- Mason, N.; Beets, P.; Payton, I.; Burrows, L.; Holdaway, R.; Carswell, F. Individual-based allometric equations accurately measure carbon storage and sequestration in shrublands. Forests 2014, 5, 309–324. [Google Scholar] [CrossRef]
- Flombaum, P.; Sala, O.E. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J. Arid Environ. 2007, 69, 352–358. [Google Scholar] [CrossRef]
- Ngomanda, A.; Engone Obiang, N.L.; Lebamba, J.; Moundounga Mavouroulou, Q.; Gomat, H.; Mankou, G.S.; Loumeto, J.; Midoko Iponga, D.; Kossi Ditsouga, F.; Zinga Koumba, R.; et al. Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? For. Ecol. Manag. 2014, 312, 1–9. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Rejou-Mechain, M.; Burquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.F.; Wang, Z.H.; Liu, G.H.; Fu, B.J. Vegetation carbon storage of major shrublands in China. Chin. J. Plant Ecol. 2006, 30, 539–544. [Google Scholar]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Pacala, S.W.; Hurtt, G.C.; Baker, D.; Peylin, P.; Houghton, R.A.; Birdsey, R.A.; Heath, L.; Sundquist, E.T.; Stallard, R.F.; Ciais, P.; et al. Consistent land- and atmosphere-based U.S. Carbon sink estimates. Science 2001, 292, 2316–2320. [Google Scholar] [CrossRef] [PubMed]
- Maestre, F.T.; Salguero-Gomez, R.; Quero, J.L. It is getting hotter in here: Determining and projecting the impacts of global environmental change on drylands. Phil. Trans. R. Soc. B. 2012, 367, 3062–3075. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L., II; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- The Intergovernmental Panel on Climate Change (IPCC). IPCC Fifth Assessment Report (AR5). In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liu, W.H.; Zhu, J.J.; Jia, Q.Q.; Zheng, X.; Li, J.S.; Lou, X.D.; Hu, L. Carbon sequestration effects of shrublands in three-north shelterbelt forest region, China. Chin. Geogr. Sci. 2014, 24, 444–453. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, J.B.; Jia, X.; Qin, S.G. Soil organic carbon accumulation in arid and semiarid areas after afforestation: A meta-analysis. Pol. J. Environ. Stud. 2013, 22, 611–620. [Google Scholar]
- Lufafa, A.; Bolte, J.; Wright, D.; Khouma, M.; Diedhiou, I.; Dick, R.P.; Kizito, F.; Dossa, E.; Noller, J.S. Regional carbon stocks and dynamics in native woody shrub communities of senegal’s peanut basin. Agric. Ecosyst. Environ. 2008, 128, 1–11. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.M. Evaluation of vegetation biomass carbon storage in deserts of Central Asian. Arid Land Geogr. 2013, 36, 615–622. [Google Scholar]
- De-Miguel, S.; Mehtatalo, L.; Durkaya, A. Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction. Can. J. For. Res. 2014, 44, 648–656. [Google Scholar] [CrossRef]
- De-Miguel, S.; Pukkala, T.; Assaf, N.; Shater, Z. Intra-specific differences in allometric equations for aboveground biomass of eastern mediterranean pinus brutia. Ann. For. Sci. 2014, 71, 101–112. [Google Scholar] [CrossRef]
- López-Serrano, F.R.; García-Morote, A.; Andrés-Abellán, M.; Tendero, A.; del Cerro, A. Site and weather effects in allometries: A simple approach to climate change effect on pines. For. Ecol. Manag. 2005, 215, 251–270. [Google Scholar] [CrossRef]
- Wang, X.P.; Fang, J.Y.; Tang, Z.Y.; Zhu, B. Climatic control of primary forest structure and DBH–height allometry in northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Kobayashi, T.; Liao, R.T.; Li, S.Q. Ecophysiological behavior of Artemisia ordosica on the process of sand dune fixation. Ecol. Res. 1995, 10, 339–349. [Google Scholar] [CrossRef]
- Li, S.L.; Yu, F.H.; Werger, M.J.A.; Dong, M.; Zuidema, P.A. Habitat-specific demography across dune fixation stages in a semi-arid sandland: Understanding the expansion, stabilization and decline of a dominant shrub. J. Ecol. 2011, 99, 610–620. [Google Scholar] [CrossRef]
- Jin, Z.; Qi, Y.C.; Dong, Y.S. Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosica on ordos plateau of Inner Mongolia, China. J. For. Res. 2007, 18, 298–300. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; Zhou, Y.L.; Li, Z.H.; Sun, Z.; Liu, L.X.; Mi, H.Y.; Fan, Y.J. Study on the models for estimating the biomass of Artemisia ordosica in Mu Us sandland. Chin. J. Grassl. 2014, 36, 24–30. [Google Scholar]
- Wang, Q.S.; Li, B. Preliminary study on biomass of Artemisia ordosica community in ordos plateau sandland of China. Acta Phytoecol. Sin. 1994, 18, 347–353. [Google Scholar]
- Li, C.P.; Xiao, C.W. Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us Desert, Northern China. J. Arid Environ. 2007, 70, 195–207. [Google Scholar] [CrossRef]
- Li, S.L.; Zuidema, P.A.; Yu, F.H.; Werger, M.J.A.; Dong, M. Effects of denudation and burial on growth and reproduction of Artemisia ordosica in mu us sandland. Ecol. Res. 2010, 25, 655–661. [Google Scholar] [CrossRef]
- Wang, B.; Zha, T.S.; Jia, X.; Wu, B.; Zhang, Y.Q.; Qin, S.G. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences 2013, 10, 9213–9242. [Google Scholar] [CrossRef]
- CCICCD (Chinese Committee for Implementing UN Convention to Combat Desertification). China Country Paper to Combat Desertification; China Forestry Publishing House: Beijing, China, 1997. [Google Scholar]
- Jobbágy, E.G.; Sala, O.E. Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol. Appl. 2000, 10, 541–549. [Google Scholar] [CrossRef]
- Castro, H.; Freitas, H. Above-ground biomass and productivity in the montado: From herbaceous to shrub dominated communities. J. Arid Environ. 2009, 73, 506–511. [Google Scholar] [CrossRef]
- Foroughbakhch, R.; Reyes, G.; Alvarado-Vazquez, M.A.; Hernandez-Pinero, J.; Rocha-Estrada, A. Use of quantitative methods to determine leaf biomass on 15 woody shrub species in northeastern Mexico. For. Ecol. Manag. 2005, 216, 359–366. [Google Scholar] [CrossRef]
- Lufafa, A.; Diedhiou, I.; Ndiaye, N.A.S.; Sene, M.; Kizito, F.; Dick, R.P.; Noller, J.S. Allometric relationships and peak-season community biomass stocks of native shrubs in senegal’s peanut basin. J. Arid Environ. 2009, 73, 260–266. [Google Scholar] [CrossRef]
- Zeng, H.Q.; Liu, Q.J.; Feng, Z.W.; Ma, Z.Q. Biomass equations for four shrub species in subtropical China. J. For. Res. 2010, 15, 83–90. [Google Scholar] [CrossRef]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Li, X.R.; Zhang, Z.S.; Huang, L.; Wang, X.P. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chin. Sci. Bull. 2013, 58, 1483–1496. [Google Scholar] [CrossRef]
- Sui, Y.; Cui, Q.Q.; Dong, M.; He, W.M. Contrasting responses of legume versus non-legume shrubs to soil water and nutrient shortages in the Mu Us sandland. J. Plant Ecol. 2011, 4, 268–274. [Google Scholar] [CrossRef]
- Tian, D.S.; Pan, Q.M.; Simmons, M.; Chaolu, H.; Du, B.H.; Bai, Y.F.; Wang, H.; Han, X.G. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 years of nutrient addition. PLoS ONE 2012, 7, e42833. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.T.; Zeng, W.S.; Zhang, L.J.; Zeng, M. Modeling crown biomass for four pine species in China. Forests 2015, 6, 433–449. [Google Scholar] [CrossRef]
- Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.; Longuetaud, F.; Valentini, R.; et al. Globallometree: International platform for tree allometric equations to support volume, biomass and carbon assessment. iFor. Biogeosci. For. 2013, 6, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes Jara, M.; Henry, M.; Réjou-Méchain, M.; Wayson, C.; Zapata-Cuartas, M.; Piotto, D.; Alice Guier, F.; Castañeda Lombis, H.; Castellanos López, E.; Cuenca Lara, R.; et al. Guidelines for documenting and reporting tree allometric equations. Ann. For. Sci. 2014, 72, 763–768. [Google Scholar] [CrossRef]
- Oñatibia, G.R.; Aguiar, M.R.; Cipriotti, P.A.; Troiano, F. Individual plant and population biomass of dominant shrubs in Patagonian grazed fields. Ecol. Austral 2010, 20, 269–279. [Google Scholar]
- Peters, D.P.C.; Yao, J.; Sala, O.E.; Anderson, J.P. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Glob. Chang. Biol. 2012, 18, 151–163. [Google Scholar] [CrossRef]
- Reichmann, L.G.; Sala, O.E.; Peters, D.P.C. Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology 2013, 94, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Golluscio, R.A.; Sala, O.E.; Lauenroth, W.K. Differential use of large summer rainfall events by shrubs and grasses: A manipulative experiment in the Patagonian steppe. Oecologia 1998, 115, 17–25. [Google Scholar] [CrossRef]
- Sala, O.E.; Golluscio, R.A.; Lauenroth, W.K.; Soriano, A. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 1989, 81, 501–505. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.S.; Wu, B.; Zhang, Y.Q.; Gong, J.N.; Qin, S.G.; Chen, G.P.; Qian, D.; Kellomäki, S.; Peltola, H. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences 2014, 11, 4679–4693. [Google Scholar] [CrossRef]
- CCERN (Committee of Chinese Ecosystem Research Network). Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystem; China Environmental Science Press: Beijing, China, 2007; p. 59. [Google Scholar]
- Guo, Z.D.; Hu, H.F.; Pan, Y.D.; Birdsey, R.A.; Fang, J.Y. Increasing biomass carbon stocks in trees outside forests in China over the last three decades. Biogeosciences 2014, 11, 4115–4122. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, W.; Zhang, Y.; Qin, S.; Wu, B.; Liu, Z.; Liu, J.; Zhang, W. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch) in the Mu Us Desert of Northern China. Forests 2015, 6, 4529-4539. https://doi.org/10.3390/f6124385
She W, Zhang Y, Qin S, Wu B, Liu Z, Liu J, Zhang W. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch) in the Mu Us Desert of Northern China. Forests. 2015; 6(12):4529-4539. https://doi.org/10.3390/f6124385
Chicago/Turabian StyleShe, Weiwei, Yuqing Zhang, Shugao Qin, Bin Wu, Zhen Liu, Jun Liu, and Wenjin Zhang. 2015. "Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch) in the Mu Us Desert of Northern China" Forests 6, no. 12: 4529-4539. https://doi.org/10.3390/f6124385
APA StyleShe, W., Zhang, Y., Qin, S., Wu, B., Liu, Z., Liu, J., & Zhang, W. (2015). Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch) in the Mu Us Desert of Northern China. Forests, 6(12), 4529-4539. https://doi.org/10.3390/f6124385