Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Field Sampling and Laboratory Analyses
2.3. Data Analysis
3. Results
Average ± S.D. | Min. | Max. | C.V. | |
---|---|---|---|---|
Vegetation Characteristics | ||||
Number of native species | 45.4 ± 11.8 | 17 | 84 | 25.9 |
Number of alien species | 1.5 ± 1.8 | 0 | 9 | 121.8 |
Soil Variables | ||||
Total N (%) | 0.599 ± 0.468 | 0.080 | 2.549 | 79.6 |
P (mg/kg) | 17.702 ± 9.546 | 0.500 | 64.290 | 53.9 |
Total C (%) | 7.651 ± 6.153 | 1.000 | 31.727 | 82.0 |
C/N ratio | 12.882 ± 3.170 | 4.929 | 25.189 | 24.6 |
Native Species | Alien Species | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | S.E. | t | P | Estimate | S.E. | t | P | |
(Intercept) | 3.8243 | 0.0182 | 210.02 | <0.001 | 0.4036 | 0.0850 | 4.75 | <0.001 |
Total N | −0.0790 | 0.0340 | −2.32 | 0.021 | −0.6019 | 0.1506 | −4.00 | <0.001 |
P | −0.0068 | 0.0018 | −3.87 | <0.001 | 0.0088 | 0.0071 | 1.25 | 0.213 |
C/N | 0.0217 | 0.0061 | 3.53 | <0.001 | −0.0188 | 0.0232 | −0.81 | 0.419 |
C/N2 | −0.0016 | 0.0009 | −1.77 | 0.08 | −0.0043 | 0.0039 | −1.11 | 0.269 |
R2 | 0.14 | p < 0.001 | 0.09 | p < 0.001 |
Native Species | Alien Species | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | S.E. | t | P | Estimate | S.E. | t | P | |
(Intercept) | 3.8247 | 0.0189 | 202.81 | <0.001 | 0.4176 | 0.0872 | 4.79 | <0.001 |
Total N (1) | −0.1057 | 0.0354 | −2.99 | 0.003 | −0.4653 | 0.1494 | −3.11 | 0.002 |
P (2) | −0.0060 | 0.0020 | −2.97 | 0.003 | 0.0029 | 0.0082 | 0.36 | 0.722 |
C/N (3) | 0.0074 | 0.0086 | 0.86 | 0.392 | −0.0620 | 0.0376 | −1.65 | 0.100 |
C/N2 (4) | −0.0021 | 0.0015 | −1.40 | 0.164 | −0.0125 | 0.0068 | −1.85 | 0.066 |
1 × 2 | −0.0051 | 0.0041 | −1.26 | 0.207 | −0.0087 | 0.0176 | −0.50 | 0.620 |
1 × 3 | −0.0297 | 0.0205 | −1.44 | 0.149 | 0.0170 | 0.0930 | 0.18 | 0.855 |
1 × 4 | 0.0019 | 0.0041 | 0.49 | 0.626 | −0.0107 | 0.0192 | −0.56 | 0.577 |
2 × 3 | −0.00002 | 0.0008 | −0.02 | 0.985 | −0.0040 | 0.0030 | −1.34 | 0.183 |
2 × 4 | −0.0002 | 0.0001 | −1.20 | 0.230 | 0.00004 | 0.0005 | 0.09 | 0.932 |
3 × 4 | −0.0002 | 0.0002 | 0.96 | 0.336 | 0.0012 | 0.0007 | 1.56 | 0.120 |
R2 | 0.16 | p < 0.001 | 0.08 | p < 0.001 |
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Palmer, M.W. Variation in species richness: Towards a unification of hypotheses. Folia Geobot. Phytotaxon. 1994, 29, 511–530. [Google Scholar] [CrossRef]
- Grace, J.B. The factors controlling species density in herbaceous plant communities: An assessment. Perspect. Plant Ecol. Evol. Syst. 1999, 2, 1–28. [Google Scholar] [CrossRef]
- Gillman, L.N.; Wright, S.D. The influence of productivity on the species richness of plants: A critical assessment. Ecology 2006, 87, 1234–1243. [Google Scholar] [CrossRef]
- Schuster, B.; Diekmann, M. Species richness and environmental correlates in deciduous forests of Northwest Germany. For. Ecol. Manag. 2005, 206, 197–205. [Google Scholar] [CrossRef]
- Axmanová, I.; Chytrý, M.; Zelený, D.; Li, C.-F.; Vymazalová, M.; Danihelka, J.; Horsák, M.; Kočí, M.; Kubešová, S.; Lososová, Z.; et al. The species richness-productivity relationship in the herb layer of European deciduous forests. Glob. Ecol. Biogeogr. 2012, 21, 657–667. [Google Scholar] [CrossRef]
- Pausas, J.G.; Austin, M.P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 2001, 12, 153–166. [Google Scholar] [CrossRef]
- Waide, R.B.; Willing, M.R.; Steiner, C.F.; Mittelbach, G.; Gough, L.; Dodson, S.I.; Juday, G.P.; Parmenter, R. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 1999, 30, 257–300. [Google Scholar] [CrossRef]
- Adler, P.B.; Seabloom, E.W.; Borer, E.T.; Hillebrand, H.; Hautier, Y.; Hector, A.; Harpole, W.S.; O’Halloran, L.R.; Grace, J.B.; Anderson, T.M.; et al. Productivity is a poor predictor of plant species richness. Science 2011, 333, 1750–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambers, H.; Brundrett, M.C.; Raven, J.A.; Hopper, S.D. Plant mineral nutrition in ancient landscape: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 2010, 334, 11–31. [Google Scholar] [CrossRef]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Güsewell, S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Attiwill, P.M.; Adams, M.A. Nutrient cycling in forests. New Phytol. 1993, 124, 561–582. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Dupré, C.; Wessberg, C.; Diekmann, M. Species richness in deciduous forests: Effects of species pools and environmental variables. J. Veg. Sci. 2002, 13, 505–516. [Google Scholar] [CrossRef]
- Dumortier, M.; Butaye, J.; Jacquemyn, H.; van Camp, N.; Lust, N.; Hermy, M. Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. For. Ecol. Manag. 2002, 158, 85–102. [Google Scholar] [CrossRef]
- Hofmeister, J.; Hošek, J.; Modrý, M.; Roleček, J. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol. 2009, 205, 57–75. [Google Scholar] [CrossRef]
- Jones, R.O.; Chapman, S.K. The roles of biotic resistance and nitrogen deposition in regulating non-native understory plant diversity. Plant Soil 2011, 345, 257–269. [Google Scholar] [CrossRef]
- Yakamura, T.; Sahunalu, P. Soil carbon/nitrogen ratio as a site quality index for some South-east Asian forests. J. Trop. Ecol. 1990, 6, 371–378. [Google Scholar]
- Härdtle, W.; von Oheimb, G.; Westphal, C. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). For. Ecol. Manag. 2003, 182, 327–338. [Google Scholar] [CrossRef]
- Douda, J. The role of landscape configuration in plant composition of floodplain forests across different physiographic areas. J. Veg. Sci. 2010, 21, 1110–1124. [Google Scholar] [CrossRef]
- Mölder, A.; Schneider, E. On the beautiful diverse Danube? Danubian floodplain forest vegetation and flora under the influence of river eutrophication. River Res. Appl. 2011, 27, 881–894. [Google Scholar] [CrossRef]
- Douda, J.; Doudová-Kochánková, J.; Boublík, K.; Drašnarová, A. Plant species coexistence at local scale in temperate swamp forest: Test of habitat heterogeneity hypothesis. Oecologia 2012, 169, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Slezák, M.; Hrivnák, R.; Petrášová, A. Numerical classification of alder carr and riparian alder forests in Slovakia. Phytocoenologia 2014, 44, 283–308. [Google Scholar]
- McVean, D.N. Biological flora of the British Isles. Alnus glutinosa (L.) Gaertn. J. Ecol. 1953, 41, 447–466. [Google Scholar]
- Schwabe, A. Monographie Alnus incana-reicher Waldgesellschaften in Europa Variabilität und Ähnlichkeit einer azonal verbreiteten Gesellschaftsgruppe. Phytocoenologia 1985, 13, 197–302. [Google Scholar]
- Claessens, H.; Oosterbaan, A.; Savill, P.; Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practises. Forestry 2010, 83, 163–175. [Google Scholar] [CrossRef]
- Eickenscheidt, T.; Heinichen, J.; Augustin, J.; Freibauer, A.; Drösler, M. Nitrogen mineralization and gaseous nitrogen losses from waterlogged and drained organic soils in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Biogeosciences 2014, 11, 2961–2976. [Google Scholar] [CrossRef]
- Ellenberg, H. Vegetation Ecology of Central Europe; Cambridge University Press: New York, NY, USA, 2009; pp. 1–731. [Google Scholar]
- Lõhmus, K.; Truu, M.; Truu, J.; Ostonen, I.; Kaar, E.; Vares, A.; Uri, V.; Alama, S.; Kanal, A. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forests, abandoned agricultural, and oil-shale mining areas. Plant Soil 2006, 283, 1–10. [Google Scholar] [CrossRef]
- Kowarik, I. Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa; Ulmer: Stuttgart, Germany, 2003; pp. 1–492. [Google Scholar]
- Weber, E. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds; CAB International Publ.: Wallingford, UK, 2003; pp. 1–548. [Google Scholar]
- Pyšek, P.; Bacher, S.; Chytrý, M.; Jarošík, V.; Wild, J.; Celesti-Grapow, L.; Gassó, N.; Kenis, M.; Lambdon, P.W.; Nentwig, W.; et al. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010, 19, 317–331. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.G.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Medvecká, J.; Jarolímek, I.; Senko, D.; Svitok, M. Fifty years of plant invasion dynamics in Slovakia along a 2500 m altitudinal gradient. Biol. Invasions 2014, 16, 1627–1638. [Google Scholar] [CrossRef]
- Walter, J.; Essl, F.; Englisch, T.; Kiehn, M. Neophytes in Austria: Habitat preferences and ecological effects. Neobiota 2005, 6, 13–25. [Google Scholar]
- Vilá, M.; Pino, J.; Font, X. Regional assesment of plant invasions across different habitat types. J. Veg. Sci. 2007, 18, 35–42. [Google Scholar] [CrossRef]
- Burkart, M. River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern. Glob. Ecol. Biogeogr. 2001, 10, 449–468. [Google Scholar] [CrossRef]
- Zając, A.; Tokarska-Guzik, B.; Zając, M. The role of rivers and streams in the migration of alien plants into the Polish Carpathians. Biodivers. Res. Conserv. 2011, 23, 43–56. [Google Scholar] [CrossRef]
- Pielech, R.; Anioƚ-Kwiatkowska, J.; Szczęśniak, E. Landscape-scale factors driving plant species composition in mountain streamside and spring riparian forests. For. Ecol. Manag. 2015, 347, 217–227. [Google Scholar] [CrossRef]
- Chytrý, M.; Dražil, T.; Hájek, M.; Kalníková, V.; Preislerová, Z.; Šibík, J.; Ujházy, K.; Axmanová, I.; Bernátová, D.; Blanár, D.; et al. The most species-rich plant communities of the Czech Republic and Slovakia (with new world records). Preslia 2015, 87, 217–278. [Google Scholar]
- Stanová, V.; Valachovič, M. Katalóg Biotopov Slovenska; DAPHNE—Inštitút aplikovanej ekológie: Bratislava, Slovakia, 2002; pp. 1–225. [Google Scholar]
- Bölöni, J.; Molnár, Z.; Kun, A. Magyarország Élőhelyei Vegetációtípusok Leírása és Határozója. Ánér 2011; MTA Ökológiai és Botanikai Kutatóintézete: Vácrátót, Hungary, 2011; pp. 1–441. [Google Scholar]
- Davis, M.A.; Grime, J.P.; Thomson, K. Fluctuating resources in plant communities: A general theory of invisibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef]
- Dengler, J.; Chytrý, M.; Ewald, J. Phytosociology. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK, 2008; Volume 4, pp. 2767–2779. [Google Scholar]
- Marhold, K.; Hindák, F. Zoznam nižších a vyšších rastlín Slovenska; Veda: Bratislava, Slovakia, 1998; pp. 1–688. [Google Scholar]
- Medvecká, J.; Kliment, J.; Májeková, J.; Halada, Ľ.; Zaliberová, M.; Gojdičová, E.; Feráková, V.; Jarolímek, I. Inventory of alien species of Slovakia. Preslia 2012, 84, 257–309. [Google Scholar]
- Finzi, A.C.; van Breemen, N.; Canham, C.D. Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol. Appl. 1998, 8, 440–446. [Google Scholar]
- Mehlich, A. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese, and zinc. Commun. Soil Sci. Plant Anal. 1978, 9, 477–492. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J.; Yearsley, J.M.; Brewer, M.J.; Elston, D.A. Regression analysis of spatial data. Ecol. Lett. 2010, 13, 246–264. [Google Scholar] [CrossRef] [PubMed]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002; pp. 1–495. [Google Scholar]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, O.N. Ncf: Spatial Nonparametric Covariance Functions, R package version 1.1-5, 2013; Available online: http://onb.ent.psu.edu/onb1/Rs (accessed on 2 April 2015).
- Kissling, W.D.; Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 2008, 17, 59–71. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 13 June 2014).
- RStudio. RStudio: Integrated Development Environment for R ( version 0.98.1091); Computer Software: Boston, MA, USA, 2014; Available online: http://www.rstudio.org/ (accessed on 31 March 2015).
- Härdtle, W.; von Oheimb, G.; Meyer, H.; Westphal, C. Patterns of species composition and species richness in moist (ash-alder) forests of northern Germany (Schleswig-Holstein). Feddes Repert. 2003, 114, 574–586. [Google Scholar] [CrossRef]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; Blackwell Scientific Publications: Oxford, UK, 1979; pp. 1–372. [Google Scholar]
- Orczewska, A. The impact of former agriculture on habitat conditions and distribution patterns of ancient woodland plant species in recent black alder (Alnus glutinosa (L.) Gaertn.) woods in south-western Poland. For. Ecol. Manag. 2009, 258, 794–803. [Google Scholar] [CrossRef]
- Turner, B.L. Resource partitioning for soil phosphorus: A hypothesis. J. Ecol. 2008, 96, 698–702. [Google Scholar] [CrossRef]
- Merunková, K.; Chytrý, M. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol. 2012, 213, 591–602. [Google Scholar] [CrossRef]
- Honnay, O.; Hermy, M.; Coppin, P. Impact of habitat quality on forest plant species colonization. For. Ecol. Manag. 1999, 115, 157–170. [Google Scholar] [CrossRef]
- Pigott, C.D. Analysis of the response of Urtica dioica to phosphate. New Phytol. 1971, 70, 953–966. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrivnák, R.; Slezák, M.; Jarčuška, B.; Jarolímek, I.; Kochjarová, J. Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests. Forests 2015, 6, 3501-3513. https://doi.org/10.3390/f6103501
Hrivnák R, Slezák M, Jarčuška B, Jarolímek I, Kochjarová J. Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests. Forests. 2015; 6(10):3501-3513. https://doi.org/10.3390/f6103501
Chicago/Turabian StyleHrivnák, Richard, Michal Slezák, Benjamín Jarčuška, Ivan Jarolímek, and Judita Kochjarová. 2015. "Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests" Forests 6, no. 10: 3501-3513. https://doi.org/10.3390/f6103501
APA StyleHrivnák, R., Slezák, M., Jarčuška, B., Jarolímek, I., & Kochjarová, J. (2015). Native and Alien Plant Species Richness Response to Soil Nitrogen and Phosphorus in Temperate Floodplain and Swamp Forests. Forests, 6(10), 3501-3513. https://doi.org/10.3390/f6103501