Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S.
Abstract
:1. Background
2. Sustainable Management and Site Productivity
3. Invasiveness
4. Biological Diversity
5. Water Use
6. Environmental Standards and Criteria
6.1. Invasiveness
6.2. Biodiversity
- Identify, protect, and/or conserve ecologically important forest areas and old growth forest;
- Assess and protect rare species and communities and species legally designated as threatened or endangered;
- Establish or protect corridors to minimize impacts of habitat fragmentation;
- Do not allow newly established plantations to replace existing natural ecosystems or diminish their ecological integrity;
- Retain some habitat components and associated stand structures (e.g., dominant green trees, snags, down woody debris) in harvested stands, particularly in larger stands (e.g., >32 ha);
- Allow adjacent stands to reach a minimum age (e.g., 5 years), height (e.g., 10 feet), or degree of canopy closure before a plantation is harvested;
- Conserve plant and animal habitats in riparian management zones and representative samples of existing ecosystems within managed landscapes;
- Where natural ecosystems were previously converted to plantations, maintain and/or restore a percentage of the total management area to natural or semi-natural cover.
6.3. Water Use
- Recognize the importance, value, and vulnerability of water supply and quality;
- Biomass production should not contribute to depletion of ground or surface water supplies;
- Biomass and bioenergy production maintains or improves water resources;
- Identify and define measures to maintain or enhance water resources (and other forest services);
- Use results of credible scientific analysis, best available information, and local knowledge and experience to assess short- and long-term impacts on water resources and associated riparian habitats and hydrologic functions;
- Include a water management plan which aims to use water efficiently and to maintain or enhance the quality of the water resources that are used for biofuel operations;
- Demonstrate commitment to the improvement of water efficiency over time through the implementation of water-saving practices;
- Establish buffer zones between the operation site and surface or ground water resources.
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Zalesny, R.S., Jr.; Cunningham, M.W.; Hall, R.B.; Mirck, J.; Rockwood, D.L.; Stanturf, J.A.; Volk, T.A. Woody biomass from short rotation energy crops. In Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass; ACS Symposium Series; Xu, J.Y., Pang, X.J., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 27–63. [Google Scholar]
- U.S. Department of Energy. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply; ORNL/TM-2005/66; Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2005; p. 3.
- U.S. Department of Energy. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; ORNL/TM-2011/224; Perlack, R.D., Stokes, B.J., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011; p. 227.
- Jacobs, M.R. Eucalypts for Planting; FAO Forestry Series No. 11; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; p. 677. [Google Scholar]
- Gonzalez, R.; Treasure, T.; Wright, J.; Saloni, D.; Phillips, R.; Jameel, R.A.H. Exploring the potential of Eucalyptus for energy production in the Southern United States: Financial analysis of delivered biomass. Part I. Biomass Bioenergy 2011, 35, 755–766. [Google Scholar] [CrossRef]
- Gordon, D.R.; Tancig, K.J.; Onderdonk, D.A.; Gantz, C.A. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian weed risk assessment. Biomass Bioenergy 2011, 35, 74–79. [Google Scholar] [CrossRef]
- Rosch, C.; Jorissen, J. Pinning hopes on short rotation coppice? Reviewing perspectives and challenges. GAIA: Ecol. Perspect. Sci. Soc. 2012, 21, 194–201. [Google Scholar]
- Mann, L.; Tolbert, V. Soil sustainability in renewable biomass plantings. Ambio 2000, 29, 492–498. [Google Scholar]
- Tolbert, V.R.; Todd, D.E., Jr.; Mann, L.K.; Jawdy, C.M.; Mays, D.A.; Malik, R.; Bandaranayake, W.; Houston, A.; Tyler, D.; Pettry, D.E. Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production. Environ. Pollut. 2002, 116, S97–S106. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Energy crops and their implications on soil and environment. Agron. J. 2010, 102, 403–419. [Google Scholar] [CrossRef]
- Petzold, R.; Schwarzel, K.; Feger, K.H. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions. Eur. J. For. Res. 2011, 130, 695–706. [Google Scholar] [CrossRef]
- Langeveld, H.; Quist-Wessel, F.; Dimitriou, I.; Aronsson, P.; Baum, C.; Schulz, U.; Bolte, A.; Baum, S.; Kohn, J.; Weih, M.; et al. Assessing environmental impacts of short rotation coppice (SRC) expansion: Model definition and preliminary results. Bioenergy Res. 2012, 5, 621–635. [Google Scholar] [CrossRef]
- Syswerda, S.P.; Basso, B.; Hamilton, S.K.; Tausig, J.B.; Robertson, G.P. Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric. Ecosyst. Environ. 2012, 149, 10–19. [Google Scholar] [CrossRef]
- Kline, K.L.; Coleman, M.D. Woody energy crops in the southeastern United States: Two centuries of practitioner experience. Biomass Bioenergy 2010, 34, 1655–1666. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.G. Eucalyptus production and the supply, use and efficiency of use of water, light, and nitrogen across a geographic gradient in Brazil. For. Ecol. Manag. 2004, 193, 17–31. [Google Scholar] [CrossRef]
- Henri, C.J. Soil-site productivity of Gmelina arborea, Eucalyptusurophulla and Eucalyptus grandis forest plantations in western Venezuela. For. Ecol. Manag. 2001, 144, 255–264. [Google Scholar] [CrossRef]
- Pallett, R.N.; Sale, G. The relative productivity of tree improvement and cultural practice toward productivity gains in Eucalyptus pulpwood stands. For. Ecol. Manag. 2004, 193, 33–43. [Google Scholar] [CrossRef]
- Du Toit, B.; Smith, C.W.; Little, K.M.; Boreham, G.; Pallett, R.N. Intensive, site-specific silviculture: Manipulating resource availability at establishment for improved stand productivity. A review of South African research. For. Ecol. Manag. 2010, 259, 1836–1845. [Google Scholar] [CrossRef]
- Harwood, C. New introductions—Doing it righ. In Developing a Eucalypt Resource: Learning from Australia and Elsewhere; Wood Technology Research Centre: Christchurch, New Zealand, 2011; pp. 125–136. [Google Scholar]
- Wang, D.; LeBauer, D.; Dietze, M. Predicting yields of short-rotation hybrid (Populus spp.) for the United States through model-data synthesis. Ecol. Appl. 2013, 23, 944–958. [Google Scholar] [CrossRef]
- Pinno, B.D.; Bélanger, N. Competition control in juvenile hybrid poplar plantations across a range of site productivities in central Saskatchewan. New For. 2009, 37, 213–225. [Google Scholar] [CrossRef]
- Pinno, B.D.; Thomas, B.R.; Bélanger, N. Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics. New For. 2010, 39, 89–103. [Google Scholar] [CrossRef]
- Coleman, M.; Tolsted, D.; Nichols, T.; Johnson, W.D.; Wene, E.G.; Houghtaling, T. Post-establishment fertilization of Minnesota hybrid poplar plantations. Biomass Bioenergy 2006, 30, 740–749. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Hall, R.B.; Zalesny, J.A.; McMahon, B.G.; Berguson, W.E.; Stanosz, G.R. Biomass and genotype × environment interactions of Populus energy crops in the Midwestern United States. Bioenergy Res. 2009, 2, 106–122. [Google Scholar] [CrossRef]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F. Yield in 8 year-old hybrid poplar plantations on abandoned farmland along climatic and soil fertility gradients. For. Ecol. Manag. 2012, 267, 228–239. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Forsyth, G.G.; le Maitre, D.C.; Wannenburgh, A.; Kotzé, J.D.F.; van den Berg, E.; Henderson, L. An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol. Conserv. 2012, 148, 28–38. [Google Scholar] [CrossRef]
- Booth, T.H. Eucalypts and their potential for invasiveness particularly in frost-prone regions. Int. J. For. Res. 2012, 2012, 1–7. [Google Scholar]
- Gordon, D.R.; Flory, S.L.; Cooper, A.L.; Morris, S.K. Assessing the invasion risk of Eucalyptus in the United States using the Australian Weed Risk Assessment. Int. J. For. Res. 2012, 2012, 1–7. [Google Scholar]
- Larcombe, M.J.; Silva, J.S.; Vaillancourt, R.E.; Potts, B.M. Assessing the invasive potential of Eucalyptus globulus in Australia: Quantification of wildling establishment from plantations. Biol. Invasions 2013, 15, 2763–2781. [Google Scholar] [CrossRef]
- Richardson, D.M. Forestry trees as invasive aliens. Conserv. Biol. 1998, 12, 18–26. [Google Scholar] [CrossRef]
- Da Silva, P.H.M.; Poggiani, F.; Sebbenn, A.M.; Mori, E.S. Can Eucalyptus invade native forest fragments close to commercial stands? For. Ecol. Manag. 2011, 261, 2075–2080. [Google Scholar] [CrossRef]
- Emer, C.; Fonseca, C.R. Araucaria Forest conversion: Mechanisms providing resistance to invasion by exotic timber species. Biol. Invasions 2011, 13, 189–202. [Google Scholar] [CrossRef]
- Moll, E.J.; Trinder-Smith, T. Invasion and control of alien woody plants on the Cape Peninsula Mountains, South Africa—30 years on. Biol. Conserv. 1992, 60, 135–143. [Google Scholar] [CrossRef]
- Taylor, H.C.; Macdonald, S.A. Invasive alien woody plants in the Cape of Good Hope Nature Reserve; I. Results of a first survey in 1966. S. Afr. J. Bot. 1985, 51, 14–20. [Google Scholar]
- Taylor, H.C.; Macdonald, S.A.; Macdonald, I.A.W. Invasive alien woody plants in the Cape of Good Hope Nature Reserve; II. Results of a second survey from 1976 to 1980. S. Afr. J. Bot. 1985, 51, 21–29. [Google Scholar]
- Bennett, B.M. A global history of Australian trees. J. Hist. Biol. 2011, 44, 125–145. [Google Scholar] [CrossRef]
- Meers, T.L.; Enright, N.J.; Bell, T.L.; Kasel, S. Deforestation strongly affects soil seed banks in eucalypt forests: Generalisations in functional traits and implications for restoration. For. Ecol. Manag. 2012, 266, 94–107. [Google Scholar] [CrossRef]
- Hill, S.J.; French, K. Response of the soil seed-bank of Cumberland Plain Woodland to heating. Austral Ecol. 2003, 28, 14–22. [Google Scholar] [CrossRef]
- Wellington, A.B.; Noble, I.R. Seed dynamics and factors limiting recruitment of the Mallee Eucalyptus incrassata in semi-arid south-eastern Australia. J. Ecol. 1985, 73, 657–666. [Google Scholar] [CrossRef]
- Booth, T.H. Modern tree colonisers from Australia into the rest of the world. In Invasion Biology and Ecological Theory; Prins, H.H.T., Gordon, I.J., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 304–323. [Google Scholar]
- Le Maitre, D.C.; van Wilgen, B.W.; Gelderblom, C.M.; Bailey, C.; Chapman, R.A.; Nel, J.A. Invasive alien trees and water resources in South Africa: Case studies of the costs and benefits of management. For. Ecol. Manag. 2002, 160, 143–159. [Google Scholar] [CrossRef]
- Forsyth, G.G.; Richardson, D.M.; Brown, P.J.; van Wilgen, B.W. A rapid assessment of the invasive status of Eucalyptus species in two South African provinces. S. Afr. J. Sci. 2004, 100, 75–77. [Google Scholar]
- Rejmánek, M.; Richardson, D.M. Eucalypts. In Encyclopedia of Biological Invasions; Simberloff, D., Rejmánek, M., Eds.; University of California Press: Berkeley/Los Angeles, CA, USA, 2011. [Google Scholar]
- Rockwood, D.L.; Carter, D.R.; Langholtz, M.H.; Stricker, J.A. Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA. Biomass Bioenergy 2006, 30, 728–734. [Google Scholar] [CrossRef]
- Fry, G. Eucalypts in New Zealand: A position report. N. Z. J. For. 1983, 28, 394–411. [Google Scholar]
- Richardson, D.M.; Rejmánek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Pheloung, P.C.; Williams, P.A.; Halloy, S.R. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manag. 1999, 57, 239–251. [Google Scholar] [CrossRef]
- Auld, B. An overview of pre-border weed risk assessment and post-border weed risk management protocols. Plant Prot. Q. 2012, 27, 105–111. [Google Scholar]
- Smith, C.S.; Lonsdale, W.M.; Fortune, J. When to ignore advice: Invasion predictions and decision theory. Biol. Invasions 1999, 1, 89–96. [Google Scholar] [CrossRef]
- Daehler, C.C.; Denslow, J.S.; Ansari, S.; Kuo, H.-C. A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific islands. Conserv. Biol. 2004, 18, 360–368. [Google Scholar] [CrossRef]
- Hulme, P.E. Weed risk assessment: A way forward or a waste of time? J. Appl. Ecol. 2011, 49, 10–19. [Google Scholar] [CrossRef]
- Callaham, M.A.; Stanturf, J.A.; Hammon, W.J.; Rockwood, D.L.; Wenk, E.S.; O’Brien, J.J. Survey to evaluate escape of Eucalyptus spp. Seedlings from plantations in southeastern USA. Int. J. For. Res. 2013. [Google Scholar] [CrossRef]
- Vanden-Broeck, A.; Villar, M.; van Brockstaele, E.; van Slycken, J. Natural hybridization between cultivated poplars and their wild relatives: Evidence and consequences for native poplar populations. Ann. For. Sci. 2005, 62, 601–613. [Google Scholar] [CrossRef]
- Ziegenhagen, B.; Gneuss, S.; Rathmacher, G.; Leyer, I.; Bialozyt, R.; Heinze, B.; Liepelt, S. A fast and simple genetic survey reveals the spread of poplar hybrids at natural Elbe river site. Conserv. Genet. 2008, 9, 373–379. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Lamothe, M.; Gros-Louis, M.-C.; Khasa, D.; Perinet, P.; Bousquet, J.; Isabel, N. Complex patterns of hybridization between exotic and native North American poplar species. Am. J. Bot. 2010, 97, 1688–1697. [Google Scholar] [CrossRef]
- Talbot, P.; Schroeder, W.R.; Bousquet, J.; Isabel, N. When exotic poplars and native Populus balsamifera L. meet on the Canadian Prairies: Spontaneous hybridization and establishment of interspecific hybrids. For. Ecol. Manag. 2012, 285, 142–152. [Google Scholar] [CrossRef]
- Vanden-Broeck, A.; Cox, K.; Michiels, B.; Verschelde, P.; Villar, M. With a little help from my friends: Hybrid fertility of exotic Populus × Canadensis enhanced by related native Populus nigra. Biol. Invasions 2012, 14, 1683–1696. [Google Scholar] [CrossRef]
- Felton, A.; Boberg, J.; Bjorkman, C.; Widenfalk, O. Identifying and managing the ecological risks of using introduced tree species in Sweden’s production forestry. For. Ecol. Manag. 2013, 307, 165–177. [Google Scholar] [CrossRef]
- DiFazio, S.P.; Slavov, G.T.; Burczyk, J.; Leonardi, S.; Strauss, S.H. Gene flow from tree plantations and implications for transgenic risk assessment. In Plantation Forest Biotechnology for the 21st Century; Walter, C., Carson, M., Eds.; Research Signpost: Kerala, India, 2004; pp. 405–422. [Google Scholar]
- Strauss, S.H.; Brunner, A.M.; Busov, V.B.; Ma, C.; Meilan, R. Ten lessons from 15 years of transgenic Populus research. Forestry 2004, 77, 455–465. [Google Scholar] [CrossRef]
- Riffell, S.; Verschuyl, J.; Miller, D.; Wigley, T.B. A meta-analysis of bird and mammal response to short-rotation woody crops. GCB Bioenergy 2011, 3, 313–321. [Google Scholar] [CrossRef]
- Staten, C.H. The Effects of a Cottonwood Monoculture on Small Mammals and Rabbits in the Mississippi Delta. Master Thesis, Mississippi State University, Mississippi, MS, USA, 1977. [Google Scholar]
- Christian, D.P.; Collins, P.T.; Hanowski, J.M.; Neimi, G.J. Bird and small mammal use of short-rotation hybrid poplar plantations. J. Wildl. Manag. 1997, 61, 171–182. [Google Scholar] [CrossRef]
- Basanta, M.; Vizcaino, E.D.; Casal, M.; Morey, M. Diversity measurements in shrubland communities of Galicia (NW Spain). Vegetatio 1989, 82, 105–112. [Google Scholar] [CrossRef]
- Marsden, S.J.; Whiffin, M.; Galetti, M. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 2001, 10, 737–751. [Google Scholar] [CrossRef]
- Proença, V.M.; Pereira, H.M.; Guilherme, J.; Vicente, L. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecol. 2010, 36, 219–226. [Google Scholar] [CrossRef]
- John, J.R.M.; Kabigumila, J.D.L. The use of bird species richness and abundance indices to assess the conservation value of exotic Eucalyptus plantations. Ostrich 2011, 82, 27–37. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Rubido-Bará, M.; van Etten, E.J.B. Do eucalypt plantations provide habitat for native forest biodiversity? For. Ecol. Manag. 2012, 270, 153–162. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; de Silanes, M.E.L.; Rubido-Bará, M.; Uribarri, J. The potential role of tree plantations in providing habitat for lichen epiphytes. For. Ecol. Manag. 2013, 291, 386–395. [Google Scholar] [CrossRef]
- da Rocha, P.L.B.; Viana, B.F.; Cardoso, M.Z.; de Melo, A.M.C.; Costa, M.G.C.; de Vasconcelos, R.N.; Dantas, T.B. What is the value of eucalyptus monocultures for the biodiversity of the Atlantic forest? A multitaxa study in southern Bahia, Brazil. J. For. Res. 2013, 24, 263–272. [Google Scholar] [CrossRef]
- Bonham, K.J.; Mesibov, R.; Bashford, R. Diversity and abundance of some ground-dwelling invertebrates in plantation vs. native forests in Tasmania, Australia. For. Ecol. Manag. 2002, 158, 237–247. [Google Scholar] [CrossRef]
- Chey, V.K.; Holloway, J.D.; Speight, M.R. Diversity of moths in forest plantations and natural forests in Sabah. Bull. Entomol. Res. 1997, 87, 371–385. [Google Scholar] [CrossRef]
- Yirdaw, E.; Luukkanen, O. Indigenous woody species diversity in Eucalyptus globulus Labill. ssp. globulus plantations in the Ethiopian highlands. Biodivers. Conserv. 2003, 12, 567–582. [Google Scholar] [CrossRef]
- Loyn, R.H.; McNabb, E.G.; Macak, P.; Noble, P. Eucalypt plantations as habitat for birds on previously cleared farmland in south-eastern Australia. Biol. Conserv. 2007, 137, 533–548. [Google Scholar]
- Hobbs, R.; Catling, P.C.; Wombey, J.C.; Clayton, M.; Atkins, L.; Reid, A. Faunal use of bluegum (Eucalyptus globulus) plantations in southwestern Australia. Agrofor. Ecosyst. 2003, 58, 195–212. [Google Scholar] [CrossRef]
- Hsu, T.; French, K.; Major, R. Avian assemblages in eucalypt forests, plantations, and pastures in northern NSW, Australia. For. Ecol. Manag. 2010, 260, 1036–1046. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Hobbs, R.J. Fauna conservation in Australian plantation forests—A review. Biol. Conserv. 2004, 119, 151–168. [Google Scholar] [CrossRef]
- Cannell, M.G.R. Environmental impacts of forest monocultures: Water use, acidification, wildlife conservation, and carbon storage. New For. 1999, 17, 239–262. [Google Scholar] [CrossRef]
- Updegraff, K.; Baughman, M.J.; Taff, S.J. Environmental benefits of cropland conversion to hybrid poplar: Economic and policy considerations. Biomass Bioenergy 2004, 27, 411–428. [Google Scholar] [CrossRef]
- Scott, D.F. On the hydrology of industrial timber plantations. Hydrol. Process. 2005, 19, 4203–4206. [Google Scholar] [CrossRef]
- Busch, G. The impact of short rotation coppice on groundwater recharge—A spatial (planning) perspective. Agric. For. Res. 2009, 59, 207–222. [Google Scholar]
- Rodríguez-Suárez, J.A.; Soto, B.; Perez, R.; Diaz-Fierros, F. Influence of Eucalyptus globules plantation growth on water table levels and low flows in a small catchment. J. Hyrol. 2011, 396, 321–326. [Google Scholar]
- Nosetto, M.D.; Jobbagy, E.G.; Paruelo, J.M. Land-use change and water losses: The case of grassland afforestation across a soil textural gradient in central Argentina. Glob. Chang. Biol. 2005, 11, 1101–1117. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbagy, E.G.; Brizuela, A.B.; Jackson, R.B. The hydrologic consequences of land cover change in central Argentina. Agric. Ecosyst. Environ. 2012, 154, 2–11. [Google Scholar] [CrossRef]
- Dye, P. A review of changing perspectives on Eucalyptus water-use in South Africa. For. Ecol. Manag. 2013, 301, 51–57. [Google Scholar] [CrossRef]
- Hubbard, R.M.; Stape, J.; Ryan, M.G.; Almeida, A.C.; Rojas, J. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. For. Ecol. Manag. 2010, 259, 1714–1721. [Google Scholar] [CrossRef]
- Salemi, L.F.; Groppo, J.D.; Trevisan, R.; de Moraes, J.M.; Ferraz, S.F.d.; Villani, J.P.; Duarte-Neto, P.J.; Martinelli, L.A. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. J. Hydrol. 2013, 499, 100–109. [Google Scholar] [CrossRef]
- Lane, P.N.J.; Morris, J.; Ningnan, Z.; Guangyi, Z.; Guoyi, Z.; Daping, X. Water balance of tropical eucalypt plantations in south-eastern China. Agric. For. Meteorol. 2004, 124, 253–267. [Google Scholar] [CrossRef]
- Perry, C.H.; Miller, R.C.; Brooks, K.N. Impacts of short-rotation hybrid poplar plantations on regional water yield. For. Ecol. Manag. 2001, 143, 143–151. [Google Scholar] [CrossRef]
- Souch, C.A.; Stephens, W. Growth, productivity, and water use in three hybrid poplar clones. Tree Physiol. 1998, 18, 829–835. [Google Scholar] [CrossRef]
- Monclus, R.; Villar, M.; Barbaroux, C.; Bastien, C.; Fichot, R.; Delmotte, F.M.; Delay, D.; Petit, J.-M.; Brechet, C.; Dreyer, E.; et al. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny. Tree Physiol. 2009, 29, 1329–1339. [Google Scholar] [CrossRef]
- Toillon, J.; Rollin, B.; Dalle, E.; Feinard-Duranceau, M.; Bastien, J.C.; Brignolas, F.; Marron, N. Variability and plasticity of productivity, water-use efficiency, and nitrogen exportation rate in Salix short rotation coppice. Biomass Bioenergy 2013, 56, 392–404. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Ferraz, S.F.B.; Lima, W.D.; Rodrigues, C.B. Managing forest plantation landscapes for water conservation. For. Ecol. Manag. 2013, 301, 58–66. [Google Scholar] [CrossRef]
- White, D.A.; Crombie, D.S.; Kinal, J.; Battaglia, M.; McGrath, J.F.; Mendharn, D.S.; Walker, S.N. Managing forest productivity and drought risk in Eucalyptus globules plantations in south-western Australia. For.Ecol. Manag. 2009, 259, 33–44. [Google Scholar] [CrossRef]
- Mendham, D.S.; White, D.A.; Battaglia, M.; McGrath, J.F.; Short, T.M.; Ogden, G.N.; Kinal, J. Soil water depletion and replenishment during first- and early second-rotation Eucalyptus globules plantations with deep soil profiles. Agric. For. Meteorol. 2011, 151, 1568–1579. [Google Scholar] [CrossRef]
- Sustainable Forestry Initiative. SFI Standard. Available online: http://www.sfiprogram.org/sfi-standard/ (accessed on 12 May 2014).
- Forest Stewardship Council. FSC-US Forest Management Standard (v1.0). Complete with FF Indicators and Guidance. 2010. Available online: https://us.fsc.org/download.fsc-us-forest-management-standard-with-family-forest-indicators.96.pdf (accessed on 12 May 2014).
- Forest Stewardship Council. National Standards. Available online: https://ic.fsc.org/national-standards.247.htm (accessed on 12 May 2014).
- Programme for the Endorsement of Forest Certification. Sustainable Forest Management—Requirements. PEFC ST 1003:2010. 2010. Available online: http://www.pefc.org/images/documents/PEFC_ST_1003_2010_SFM__Requirements_2010_11_26.pdf (accessed on 12 May 2014).
- American Tree Farm System. Standards for Certification. Available online: https://www. treefarmsystem.org/certification-american-tree-farm-standards (accessed on 12 May 2014).
- Roundtable on Sustainable Biomaterials. RSB Principles & Criteria for Sustainable Biofuel Production; BEFSCI, 2010. Available online: http://rsb.org/pdfs/standards/11-03-08-RSB-PCs-Version-2.pdf (accessed on 12 May 2014).
- North Carolina Department of Agriculture and Consumer Services, North Carolina Cooperative Extension Service, North Carolina Biofuels Center. In Voluntary Best Management Practices for Energy Crops Minimizing the Risk of Invasiveness; North Carolina Department of Agriculture and Consumer Services, Plant Industry Division: Raleigh, NC, USA, 2011; p. 4.
- Council on Sustainable Biomass Production. CSBP Standard for Sustainable Production of Agricultural Biomass, Version 1.0; 2012. Available online: http://web.ornl.gov/sci/ees/cbes/News/Final%20CSBP%20Standard%2020120612.pdf (accessed on 12 May 2014).
- Sustainable Biodiesel Alliance. Principles and Baseline Practices for Sustainability. 2009. Available online: http://sustainablebiodieselalliance.com/dev/BPS%20V.1.pdf (accessed on 12 May 2014).
- Stanturf, J.A.; Vance, E.D.; Fox, T.R.; Kirst, M. Eucalyptus beyond its native range: Environmental issues in exotic bioenergy plantations. Int. J. For. Res. 2013, 2013, 1–5. [Google Scholar]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of American: Washington, DC, USA, 2010. Available online: http://www.esa.org/biofuelsreports/files/ESA%20Biofuels%20Report_VH%20Dale%20et%20al.pdf (accessed on 12 May 2014).
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F.B. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [Google Scholar]
- Sedjo, R.A.; Botkin, D. Using forest plantations to spare natural forests. Environment 1997, 39, 14–20. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Paquette, A.; Messier, C. The role of plantations in managing the world’s forest in the Anthropocene. Front. Ecol. Environ. 2010, 8, 27–34. [Google Scholar] [CrossRef] [Green Version]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vance, E.D.; Loehle, C.; Wigley, T.B.; Weatherford, P. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S. Forests 2014, 5, 901-918. https://doi.org/10.3390/f5050901
Vance ED, Loehle C, Wigley TB, Weatherford P. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S. Forests. 2014; 5(5):901-918. https://doi.org/10.3390/f5050901
Chicago/Turabian StyleVance, Eric D., Craig Loehle, T. Bently Wigley, and Philip Weatherford. 2014. "Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S." Forests 5, no. 5: 901-918. https://doi.org/10.3390/f5050901
APA StyleVance, E. D., Loehle, C., Wigley, T. B., & Weatherford, P. (2014). Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S. Forests, 5(5), 901-918. https://doi.org/10.3390/f5050901