Assessing Phenotypes, Genetic Diversity, and Population Structure of Shea Germplasm (Vitellaria paradoxa subsp. paradoxa C.F.Gaertn.) from Senegal and Burkina Faso
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Site Description
2.2. Sampling
2.3. Genotyping Senegalese and Burkinabe Germplasm
2.3.1. DNA Extraction
2.3.2. Generation of DArT-SNP Markers
2.3.3. Population Structure and Diversity Analysis
2.4. Morphological and Biochemical Characteristics of the Selected “Mother, and Plus Trees”
2.4.1. Growth and Phenotypic Assessment of Nuts and Kernels
2.4.2. Biochemical Analysis of Shea Oil Extracted from Kernels
2.5. Statistical Analysis of Phenotypic Characters
3. Results
3.1. Population Structure, Genetic Relationship, and Diversity Parameters
3.2. Allelic Pattern Across Populations and Molecular Analysis
3.3. Morphological and Biochemical Characterization of Selected Germplasms
3.3.1. Multivariate Analysis and Correlation Among Traits
3.3.2. Phenotypic Correlation Among Traits
4. Discussion
4.1. Genetic Diversity Analysis and Structuring
4.2. Phenotypic Traits Structuring in Relation to Genetic Diversity Pattern
4.3. Traits Correlation and Breeding Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, J.B.; Aebischer, D.P.; Tomlinson, H.F.; Osei-Amaning, E.; Hindle, H.R. Vitellaria paradoxa: A Monograph; School of Agriculture and Forest Sciences Publication No. 8; University of Wales, Bangor: Gwynedd, UK, 1996; 105p. [Google Scholar]
- Sanou, H.; Lamien, N. Vitellaria paradoxa, Shea Butter Tree. In Conservation and Sustainable Use of Genetic Resources of Priority Food Tree Species in Sub-Saharan Africa; Bioversity International: Rome, Italy, 2011. [Google Scholar]
- Choungo Nguekeng, P.B.; Hendre, P.; Tchoundjeu, Z.; Kalousová, M.; Tchanou Tchapda, A.V.; Kyereh, D.; Masters, E.; Lojka, B. The Current State of Knowledge of Shea Butter Tree (Vitellaria paradoxa C.F.Gaertner) for Nutritional Value and Tree Improvement in West and Central Africa. Forests 2021, 12, 1740. [Google Scholar] [CrossRef]
- Chen, T. The Impact of the Shea Nut Industry on Women’s Empowerment in Burkina Faso; 2017; FAO Report, ISBN 978-92-5-130005-3. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4c577507-9ba7-4316-aa81-9064a62d0b1b/content (accessed on 23 October 2025).
- Available online: https://www.grandviewresearch.com/industry-analysis/shea-butter-market/request/rs1 (accessed on 24 November 2025).
- IUCN Red List of Threatened Species: Vitellaria paradoxa. IUCN Red List Threat Species. 2023. Available online: https://www.iucnredlist.org/species/37083/10029534 (accessed on 19 December 2025).
- Bayala, J.; Ky-Dembele, C.; Kalinganire, A.; Olivier, A.; Nantoumé, H. A Review of Pasture and Fodder Production and Productivity for Small Ruminants in the Sahel; ICRAF Occasional Paper No. 21; World Agroforestry Centre: Nairobi, Kenya, 2014. [Google Scholar]
- Boffa, J.M. Opportunities and Challenges in the Improvement of the Shea (Vitellaria paradoxa) Resource and Its Management; Occasional Paper 24; World Agroforestry Centre: Nairobi, Kenya, 2015. [Google Scholar]
- Diarrassouba, N.; Yao, S.D.M.; Traoré, B. Identification Participative et Caractérisation des Arbres Elites de Karité Dans la Zone de Production en Côte d’Ivoire; Côte d’Ivoire (projet FIRCA/Karité), Report No.: N° 069/2016; University Peleforo Gon Coulibaly: Korhogo, Côte d’Ivoire, 2017; 15p. [Google Scholar]
- Sandwidi, A.; Diallo, B.O.; Lamien, N.; Vinceti, B.; Sanon, K.; Coulibaly, P.; Sawadogo, P.M. Participatory identification and characterisation of shea butter tree (Vitellaria paradoxa C.F. Gaertn.) ethnovarieties in Burkina Faso. Fruits Int. J. Trop. Subtrop. Hortic. 2018, 73, 141–152. [Google Scholar] [CrossRef]
- Attikora, A.J.P.; Diarrassouba, N.; Yao, S.D.M.; Clerck, C.D.; Silue, S.; Alabi, T. Morphological traits and sustainability of plus shea trees (Vitellaria paradoxa C.F.Gaertn.) in Côte d’Ivoire. Biotechnol Agron. Soc. Environ. 2023, 27. [Google Scholar] [CrossRef]
- Hale, I.; Ma, X.; Melo, A.T.O.; Padi, F.K.; Hendre, P.S.; Kingan, S.B.; Sullivan, S.T.; Chen, S.; Boffa, J.M.; Muchugi, A.; et al. Genomic Resources to Guide Improvement of the Shea Tree. Front. Plant Sci. 2021, 12, 720670. [Google Scholar] [CrossRef]
- Bredeson, J.V.; Lyons, J.B.; Oniyinde, I.O.; Okereke, N.R.; Kolade, O.; Nnabue, I.; Nwadili, C.O.; Hřibová, E.; Parker, M.; Nwogha, J.; et al. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nat. Commun. 2022, 13, 2001. [Google Scholar] [CrossRef]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity arrays technology: A generic genome profiling technology on open platforms. Methods Mol. Biol. 2012, 888, 67–89. [Google Scholar]
- Granato, I.S.C.; Galli, G.; Couto, E.G.O.; e Souzza, M.B.; Mendonca, L.F.; Fritsche-Neto, R. snpReady: A tool to assist breeders in genomic analysis. Mol. Breed. 2018, 38, 102. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2024, 32, 1792–1797. [Google Scholar] [CrossRef]
- Price, M.N.; Paramvir, S.D.; Adam, P.A. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4: Tree Figure Drawing Tool. 2018. Available online: https://tree.bio.ed.ac.uk/software/figtree/ (accessed on 17 November 2025).
- Jombart, T.; Caitlin, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.1.0; Imperial College: London, UK, 2017. [Google Scholar]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef]
- Peiris, T.L.V. Determination of Crude Fat Content. 2009. GS/MSc/Food/3630/08. Available online: https://fr.scribd.com/document/480055415/AOAC-920-39 (accessed on 25 November 2025).
- AOCS. AOCS Official Method Cd 22-91: Determination of Polymerized Triglycerides by Gel-Permeation HPLC; AOCS Press: Champaign, IL, USA, 2009. [Google Scholar]
- Wang, J.; Long, Q.; Zhong, H. Influence of Temperature on Triacylglycerol Degradation in Camellia Seed Oil during Accelerated Thermal Oxidation. J. Food Nutr. Res. 2018, 6, 320–328. [Google Scholar] [CrossRef]
- Odoi, J.B.; Adjei, E.A.; Hendre, P.; Nantongo, J.S.; Ozimati, A.A.; Badji, A.; Nakabonge, G.; Edema, R.; Gwali, S.; Pouyan, T.L.O.P.; et al. Genetic diversity and population structure among Ugandan shea tree (Vitellaria paradoxa subsp. nilotica) accessions based on DarTSeq markers. Crop Sci. 2023, 63, 2297–2309. [Google Scholar] [CrossRef]
- Attikora, A.J.P.; Yao, S.D.M.; Dago, D.N.; Silué, S.; De Clerck, C.; Kwibuka, Y.; Diarrassouba, N.; Alabi, T.; Achigan-Dako, E.G.; Lassois, L. Genetic diversity and population structure of superior shea trees (Vitellaria paradoxa subsp. paradoxa) using SNP markers for the establishment of a core collection in Côte d’Ivoire. BMC Plant Biol. 2024, 24, 913. [Google Scholar] [CrossRef]
- Anyomi, W.E.; Barnor, M.T.; Danquah, A.; Ofori, K.; Padi, F.K.; Avicor, S.W.; Hale, I.; Danquah, E.Y. Heritability and Genetic Advance Estimates of Key Shea Fruit Traits. Agronomy 2023, 13, 640. [Google Scholar] [CrossRef]
- Odoi, J.B.; Muchugi, A.; Okia, C.A.; Gwali, S.; Odong, T.L. Local knowledge, identification and selection of shea tree (Vitellaria paradoxa) ethnovarieties for pre-breeding in Uganda. J. Agric. Nat. Resour. Sci. 2020, 7, 22–33. [Google Scholar]
- Benlioğlu, B.; Adak, M.A. Importance of Crop Wild Relatives and Landraces. Genetic Resources in Plant Breeding Programmes. J. Exp. Agric. Int. 2019, 37, 1–8. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; White, V.; Jasper, M.; Yagui, H.; Sinclair, S.; Kearney, M. An endangered flightless grasshopper with strong genetic structure maintains population genetic variation despite extensive habitat loss. Ecol. Evol. 2021, 11, 5364–5380. [Google Scholar] [CrossRef]
- Schmidt, T.L.; Jasper, M.E.; Weeks, A.R.; Hoffmann, A.A. Unbiased population heterozygosity estimates from genome wide sequence data. Methods Ecol. Evol. 2020, 12, 1888–1898. [Google Scholar] [CrossRef]
- Ndiaye, L.; Diallo, A.M.; Vu, G.; Mueller, M.; Ngom, D.; Mbaye, T.; Gailing, O. Genetic diversity of populations of Dalbergia melanoxylon Guill. & Perr. in the Ferlo zone (Senegal) using chloroplast and nuclear microsatellite markers. Genet. Resour. Crop Evol. 2024, 72, 4901–4913. [Google Scholar] [CrossRef]
- Ralls, K.; Ballou, J.D.; Dudash, M.R.; Eldridge, M.D.B.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P.; Frankham, R. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 2018, 11, e12412. [Google Scholar] [CrossRef]
- Lombardi, R.; Caccamo, M.; Materazzi, A. Genetic structure and domestication history of cacao revealed by multivariate and Bayesian approaches. Tree Genet. Genomes 2018, 14, 22. [Google Scholar]
- Philippe Cubry, P.; Tranchant-Dubreuil, C.; Thuillet, A.C.; Monat, C.; Ndjiondjop, M.N.; Labadie, K.; Cruaud, C.; Engelen, S.; Scarcelli, N.; Rhoné, B.; et al. The rise and fall of African rice cultivation revealed by genomic analyses. Curr. Biol. 2018, 28, 2274–2282. [Google Scholar] [CrossRef]
- Belaj, A.; Dominguez-García, M.D.C.; Atienza, S.G.; Urdíroz, N.M.; De la Rosa, R.; Satovic, Z.; Martín, A.; Kilian, A.; Trujillo, I.; Valpuesta, V.; et al. Developing a core collection of olive cultivars using SSR markers and multivariate analysis. Tree Genet. Genomes 2011, 8, 365–379. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, Y.; Li, M.; Wang, T.; Su, Y. Geographic isolation and environmental heterogeneity contribute to genetic differentiation in Cephalotaxus oliveri. Ecol. Evol. 2023, 13, e9869. [Google Scholar] [CrossRef] [PubMed]
- Sanou, H.; Lovett, P.N.; Bouvet, J.M. Comparison of quantitative and molecular variation in agroforestry populations of the shea tree in (Vitellaria paradoxa C.F. Gaertn) Mali. Mol. Ecol. 2005, 14, 2601–2610. [Google Scholar] [CrossRef]
- Luo, Z.; Brock, J.; Dyer, J.M.; Kutchan, T.; Schachtman, D.; Augustin, M.; Ge, Y.; Fahlgren, N.; Abdel-Haleem, H. Genetic Diversity and Population Structure of a Camelina sativa Spring Panel. Front. Plant Sci. 2019, 10, 184. [Google Scholar] [CrossRef]
- Yao, S.D.M.; Diarrassouba, N.; Attikora, A.; Fofana, I.J.; Dago, D.N.; Silue, S. Morphological diversity patterns among selected elite Shea trees (Vitellaria paradoxa C.F. Gaertn.) from Tchologo and Bagoué districts in Northern Côte d’Ivoire. Int. J. Genet. Mol. Biol. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Dhakal, L.P.; Lillesø, J.P.B.; Kjær, E.D.; Jha, P.K.; Aryal, H.L. Seed Sources of Agroforestry Trees in a Farmland Context—A Guide to Tree Seed Source Establishment in Nepal; Forest and Landscape Development and Environment Series 1; Forest & Landscape Denmark Hørsholm Kongevej 11 DK-2970 Hørsholm Denmark: Fredensborg, Denmark, 2005; Development and Environment Series no. 1-2005; ISBN 87-7903-251-6. Available online: https://www.cifor-icraf.org/publications/downloads/Publications/PDFS/b13782.pdf (accessed on 25 November 2025).
- Diallo, A.M.; Nielsen, L.R.; Hansen, J.K.; Ræbild, A.; Kjær, E.D. Study of quantitative genetics of gum Arabic production complicated by variability in ploidy level of Acacia senegal (L.) Willd. Tree Genet. Genomes 2015, 11, 80–92. [Google Scholar] [CrossRef]
- Coşkun, O.F.; Gulsen, O. Determination of markers associated with important agronomic traits of watermelon (Citrullus lanatus L.). J. Agric. Sci. Technol. 2024, 26, 1359–1371. [Google Scholar] [CrossRef]
- Sankharé, M.; Diallo, A.M.; Ba, H.S.; Diatta, S.; Samb, C.O.; Touré, M.A.; Badiane, S. Phenotypic diversity of growth, leaf and yield-related traits in cashew (Anacardium occidentale L.): Implications for the development of a cashew breeding program in Senegal. Genet. Resour. Crop Evol. 2025, 72, 6771–6781. [Google Scholar] [CrossRef]









| Site | Longitude | Latitude | Altitude | Annual Rainfall (mm) | Mean Temperature (°C) | |
|---|---|---|---|---|---|---|
| Peak Hottest Months | Peak Coldest Months | |||||
| Satiri | 4° 03′ W | 11° 34′ N | 348 | 1055 | 35 | 25 |
| Kenioto | 12° 10′ W | 12° 33′ N | 167 | 1240 | 40 | 24 |
| Salemata | 12° 49′ W | 12° 38′ N | 171 | |||
| Saraya | 11° 45′ W | 12° 50′ N | 151 | |||
| Populations | N | Na | He | Ho | PIC |
|---|---|---|---|---|---|
| G1 (Satiri-Burkina Faso) | 66 | 0.34 | 0.39 | 0.16 | 0.25 |
| G2 (Senegal) | 25 | 0.33 | 0.38 | 0.16 | 0.15 |
| Mean | 0.335 | 0.385 | 0.16 | 0.20 |
| Source | DF | SS | MS | Est. Variance | % |
|---|---|---|---|---|---|
| Among populations | 1 | 57.15 | 28.57 | 0.01 | 0.07 |
| Within samples | 85 | 2404.73 | 28.29 | 28.29 | 99.93 |
| Total | 100 |
| Variation Among Populations | Means ± Standard Deviation | |||
|---|---|---|---|---|
| Traits | F Value | p-Value | Senegal | Burkina |
| Growth traits | ||||
| Height (m) | 44.61 | <0.001 | 14.18 ± 2.24 | 7.95 ± 1.49 |
| Diameter (cm) | 25.73 | <0.001 | 49.11 ± 7.3 | 26.14 ± 7.99 |
| Crown (m) | 12.68 | <0.001 | 9.99 ± 1.67 | 6.3 + 2.68 |
| Nut attributes | ||||
| Nut length (mm) | 7.62 | 0.0002 | 29.05 ± 1.54 | 26.94 ± 2.27 |
| Nut width (mm) | 5.85 | 0.0013 | 23.63 ± 0.62 | 22.22 ± 1.41 |
| Nut weight (g) | 20.63 | <0.001 | 6.72 ± 0.68 | 4.44 ± 0.77 |
| Kernel length (mm) | 3.70 | 0.0160 | 24.57 ± 0.93 | 23.02 ± 2.1 |
| Kernel width (mm) | 19.37 | <0.001 | 19.08 ± 0.08 | 16.49 ± 1.21 |
| Kernel weight (g) | 19.56 | <0.001 | 4.81 ± 0.17 | 3.02 ± 0.56 |
| Biochemical characteristics | ||||
| Crude Fat content (wt%) * | 12.61 | <0.001 | 42.98 ± 2.13 | 47.62 ± 3.5 |
| Diglyceride (wt%) ** | 13.33 | <0.001 | 1.84 ± 0.27 | 3.06 ± 0.98 |
| Triglyceride (wt%) ** | 7.66 | 0.0002 | 77.26 ± 6.28 | 77.72 ± 5.39 |
| Cariten (wt%) ** | 5.22 | 0.0033 | 3.45 ± 0.63 | 3.08 ± 0.65 |
| Unsapanifiable Matter 1 (wt%) ** | 4.57 | <0.001 | 3.44 ± 0.61 | 2.59 ± 0.53 |
| Unsaponifiable Matter 2-FFA (wt%) ** | 6.10 | 0.001 | 10.78 ± 3.99 | 10.83 ± 4.1 |
| Unsaponifiable Matter 3 (wt%) ** | 14.59 | <0.001 | 2.54 ± 0.56 | 1.99 ± 0.38 |
| TagMonoSOS (wt)% *** | 3.93 | 0.0122 | 33.22 ± 0.89 | 35.54 ± 3.01 |
| Height | Diam | Crown | NutL | NutW | Nutwght | KernL | KernW | Kernwght | CrudeFat | Digly | Trigly | Cariten | USM1 | USM2-FFA | USM3 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Diam | 0.79 *** | |||||||||||||||
| Crown | 0.69 *** | 0.81 *** | ||||||||||||||
| NutL | 0.43 | 0.23 | 0.29 | |||||||||||||
| NutW | 0.31 | 0.15 | 0.099 | 0.78 *** | ||||||||||||
| Nutwght | 0.51 | 0.29 | 0.29 | 0.84 *** | 0.86 *** | |||||||||||
| KernL | 0.41 | 0.14 | 0.24 | 0.95 *** | 0.75 *** | 0.82 *** | ||||||||||
| KernW | 0.47 | 0.27 | 0.24 | 0.65 *** | 0.85 *** | 0.90 *** | 0.67 *** | |||||||||
| Kernwght | 0.51 | 0.27 | 0.28 | 0.79 *** | 0.83 *** | 0.97 *** | 0.80 *** | 0.94 *** | ||||||||
| CrudeFat | –0.35 | –0.39 | –0.29 | –0.22 | –0.18 | –0.29 | –0.17 | –0.28 | –0.33 | |||||||
| Digly | –0.44 | –0.43 | –0.25 | –0.32 | –0.33 | –0.43 | –0.24 | –0.44 | –0.4 | 0.3 | ||||||
| Trigly | 0.14 | 0.12 | 0.11 | 0.19 | 0.17 | 0.14 | 0.18 | 0.11 | 0.086 | 0.18 | –0.48 | |||||
| Cariten | 0.14 | 0.067 | 0.053 | –0.049 | –0.037 | 0.023 | –0.096 | 0.025 | 0.055 | –0.45 | 0.018 | –0.69 *** | ||||
| USM1 | 0.32 | 0.36 | 0.22 | 0.035 | 0.077 | 0.21 | –0.013 | 0.25 | 0.26 | –0.56 | –0.21 | –0.60 *** | 0.79 *** | |||
| USM2-FFA | –0.13 | –0.12 | –0.1 | –0.16 | –0.18 | –0.13 | –0.15 | –0.11 | –0.08 | –0.11 | 0.46 | –0.96 *** | 0.55 *** | 0.46 | ||
| USM3 | 0.26 | 0.27 | 0.11 | 0.049 | 0.18 | 0.26 | 0.029 | 0.32 | 0.31 | –0.45 | –0.13 | –0.61 *** | 0.72 *** | 0.83 *** | 0.46 | |
| TAGMS | –0.26 | –0.24 | –0.23 | –0.24 | –0.22 | –0.33 | –0.21 | –0.26 | –0.33 | 0.54 | 0.038 | 0.16 | –0.24 | –0.28 | –0.17 | –0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Diallo, A.M.; Diallo, S.; Kariba, R.; Muthemba, S.; Ndalo, J.; Lompo, D.; Ravn, T.K.; Alyr, M.H.; Hendre, P. Assessing Phenotypes, Genetic Diversity, and Population Structure of Shea Germplasm (Vitellaria paradoxa subsp. paradoxa C.F.Gaertn.) from Senegal and Burkina Faso. Forests 2026, 17, 188. https://doi.org/10.3390/f17020188
Diallo AM, Diallo S, Kariba R, Muthemba S, Ndalo J, Lompo D, Ravn TK, Alyr MH, Hendre P. Assessing Phenotypes, Genetic Diversity, and Population Structure of Shea Germplasm (Vitellaria paradoxa subsp. paradoxa C.F.Gaertn.) from Senegal and Burkina Faso. Forests. 2026; 17(2):188. https://doi.org/10.3390/f17020188
Chicago/Turabian StyleDiallo, Adja Madjiguene, Sara Diallo, Robert Kariba, Samuel Muthemba, Jantor Ndalo, Djingdia Lompo, Tore Kiilerich Ravn, Mounirou Hachim Alyr, and Prasad Hendre. 2026. "Assessing Phenotypes, Genetic Diversity, and Population Structure of Shea Germplasm (Vitellaria paradoxa subsp. paradoxa C.F.Gaertn.) from Senegal and Burkina Faso" Forests 17, no. 2: 188. https://doi.org/10.3390/f17020188
APA StyleDiallo, A. M., Diallo, S., Kariba, R., Muthemba, S., Ndalo, J., Lompo, D., Ravn, T. K., Alyr, M. H., & Hendre, P. (2026). Assessing Phenotypes, Genetic Diversity, and Population Structure of Shea Germplasm (Vitellaria paradoxa subsp. paradoxa C.F.Gaertn.) from Senegal and Burkina Faso. Forests, 17(2), 188. https://doi.org/10.3390/f17020188

