Forest Landscape Transformation in the Ecotonal Watershed of Central South Africa: Evidence from Remote Sensing and Asymmetric Land Change Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources
2.3. Land Use Classification Workflow and Accuracy Validation
2.4. Land Use and Land Cover Change Detection Methods
2.5. Spatial Trend of Change (STC) Analysis
3. Results
3.1. Land Cover Transition Dynamics and Conversion Pathways
3.1.1. Temporal Transformation in Forest Dynamics
3.1.2. Asymmetric Trajectories of Forest Gain and Loss
3.1.3. Key Contributors to Net Changes in Forest Land
3.1.4. Spatial Distribution of Transitions from Other LULC Classes to Forest
3.1.5. Spatial Pattern of Forest Gain, Persistence, and Loss
3.1.6. Spatial Trend of Change Toward Forest Land (FL)
4. Discussion
4.1. Forest Dynamics and Ecological Implications (1990–2022)
4.1.1. Forest Decline Under Anthropogenic Pressure
4.1.2. Forest Recovery and Expansion (2014–2022)
4.1.3. Cumulative Dynamics: 1990–2022
4.1.4. Policy and Ecological Implications
4.2. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CUT | Central University of Technology |
| DFFE | Department of Forestry, Fisheries and the Environment |
| SDR | Secondary Drainage Region m |
| SANLC | South Africa National Land Cover |
| LCM | Land Change Modeler |
| EGIS | Environmental Geographic Information Systems |
| STC | Spatial Trend of Change |
References
- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO: Rome, Italy; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- King, J.A.; Weber, J.; Lawrence, P.; Roe, S.; Swann, A.L.S.; Val Martin, M. Global and Regional Hydrological Impacts of Global Forest Expansion. Biogeosciences 2024, 21, 3883–3902. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Polit. Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020. Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Ale, S.; Adjonou, K.; Segla, K.N.; Komi, K.; Zoungrana, J.B.B.; Aholou, C.; Kokou, K. Urban Forestry in Sub-Saharan Africa: Challenges, Contributions, and Future Directions for Combating Climate Change and Restoring Forest Landscapes. Sustainability 2025, 17, 24. [Google Scholar] [CrossRef]
- Boucher, D.; Lininger, K.; Saxon, E. The Drivers of Tropical Deforestation: A Comprehensive Review; American Geophysical Union: Cambridge, MA, USA, 2011. [Google Scholar]
- Bennett, A.C.; Dargie, G.C.; Cuni-Sanchez, A.; Mukendi, J.T.; Hubau, W.; Mukinzi, J.M.; Phillips, O.L.; Malhi, Y.; Sullivan, M.J.P.; Cooper, D.L.M.; et al. Resistance of African Tropical Forests to an Extreme Climate Anomaly. Proc. Natl. Acad. Sci. USA 2021, 118, e2003169118. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of the World’s Forests 2022. Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. Global Assessment Resources Forest 2025; FAO: Rome, Italy, 2025; ISBN 9788578110796. [Google Scholar]
- FAO. The Second Report on the State of the World’s Forest Genetic Resources; FAO Commission on Genetic Resources for Food and Agriculture Assessments; FAO: Rome, Italy, 2025; ISBN 9789251396995. [Google Scholar]
- Raza, A.; Syed, N.R.; Fahmeed, R.; Acharki, S.; Hussain, S.; Zubair, M.; Vishwakarma, D.K.; Gaur, A.; Singh, B.P.; Okasha, A.M.; et al. A Remote Sensing and GIS-Based Analysis of Forest Cover Changes and Carbon Sequestration Trends over Three Decades. Environ. Dev. 2025, 55, 101232. [Google Scholar] [CrossRef]
- Mahendra, J. Progress, Challenges and Opportunities on Global Forest Goal 3. In Proceedings of the Eighteenth Session of the United Nations Forum on Forests, New York, NY, USA, 6–10 May 2024. [Google Scholar]
- Wei, X.; Liu, Y.; Qi, L.; Chen, J.; Wang, G.; Zhang, L.; Liu, R. Monitoring Forest Dynamics in Africa during 2000–2020 Using a Remotely Sensed Fractional Tree Cover Dataset. Int. J. Digit. Earth 2023, 16, 2212–2232. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, J.; He, G.; Zhang, X.; Wang, H.; Long, T.; Zhang, Z.; Wang, W.; Yin, R.; Guo, Y.; et al. Data-Driven Forest Cover Change and Its Driving Factors Analysis in Africa. Front. Environ. Sci. 2022, 9, 780069. [Google Scholar] [CrossRef]
- Zhang, Y. Asymmetric impacts of tropical forest gain and loss on temperature due to forest growth revealed by satellite observation. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar] [CrossRef]
- Budiharta, S.; Meijaard, E.; Erskine, P.D.; Rondinini, C.; Pacifici, M.; Wilson, K.A. Restoring Degraded Tropical Forests for Carbon and Biodiversity. Environ. Res. Lett. 2014, 9, 114020. [Google Scholar] [CrossRef]
- Mukete, B.; Lori, T.; Mukete, T.; Mukete, N. Analysis of the Ipacts of Climate Variations Across Semi-Arid and Arid Regions of Southeast Africa. Asian Sci. Bull. 2024, 2, 105–111. [Google Scholar] [CrossRef]
- Points, K.E.Y. Planning for Climate Change in the Semi-Arid Regions of Southern Africa. 2015. Available online: http://hdl.handle.net/10625/57367 (accessed on 22 July 2025).
- Siyum, Z.G. Tropical Dry Forest Dynamics in the Context of Climate Change: Syntheses of Drivers, Gaps, and Management Perspectives. Ecol. Process. 2020, 9, 25. [Google Scholar] [CrossRef]
- Fritz, S.; Laso Bayas, J.C.; See, L.; Schepaschenko, D.; Hofhansl, F.; Jung, M.; Dürauer, M.; Georgieva, I.; Danylo, O.; Lesiv, M.; et al. A Continental Assessment of the Drivers of Tropical Deforestation with a Focus on Protected Areas. Front. Conserv. Sci. 2022, 3, e830248. [Google Scholar] [CrossRef]
- Galiatsatos, N.; Donoghue, D.N.M.; Watt, P.; Bholanath, P.; Pickering, J.; Hansen, M.C.; Mahmood, A.R.J. An Assessment of Global Forest Change Datasets for National Forest Monitoring and Reporting. Remote Sens. 2020, 12, 1790. [Google Scholar] [CrossRef]
- Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote Sensing of Forest Degradation: A Review. Environ. Res. Lett. 2020, 15, 103001. [Google Scholar] [CrossRef]
- Ait El Haj, F.; Ouadif, L.; Akhssas, A. Simulating and Predicting Future Land-Use/Land Cover Trends Using CA-Markov and LCM Models. Case Stud. Chem. Environ. Eng. 2023, 7, 100342. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Venter, Z.S.; Scott, S.L.; Desmet, P.G.; Hoffman, M.T. Application of Landsat-Derived Vegetation Trends over South Africa: Potential for Monitoring Land Degradation and Restoration. Ecol. Indic. 2020, 113, 106206. [Google Scholar] [CrossRef]
- Rutherford, M.C.; Mucina, L.; Powrie, L.W.; Rutherford, M. The South African National Vegetation Database: History, Development, Applications, Problems and Future. S. Afr. J. Sci. 2012, 108, 628. [Google Scholar] [CrossRef]
- Mabuda, M.O.; Shoko, C.; Dube, T.; Mazvimavi, D. An Analysis of the Effects of Changes in Land Use and Land Cover on Runoff in the Luvuvhu Catchment, South Africa. Remote Sens. Appl. Soc. Environ. 2024, 33, 101144. [Google Scholar] [CrossRef]
- Woyessa, Y.E.; Welderufael, W.A. Impact of Land-Use Change on Catchment Water Balance: A Case Study in the Central Region of South Africa. Geosci. Lett. 2021, 8, 34. [Google Scholar] [CrossRef]
- Gwate, O.; Woyessa, Y.E.; David, W. Dynamics of Land Cover and Impact on Stream Flow in the Modder River Basin of South Africa: Case Study of a Quaternary Catchment. Int. J. Environ. Prot. Policy 2015, 3, 31. [Google Scholar] [CrossRef]
- Allnutt, C.E.; Gericke, O.J.; Pietersen, J.P.J. Estimation of Time Parameter Proportionality Ratios in Large Catchments: Case Study of the Modder-Riet River Catchment, South Africa. J. Flood Risk Manag. 2020, 13, e12628. [Google Scholar] [CrossRef]
- Gericke, O.J.; Smithers, J.C. Direct Estimation of Catchment Response Time Parameters in Medium to Large Catchments Using Observed Streamflow Data. Hydrol. Process. 2017, 31, 1125–1143. [Google Scholar] [CrossRef]
- Gericke, O.J.; Smithers, J.C. An Improved and Consistent Approach to Estimate Catchment Response Time Parameters: Case Study in the C5 Drainage Region, South Africa. J. Flood Risk Manag. 2018, 11, S284–S301. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- DFFE. Environmental Geographic Information Systems (EGIS). Available online: https://www.dffe.gov.za/egis (accessed on 29 August 2025).
- DFFE. The 2022 South African National Land Cover Data and Its Operational Use. In Proceedings of the National NCA Forum, Pretoria, South Africa, 7–8 August 2024. [Google Scholar]
- SANLC. South African National Land Cover (SANLC)-Awesome-Gee-Community-Catalog. Available online: https://gee-community-catalog.org/projects/sa_nlc/ (accessed on 5 September 2025).
- Luncedo, N.; Kgaugelo, N. Sentinel-2 Land Cover Product Comparison: South African National Land Cover 2020 vs ESRI Global Land Cover 2020. Abstr. ICA 2023, 6, 186. [Google Scholar] [CrossRef]
- Eastman, J.R.; Crema, S.C.; Rush, H.R.; Zhang, K. A Weighted Normalized Likelihood Procedure for Empirical Land Change Modeling. Model. Earth Syst. Environ. 2019, 5, 985–996. [Google Scholar] [CrossRef]
- Clark Labs Land Change Modeler-Geospatial Analytics. Available online: https://www.clarku.edu/centers/geospatial-analytics/terrset-liberagis-features/land-change-modeler/ (accessed on 2 September 2025).
- USGS. EarthExplorer. U.S. Geological Survey. Available online: https://earthexplorer.usgs.gov/?utm_source=chatgpt.com (accessed on 2 September 2025).
- Midgley, D.C.; Pitman, W.V.; Middleton, B.J. Surface Water Resources of South Africa: Drainage Region C-the Vaal Basin. Available online: https://www.gettextbooks.com/isbn/9781868451562/ (accessed on 2 September 2025).
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; Strelitzia 19; South African National Biodiversity Institute: Pretoria, South Africa, 2011; ISBN 978-1919976-21-1. [Google Scholar]
- Fairbanks, D.H.K.; Thompson, M.W.; Vink, D.E.; Newbyb, T.S.; Van den Berg, H.M.; Edvard, D.A. The South African Land-Cover Characteristics Database: A Synopsis of the Landscape. S. Afr. J. Sci. 2000, 96, 69–82. [Google Scholar]
- Timm Hoffman, M. Changing Patterns of Rural Land Use and Land Cover in South Africa and Their Implications for Land Reform. J. S. Afr. Stud. 2014, 40, 707–725. [Google Scholar] [CrossRef]
- SANBI. Vegetation of South Africa: Nama-Karoo Biome. Available online: https://pza.sanbi.org/vegetation/nama-karoo-biome (accessed on 2 September 2025).
- Rutherford, M.C.; Powrie, L.W.; Husted, L.B. Plant Diversity Consequences of a Herbivore-Driven Biome Switch from Grassland to Nama-Karoo Shrub Steppe in South Africa. Appl. Veg. Sci. 2012, 15, 14–25. [Google Scholar] [CrossRef]
- Gericke, O.J.; Pietersen, J.P.J. Disaggregation of Fixed Time Interval Rainfall to Continuous Measured Rainfall for the Purpose of Design Rainfall Estimation. Water SA 2018, 44, 557–568. [Google Scholar] [CrossRef]
- Gericke, O.J.; Smithers, J.C. Derivation and Verification of Empirical Catchment Response Time Equations for Medium to Large Catchments in South Africa. Hydrol. Process. 2016, 30, 4384–4404. [Google Scholar] [CrossRef]
- Jacqueline, J. A The Setting of Resource Water Quality Objectives for the Modder-Riet River Catchment. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2014. [Google Scholar]
- DSSA. Census Statistics of South Africa 2022. Available online: https://www.open.africa/dataset/south-africa-census-2022 (accessed on 22 July 2025).
- Hoffman, T.; Ashwell, A. Nature Divided: Land Degradation in South Africa. S. Afr. J. Bot. 2003, 69, 116. [Google Scholar]
- DEFF. The 1990 South African National Land South African National Land-Cover Dataset: Implementation of Land-Use Maps for South Africa; DEFF: Pretoria, South Africa, 2015.
- DEFF. South African National Land Land-Cover Data User Report and MetaData; DEFF: Pretoria, South Africa, 2015; Volume 5, pp. 1–53.
- Thompson, M. South African National Land-Cover 2022 Accuracy Assessment Report (Public Release Report); DEFF: Pretoria, South Africa, 2024. [Google Scholar]
- Department of Environment Forestry and Fisheries (DEFF). South African National Land-Cover 2018/2020 Change Assessment Report (Public Release Report); DEFF: Pretoria, South Africa, 2022.
- DEFF. South African National Landcover 2022–Dataset–SAEOSS. Available online: https://saeoss.sansa.org.za/dataset/south_african_national_landcover_2022?utm_source=chatgpt.com (accessed on 28 October 2025).
- Clark Labs Idrisi Terrset to Terrset LiberaGIS-General-GISarea-Geographic Information Science Forum. Available online: https://www.gisarea.com/forums/topic/13640-idrisi-terrset-to-terrset-liberagis/ (accessed on 1 September 2025).
- Kouassi, J.L.; Gyau, A.; Diby, L.; Bene, Y.; Kouamé, C. Assessing Land Use and Land Cover Change and Farmers’ Perceptions of Deforestation and Land Degradation in South-West Côte d’Ivoire, West Africa. Land 2021, 10, 429. [Google Scholar] [CrossRef]
- Deba Enomah, L.; Downs, J.; Acheampong, M.; Yu, Q.; Tanyi, S. Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon. Remote Sens. 2025, 17, 2631. [Google Scholar] [CrossRef]
- Ryan, S.J.; Palace, M.W.; Hartter, J.; Diem, J.E.; Chapman, C.A.; Southworth, J. Population Pressure and Global Markets Drive a Decade of Forest Cover Change in Africa’s Albertine Rift. Appl. Geogr. 2017, 81, 52–59. [Google Scholar] [CrossRef]
- Trees–South Africa Forestry (SAF). Scaling Urban Nature-Based Solutions with. Available online: https://saforestryonline.co.za/articles/scaling-urban-nature-based-solutions-with-trees/ (accessed on 19 September 2025).
- SAFM. Forestry in South Africa: Sustainable Management and Economic Potential. Available online: https://farmersmag.co.za/2023/05/forestry-in-south-africa-sustainable-management-and-economic-potential/ (accessed on 18 September 2025).
- TFH. Trees for Homes (TFH)—Food & Trees for Africa. Available online: https://trees.org.za/csi-esd/corporate-social-investment/trees-for-homes/?utm_source=chatgpt.com (accessed on 16 September 2025).
- FAO. The State of the World’s Forests 2024—Forest-Sector Innovations Towards a More Sustainable Future; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse Gas Emissions from Tropical Forest Degradation: An Underestimated Source. Carbon Balance Manag. 2017, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Qiu, R.; Yao, J.; Hu, X.; Lin, J. The Effects of Urbanization on China’s Forest Loss from 2000 to 2012: Evidence from a Panel Analysis. J. Clean. Prod. 2019, 214, 270–278. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- DFFE. Forestry Management Programme. Ten Million Trees: Department of Forestry, Fisheries, and the (DFFE). Available online: https://www.dffe.gov.za/index.php/fom_projectsprogrammes_tenmilliontrees?utm_source=chatgpt.com (accessed on 16 September 2025).
- Emiru, B.; Tefera, M.; Yigremachew, S.; Niguse, H.; Putzel, L.; Mekonen, M.R.; Habtemariam, K. Exclosures as Forest and Landscape Restoration Tools: Lessons from Tigray Region, Ethiopia Exclos Comme Instruments de Restauration de La Forêt et Du Paysage: Leçons Provenant de La Région Tigray, En Ethiopie Los Recintos Como Herramientas Para La Restaur. Int. For. Rev. 2017, 19, 37. [Google Scholar]
- Toto, R.; Alix-García, J.; Sims, K.R.E.; Coutinho, B.; Muñoz Brenes, C.; Pugliese, L.; Mendes, A.F. Evidence on Scaling Forest Restoration from the Atlantic Forest Restoration Pact in Brazil. Nat. Commun. 2025, 16, 4715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiapaer, G.; Yu, T.; Liang, H.; Chen, B.; Lin, K.; Ju, T.; De Maeyer, P.; Van De Voorde, T. Forest Dynamics and Responses to Climate Change and Human Activities in the Arid and Semiarid Regions of the Altai Mountains, China. J. Plant Ecol. 2025, 18, rtaf001. [Google Scholar] [CrossRef]
- FAO; Plan Bleu. State of Mediterranean Forests 2018; FAO: Rome, Italy; Plan Bleu: Marseille, France, 2018. [Google Scholar]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest Transitions: Towards a Global Understanding of Land Use Change. Glob. Environ. Change 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Wilson, S.J.; Schelhas, J.; Grau, R.; Nanni, A.S.; Sloan, S. Forest Ecosystem-Service Transitions: The Ecological Dimensions of the Forest Transition. Ecol. Soc. 2017, 22, 38. [Google Scholar] [CrossRef]
- da Silva, R.F.B.; Millington, J.D.A.; Yue, D.; Vancine, M.H.; Magnago, L.F.S.; Viña, A.; Bin, F.; Huesca, M.; Viera, S.A.; Liu, J. Secondary Natural Vegetation Gains in the Atlantic Forest Do Not Offset Losses of Carbon Stocks and Conservation of Priority Areas. Biol. Conserv. 2025, 312, 111512. [Google Scholar] [CrossRef]
- Precinoto, R.S.; Prieto, P.V.; de Souza Lima Figueiredo, M.; Lorini, M.L. Edges as Hotspots and Drivers of Forest Cover Change in a Tropical Landscape. Perspect. Ecol. Conserv. 2022, 20, 314–321. [Google Scholar] [CrossRef]
- UNEP; FAO. The World’s Forests: Forests Biodiversity and People; UNEP: Nairobi, Kenya, 2020; Volume 14, ISBN 9789251324196. [Google Scholar]
- Clark Labs TerrSet: Advancing Geospatial Technology for Sustainable Development—Geospatial Analytics. Available online: https://www.clarku.edu/centers/geospatial-analytics/uncategorized/terrset-advancing-geospatial-technology-for-sustainable-development/ (accessed on 1 September 2025).
- McNicol, I.M.; Keane, A.; Burgess, N.D.; Bowers, S.J.; Mitchard, E.T.A.; Ryan, C.M. Protected Areas Reduce Deforestation and Degradation and Enhance Woody Growth across African Woodlands. Commun. Earth Environ. 2023, 4, 392. [Google Scholar] [CrossRef]
- Mugwedi, L.F.; Ray-Mukherjee, J.; Roy, K.E.; Egoh, B.N.; Pouzols, F.M.; Douwes, E.; Boon, R.; O’Donoghue, S.; Slotow, R.; Di Minin, E.; et al. Restoration Planning for Climate Change Mitigation and Adaptation in the City of Durban, South Africa. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 132–144. [Google Scholar] [CrossRef]
- Nolander, C.; Lundmark, R. A Review of Forest Ecosystem Services and Their Spatial Value Characteristics. Forests 2024, 15, 919. [Google Scholar] [CrossRef]
- IUCN. Forests and Climate Change; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2021. [Google Scholar]
- Wigley, B.J.; Bond, W.J.; Hoffman, M.T. Thicket Expansion in a South African Savanna under Divergent Land Use: Local vs. Global Drivers ? Glob. Change Biol. 2010, 16, 964–976. [Google Scholar] [CrossRef]
- Mugari, E. Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana. Land 2022, 11, 2057. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. Carbon Dioxide and the Uneasy Interactions of Trees and Savannah Grasses. Philos. Trans. R. Soc. B Biol. Sci. 2014, 367, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Ramjeawon, M.; Demlie, M.; Toucher, M.L.; van Rensburg, S.J. Analysis of Three Decades of Land Cover Changes in the Maputaland Coastal Plain, South Africa. Koedoe 2020, 62, a1642. [Google Scholar] [CrossRef]










| Class Names | Grouped Values | 1990 | 2014 | 2022 |
|---|---|---|---|---|
| BL | 1 | 40–41 | 40–41 | 25–31 |
| B | 2 | 42–72 | 42–72 | 47–67 |
| C | 3 | 10–31 | 10–31 | 32–46, 73 |
| FL | 4 | 4–6, 32–34 | 4–6, 32–34 | 1–7 |
| GL | 5 | 7 | 7 | 12–13 |
| MQ | 6 | 35–39 | 35–39 | 68–72 |
| SH | 7 | 8–9 | 8–9 | 8–11 |
| WB | 8 | 1–2 | 1–2 | 14–21 |
| WL | 9 | 3 | 3 | 22–24 |
| Classes | BL | B | C | FL | GL | MQ | SH | WB | WL | Total | % | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1990–2014 | BL | 64.3 | 0.6 | 1 | 4 | 18.6 | 0.4 | 78.9 | 7.6 | 4.6 | 180.1 | 0.5 |
| B | 2.2 | 370 | 3.8 | 14 | 44.2 | 0.2 | 13.1 | 0.2 | 0.8 | 449 | 1.3 | |
| C | 2.1 | 1.7 | 4361 | 56 | 306.9 | 0.1 | 245.2 | 0.6 | 15 | 4989 | 14 | |
| FL | 10.1 | 10 | 29.1 | 260 | 208.2 | 5 | 122.5 | 16.2 | 51 | 712.2 | 2 | |
| GL | 20.5 | 8.3 | 234 | 278 | 4953 | 7.2 | 1579 | 33.9 | 154 | 7268 | 20.44 | |
| MQ | 0.1 | 0.2 | 1 | 4 | 6.9 | 79 | 1.187 | 0.1 | 1 | 93.11 | 0.3 | |
| SH | 237 | 7.2 | 401 | 221 | 7946.8 | 6 | 12,319 | 51.3 | 230 | 21,420 | 60.22 | |
| WB | 5.23 | 0 | 0.16 | 1.6 | 3 | 0 | 1 | 74.2 | 1.5 | 86.73 | 0.24 | |
| WL | 4.8 | 0.5 | 2 | 10 | 15 | 0.5 | 9.3 | 191 | 138 | 371.4 | 1 | |
| Total | 346 | 399 | 5033 | 849 | 13,503 | 98 | 14,370 | 375 | 596 | 35,570 | 100 | |
| % | 1 | 1.1 | 14 | 2.4 | 38 | 0.3 | 40.4 | 1.1 | 1.7 | 100 | ||
| 2014–2022 | BL | 16.6 | 1 | 0.5 | 5.6 | 15.2 | 0.3 | 77.6 | 0.3 | 29 | 145.9 | 0.4 |
| B | 4.5 | 411 | 12.6 | 18 | 30.1 | 0.8 | 43.3 | 0.04 | 0.7 | 521.4 | 2 | |
| C | 2.2 | 15 | 4665 | 43 | 376.2 | 0.5 | 732.3 | 0.3 | 2.8 | 5838 | 16 | |
| FL | 7.4 | 8.4 | 45.5 | 285 | 609.4 | 4.2 | 1068 | 1.7 | 7.9 | 2037 | 6 | |
| GL | 108 | 13 | 256 | 309 | 6153.5 | 37 | 19,314 | 1.9 | 60 | 26,252 | 74 | |
| MQ | 1.4 | 0.5 | 0.52 | 2.6 | 1.6 | 33 | 3.072 | 0.02 | 0.7 | 43.02 | 0.1 | |
| SH | 29 | 0.1 | 1.64 | 2.5 | 8.2 | 4.3 | 83.2 | 0.3 | 28 | 157.2 | 0.4 | |
| WB | 10.5 | 0.4 | 5.6 | 39 | 55.5 | 13 | 72.3 | 81.9 | 194 | 471.3 | 1 | |
| WL | 0.8 | 0.2 | 1.2 | 7.1 | 18.6 | 0.3 | 26.6 | 0.4 | 49 | 104 | 0.3 | |
| Total | 180 | 450 | 4989 | 712 | 7268.4 | 93 | 21,420 | 86.7 | 371 | 35,570 | 100 | |
| % | 0.5 | 1.3 | 14 | 2 | 20.44 | 0.3 | 60.22 | 0.24 | 1 | 100 | ||
| 1990–2022 | BL | 29.5 | 0.1 | 0.3 | 6.5 | 19.9 | 0.3 | 53.9 | 11.8 | 23 | 145.1 | 0.4 |
| B | 4.24 | 357 | 14.4 | 25 | 80.1 | 0.9 | 36.4 | 0.19 | 3.5 | 521.4 | 2 | |
| C | 4.37 | 15 | 4820 | 58 | 503.4 | 0.2 | 422 | 0.42 | 14 | 5838 | 16 | |
| FL | 22.3 | 10 | 31.1 | 318 | 840.1 | 4.9 | 708.8 | 5.01 | 97 | 2037 | 6 | |
| GL | 239 | 15 | 160 | 399 | 11,979 | 43 | 13,032 | 46.2 | 338 | 26,252 | 74 | |
| MQ | 1.05 | 0.4 | 0.8 | 2.9 | 3.6497 | 31 | 2.6 | 0.15 | 0.6 | 43.0 | 0.1 | |
| SH | 30.2 | 0.2 | 0.95 | 2.2 | 10.8 | 4.9 | 75.6 | 15.5 | 17 | 157.2 | 0.4 | |
| WB | 13.5 | 0.3 | 4.3 | 27 | 40.9 | 12 | 24.1 | 289 | 59 | 471.3 | 1 | |
| WL | 2 | 0.5 | 0.96 | 11 | 25.194 | 0.4 | 13.8 | 6.56 | 44 | 104 | 0.3 | |
| Total | 346 | 399 | 5033 | 849 | 13,503 | 98 | 14,370 | 375 | 596 | 35,570 | 100 | |
| % | 1 | 1.1 | 14 | 2.4 | 38 | 0.3 | 40.4 | 1.1 | 1.7 | 100 |
| ARC and NC | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 1990–2014 | 2014–2022 | 1990–2022 | |||||||
| Classes | NC (km2) | NC (%) | ARC (km2) | NC (km2) | NC (%) | ARC (km2) | NC (km2) | NC (%) | ARC (km2) |
| BL | −166 | −48 | −6.9 | −34.2 | −19 | −4.3 | −201.2 | −58.1 | −6.3 |
| B | 49.7 | 12.5 | 2.07 | 71.52 | 15.9 | 8.94 | 122.1 | 30.6 | 3.8 |
| C | −45 | −1 | −1.9 | 849.6 | 17.03 | 106.2 | 804.6 | 16 | 25.1 |
| FL | −137 | −16.2 | −5.7 | 1325 | 186 | 165.6 | 1188 | 139.8 | 37.1 |
| GL | −6234 | −46.2 | −260 | 18,984 | 261.2 | 2373 | 12,750 | 94.4 | 398 |
| MQ | −4.95 | −5.1 | −0.2 | −50.09 | −53.8 | −6.26 | −55 | −56.1 | −1.7 |
| SH | 7050 | 49.1 | 294 | −21,263 | −99.3 | −2658 | −14,212 | −98.9 | −444 |
| WB | −289 | −76.9 | −12 | 384.6 | 443.5 | 48.08 | 96.11 | 25.6 | 3 |
| WL | −224 | −37.7 | −9.3 | −267.3 | −72 | −33.4 | −491.6 | −82.5 | −15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hussien, K.; Woyessa, Y.E. Forest Landscape Transformation in the Ecotonal Watershed of Central South Africa: Evidence from Remote Sensing and Asymmetric Land Change Analysis. Forests 2026, 17, 64. https://doi.org/10.3390/f17010064
Hussien K, Woyessa YE. Forest Landscape Transformation in the Ecotonal Watershed of Central South Africa: Evidence from Remote Sensing and Asymmetric Land Change Analysis. Forests. 2026; 17(1):64. https://doi.org/10.3390/f17010064
Chicago/Turabian StyleHussien, Kassaye, and Yali E. Woyessa. 2026. "Forest Landscape Transformation in the Ecotonal Watershed of Central South Africa: Evidence from Remote Sensing and Asymmetric Land Change Analysis" Forests 17, no. 1: 64. https://doi.org/10.3390/f17010064
APA StyleHussien, K., & Woyessa, Y. E. (2026). Forest Landscape Transformation in the Ecotonal Watershed of Central South Africa: Evidence from Remote Sensing and Asymmetric Land Change Analysis. Forests, 17(1), 64. https://doi.org/10.3390/f17010064

