Study on the Natural Durability of Quercus pyrenaica Willd. to Wood Decay Fungi and Subterranean Termites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- Basidiomycete fungi: Coniophora puteana (Schumacher ex Fries) Karsten, strain BAM Ebw 15, and Trametes versicolor (Linnaeus) Quélet, strain CTBA 863A.
- Social insect: the species Reticulitermes grassei (Clément), a subterranean termite, most frequent found in the Iberian Peninsula, from the ICIFOR-INIA hatchery DAGARD Iberica (Madrid, Spain).
2.2. Methods
2.2.1. Natural Durability Test Against Basidiomycete Fungi
2.2.2. Natural Durability Test Against Reticulitermes Grassei
2.2.3. Statistical Study
3. Results
3.1. Natural Durability Test Against Basidiomycete Fungi
3.2. Natural Durability Test Against Reticulitermes Grassei
3.3. Statistical Study
4. Discussion
5. Conclusions
- The heartwood of Quercus pyrenaica is highly durable against both xylophages basidiomycetes and subterranean termites.
- The sapwood of this species is moderately durable against Coniophora puteana and slightly durable–not durable against Trametes versicolor.
- The sapwood of Quercus pyrenaica is moderately durable against termites.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafizoglu, H.; Ozalp, M. Investigation of changes in chemical compounds of nonimpregnated pine specimens used in water cooling towers. Baroda 2008, 10, 43–44. [Google Scholar]
- Jeon, Y.J.; Kim, Y.H. Consideration of wood application plan by living SOC through analysis of overseas wooden buildings. Korea Inst. Ecol. Archit. Environ. 2022, 232, 79–86. [Google Scholar] [CrossRef]
- Sterman, J.; Moomaw, W.; Rooney-Varga, J.N.; Siegel, L. Does wood bioenergy help or harm the climate? Bull. At. Sci. 2022, 78, 128–138. [Google Scholar] [CrossRef]
- Hasan, M.; Despot, R.; Sinković, T.; Jambreković, V.; Bogner, A.; Humar, M. The influence of sterilisation by gamma radiation on natural durability of wood. Wood Res. 2008, 53, 23–34. [Google Scholar]
- Yasar, M.; Altunok, M. Some physical and mechanical properties of impregnated chestnut wood with natural and chemical agent exposed to outdoor conditions. J. Polytech. 2019, 22, 399–406. [Google Scholar] [CrossRef]
- Yalinkilic, A.C.; Aksoy, E.; Atar, M.; Cinar, H.; Keskin, H. Eco-design: Impacts of bleaching chemicals and varnishes on the amount of carbon dioxide in the combustion of oriental beech (Fagus orientalis lipsky). Wood Res. 2021, 66, 379–390. [Google Scholar] [CrossRef]
- Horisawa, S.; Yoshida, M.; Umezawa, K.; Wada, T.; Abe, H.; Doi, S.; Samejima, M.; Momohara, I. Diversity and community structure of wood-inhabiting fungi found in Japanese wooden houses analyzed by the next-generation sequencing. J. Wood Sci. 2017, 63, 369–378. [Google Scholar] [CrossRef]
- Torres-Andrade, P.; Morrel, J.J.; Cappellzaai, J.; Stone, J.K. Culture-based identification to examine spatiotemporal patterns of fungal communities colonizing wood in ground contact. Mycologia 2019, 111, 703–718. [Google Scholar] [CrossRef]
- Kim, T.; Ra, J.B. Decay hazard (Sheffer) index values in Korea for exterior aboveground wood. For. Prod. J. 2013, 63, 91–94. [Google Scholar]
- Kim, T.; Ra, J.B. Change of decay hazard index (Scheffer index) for exterior above-ground wood in Korea. J. Korean Wood Sci. Technol. 2014, 42, 732–739. [Google Scholar] [CrossRef][Green Version]
- Oh, J.-J.; Choi, Y.-S.; Kim, G.-S.; Kim, G.-H. Assessment of the Effects of Projected Climate Change on the Potential Risk of Wood Decay in Korea. J. Cult. Herit. 2022, 55, 43–47. [Google Scholar] [CrossRef]
- Paes, J.B. Resistência natural da madeira de Corymbia maculata (Hook.) KD Hill & LAS Johnson a fungos e cupins xilófagos, em condições de laboratório. Árvore 2002, 26, 761–767. [Google Scholar] [CrossRef][Green Version]
- Paes, J.B.; Morais, V.D.M.; Lima, C.R.D. Resistência natural de nove madeiras do semi-árido brasileiro a fungos causadores da prodridão-mole. Árvore 2005, 29, 365–371. [Google Scholar] [CrossRef]
- Calonego, F.W.; Severo, E.T.D.; Furtado, E.L. Decay resistance of thermally-modified Eucalyptus grandis wood at 140 °C, 160 °C, 180 °C, 200 °C and 220 °C. Bioresour. Technol. 2010, 101, 9391–9394. [Google Scholar] [CrossRef] [PubMed]
- Sundararaj, R.; Shanbhag, R.R.; Nagaveni, H.C.; Vijayalakshmi, G. Natural durability of timbers under Indian environmental conditions–An overview. Int. Biodeterior. Biodegrad. 2015, 103, 196–214. [Google Scholar] [CrossRef]
- Martín, J.A.; López, R. Biological Deterioration and Natural Durability of Wood in Europe. Forests 2023, 14, 283. [Google Scholar] [CrossRef]
- Scheffer, T.C.; Morrell, J.J. Natural durability of wood: A worldwide checklist of species. For. Res. Lab. Oregon State Univ. Res. Contrib. 1998, 22, 58. [Google Scholar]
- Stirling, R.; Sturrock, R.N.; Braybrooks, A. Fungal decay of western red cedar wood products—A review. Int. Biodeterior. Biodegrad. 2017, 125, 105–115. [Google Scholar] [CrossRef]
- Deklerck, V.; De Ligne, L.; Van den Buckle, J.; Espinoza, E.; Beeckman, H.; Van Acker, J. Determining the natural durability on xylarium samples: Mini-block test and chemical profiling. In Proceedings of the 50th Conference of the International Research Group on Wood Protection (IRG Conference 2019), Quebec, QC, Canada, 12–16 May 2019; pp. 1–12. [Google Scholar]
- Daniel, G.; Nilsson, T.; Cragg, S. Limnoria lignorum Ingest Bacterial and Fungal Degraded Wood. Eur. J. Wood Wood Prod. 1991, 49, 488–490. [Google Scholar] [CrossRef]
- Daniel, G.; Nilsson, T. Developments in the Study of Soft Rot and Bacterial Decay. In Forest Products Biotechnology; CRC Press: Boca Raton, FL, USA, 1997; pp. 47–72. ISBN 0-429-07945-1. [Google Scholar]
- Daniel, G. Fungal degradation of wood cell walls. In Secondary Xylem Biology; Kim, Y.S., Funada, R., Singh, A.P., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 131–167. [Google Scholar]
- Scheffer, T.C.; Cowling, E. Natural Resistance of Wood to Microbial Deterioration. Annu. Rev. Phytopathol. 1966, 4, 147–168. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R. Wood Decay under the Microscope. Fungal Biol. Rev. 2007, 21, 33–170. [Google Scholar] [CrossRef]
- Candelier, K.; Gerard, J.; Thevenon, M.; Thibaut, B. Surveyon the natural resistance to decay of five hundred tropical woodspecies. Bois For. Trop. 2023, 358, 5365. [Google Scholar] [CrossRef]
- Loehle, C. Tree Life History Strategies: The Role of Defenses. Can. J. For. Res. 1988, 18, 209–222. [Google Scholar] [CrossRef]
- Scalbert, A. Tannins in Woods and Their Contribution to Microbial Decay Prevention. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Plenum Press: New York, NY, USA, 1992; pp. 935–952. [Google Scholar] [CrossRef]
- Charrier, B.; Haluk, J.P.; Klumpers, J.; Janin, G. Characterisation of European oak wood constituents acting in the brown discoloration during kiln drying. Holzforschung 1995, 49, 168–172. [Google Scholar] [CrossRef]
- Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32138-5. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B.; Kržišnik, D. Tehnična in estetska življenjska doba lesa. Acta Silvae Ligni 2020, 121, 33–48. [Google Scholar] [CrossRef]
- Eriksson, K.-E.L.; Blanchette, R.A.; Ander, P. Biodegradation of Lignin. In Microbial and Enzymatic Degradation of Wood and Wood Components; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1990; pp. 225–333. ISBN 978-3-642-46689-2. [Google Scholar]
- Li, T.; Cui, L.; Song, X.; Cui, X.; Wei, Y.; Tang, L.; Mu, Y.; Xu, Z. Wood decay fungi: An analysis of worldwide research. J. Soils Sediments 2022, 22, 1688–1702. [Google Scholar] [CrossRef]
- Kubicek, C.P. Fungi and Lignocellulosic Biomass; John Wiley & Sons: New York, NY, USA, 2012; ISBN 978-0-470-96009-7. [Google Scholar] [CrossRef]
- Råberg, U.; Edlund, M.-L.; Terziev, N.; Land, C.J. Testing and Evaluation of Natural Durability of Wood in above Ground Conditions in Europe–an Overview. J. Wood Sci. 2005, 51, 429–440. [Google Scholar] [CrossRef]
- Brischke, C.; Meyer, L.; Alfredsen, G.; Humar, M.; Francis, L.; Flæte, P.-O.; Larsson-Brelid, P. Natural durability of timber exposed above ground—A survey. Drv. Ind. 2013, 64, 113–129. [Google Scholar] [CrossRef]
- Hiltunen, S.; Mankinen, A.; Javed, M.A.; Ahola, S.; Venäläinen, M.; Telkki, V.-V. Characterization of the decay process of scots pine caused by Coniophora puteana using NMR and MRI. Holzforschung 2020, 74, 1021–1032. [Google Scholar] [CrossRef]
- Karim, M.; Daryaei, M.G.; Torkaman, J.; Oladi, R.; Ghanbary, M.A.T.; Bari, E.; Yilgor, N. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor. An. Acad. Bras. Cienc. 2017, 89, 2647–2655. [Google Scholar] [CrossRef]
- Abe, T.; Bignell, D.E. Termites: Evolution, Sociality, Symbioses, Ecology; Higashi, M., Ed.; Springer: Dordrecht, The Netherlands, 2000; ISBN 978-90-481-5476-0. [Google Scholar]
- Vargo, E.L.; Husseneder, C. Biology of Subterranean Termites: Insights from Molecular Studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 2009, 54, 379–403. [Google Scholar] [CrossRef]
- EN-350:2016; Durability of Wood and Wood-Based Products-Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. European Committee for Standardization: Brussels, Belgium, 2016; 67p.
- Aloui, F.; Ayadi, N.; Charrier, F.; Charrier, B. Durability of European oak (Quercus petraea and Quercus robur) against white rot fungi (Coriolus versicolor): Relations with phenol extractives. Holz Roh-Werkst. 2004, 62, 286–290. [Google Scholar] [CrossRef]
- Wang, J.Y.; Stirling, R.; Morris, P.I.; Taylor, A.; Lloyd, J.; Kirker, G.; Lebow, S.; Mankowski, M.E.; Barnes, H.M.; Morrell, J.J. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 2018, 50, 110–127. [Google Scholar] [CrossRef]
- Stadlmann, A.; Pramreiter, M.; Stingl, R.; Kurzböck, C.; Jost, T.; Müller, U. Durability of Wood Exposed to Alternating Climate Test and Natural Weathering. Forest 2020, 11, 953. [Google Scholar] [CrossRef]
- EN 113-2:2021; Durability of Wood and Wood-Based Products-Test Method Against Wood Destroying Basidiomycetes-Part 2: Assessment of Inherent or Enhanced Durability. European Committee for Standardization: Brussels, Belgium, 2021; 29p.
- EN 117:2023; Wood Preservatives-Determination of Toxic Values Against Reticulitermes Species (European Termites) (Laboratory Method). European Committee for Standardization: Brussels, Belgium, 2023; 21p.
- Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). Tercer Inventario Forestal Nacional. 2021. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-forestal-nacional/ (accessed on 15 September 2025).
- Matías, L.; Jump, A.S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 2014, 65, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Sánchez de Dios, R.; DeSoto, L.; Cortón, B.; Hernández, L. The renaissance of mixed forests? New insights into shifts in tree dominance and composition following centuries of human-induced simplification of Iberian forests. Ecosystems 2023, 26, 1159–1172. [Google Scholar] [CrossRef]
- Bratu, I.; Dinca, L.; Constandache, C.; Murariu, G. Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests. Climate 2025, 13, 119. [Google Scholar] [CrossRef]
- Fernández-Parajes, J.; Díaz-Maroto, I.J.; Vila-Lameiro, P. Physical and mechanical properties of rebollo oak (Quercus pyrenaica Willd.) wood in Galicia (Spain). Wood Res. 2005, 50, 1–15. [Google Scholar]
- Ruppitsch, W.; Lebow, P.; Lebow, S.; Taylor, A. Role of tyloses in the durability of chestnut oak. Wood Fiber. Sci. 2021, 53, 126–146. [Google Scholar] [CrossRef]
- Kerzic, E.; Humar, M.; Oven, P.; Vek, V. Development of extraction methodology for identification of extractive-compounds indexing natural durability of selected wood species. Wood Mater. Sci. Eng. 2023, 18, 1940–1950. [Google Scholar] [CrossRef]
- Humar, M.; Fabcic, B.; Zupancic, M.; Pohleven, F.; Oven, P. Influence of xylem growth ring width and wood density on durability of oak heartwood. Int. Biodeter. Biodegr. 2008, 62, 368–371. [Google Scholar] [CrossRef]
- Humar, M.; Balzano, A.; Grbec, S.; Gricar, J.; Krzisnik, D.; Lesar, B.; Vek, V. Durability, chemical composition and moisture performance of pubescent oak (Quercus pubescens). In 9th Hardwood Proceedings—Part I. With Special Focus on “An Underutilized Resource: Hardwood Oriented Research; University of Sopron Press: Sopron, Hungary, 2020; Volume 9, pp. 113–120. [Google Scholar]
- Curnel, Y.; Jacques, D.; Gierlinger, N.; Paques, L.E. Variation in the decay resistance of larch to fungi. Ann. Forest. Sci. 2008, 65, 810. [Google Scholar] [CrossRef]
- Ontiveros-Moreno, Y.; Colín-Urieta, S.; Corral-Rivas, J.J.; Hernández-Díaz, J.C.; Prieto-Ruíz, J.A.; Carrillo-Parra, A. Natural durability of timber species exposed to xylophagous fungi in southern Durango, Mexico. PeerJ 2023, 11, e14541. [Google Scholar] [CrossRef]
- Guilley, E.; Charpentier, J.P.; Ayadi, N.; Snakkers, G.; Nepveu, G.; Charrier, B. Decay resistance against Coriolus versicolor in Sessile oak (Quercus petraea Liebl.): Analysis of the between-tree variability and correlations with extractives, tree growth and other basic wood properties. Wood Sci. Technol. 2004, 38, 539–554. [Google Scholar] [CrossRef]
- Yoon, S.M.; Kim, M.J.; Hwang, W.J.; Lee, H.M.; Park, Y.; Son, D.W.; Kim, Y.S.; Choi, Y.S. Natural durability and fungal diversity of five wood species in a field-test site in Jeongseon, Korea. Holzforschung 2023, 77, 577–584. [Google Scholar] [CrossRef]
- Ministerio de Transportes, Movilidad y Agenda Urbana. Código Técnico de la Edificación: Seguridad Estructural. Madera (CTE DB SE-M): Normativa—29 Diciembre 2024 de Leyes Técnicas Ministerio de Transportes, Movilidad y Agenda Urbana; Ministerio de Transportes, Movilidad y Agenda Urbana: Madrid, Spain, 2024.
- Unger, A.; Schniewind, A.; Unger, W. Conservation of Wood Artifacts: A Handbook; Natural Science in Archaeology; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-540-41580-0. [Google Scholar]
- Humar, M.; Lesar, B.; Kržišnik, D. Ocena stanja lesenega kipa Japonski festival Tanake Eisakuja = Assessment of the condition of Japanese Festival, a wooden sculpture by Tanaka Eisaku. Acta Silvae Ligni 2022, 127, 1–12. [Google Scholar] [CrossRef]
- Wagenführ, R. Holzatlas (The Atlas of Wood), 4th ed.; Fachbuchverlag: Leipzig, Germany, 2014. [Google Scholar]
- Lesar, B.; Hasanagic, R.; Bahmani, M.; Humar, M. Assessment of Condition of Wooden Mill in Kovačevići Area in Bosnia and Herzegovina. Drv. Ind. 2024, 75, 59–67. [Google Scholar] [CrossRef]
- Schwarze, F.; Baum, S.; Fink, S. Dual Modes of Degradation by Fistulina Hepatica in Xylem Cell walls of Quercus robur. Mycol. Res. 2000, 104, 846–852. [Google Scholar] [CrossRef]
- Schwarze, F.; Lonsdale, D.; Mattheck, C. Detectability of Wood Decay Caused by Ustulina deusta in Comparison with Other Tree-decay Fungi. Eur. J. For. Pathol. 1995, 25, 327–341. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Major sources, properties and applications. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 179–200. ISBN 9780080453163. [Google Scholar] [CrossRef]
- Masson, G.; Moutounet, M.; Puech, J.-L. Ellagitannin Content of Oak Wood as a Function of Species and of Sampling Position in the Tree. Am. J. Enol. Vitic. 1995, 46, 262–268. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Charrier, B.; Crouch, N.; Janin, G.; Savill, P.S. Variation in the composition and content of ellagitannins in the heartwood of European oaks (Quercus robur and Quercus petraea). A comparison of two French forests and variation within heartwood age. Ann. Sci. For. 1996, 53, 1005–1018. [Google Scholar] [CrossRef]
- Boury, S. Relation Entre la Qualite des Placages Constitutifs et les Caracteristiques D’Un Lvl de Chene (Quercus petreae Liebl. et Quercus robur L. P. P.): Usinabilite et Durabilite. Ph.D. Thesis, École Nationale Supérieure D’Arts et Métiers, Paris, France, 12 June 1998; 153p. [Google Scholar]
- Solár, R. Chémia Dreva (Chemistry of Wood); Technical University of Zvolen: Zvolen, Slovakia, 2001; pp. 21–26. [Google Scholar]
- Carvalho, D.E.; Martins, A.P.M.; Santini, E.J.; Freitas, L.S.D.; Talgatti, M.; Susin, F. Natural durability of Eucalyptus dunnii Maiden, Eucalyptus robusta Sm., Eucalyptus tereticornis Sm. and Hovenia dulcis Thunb. wood in field and forest environment. Árvore 2016, 40, 363–370. [Google Scholar] [CrossRef][Green Version]
- de la Cruz Carrera, R.; Carrillo Parra, A.; Nájera Luna, J.A.; Cruz Cobos, F.; Hernández, F.J.; Méndez González, J. Durabilidad Natural de La Madera de Siete Especies Forestales de El Salto, Durango. Rev. Mex. Cienc. For. 2018, 9, 102–130. [Google Scholar] [CrossRef][Green Version]
- Peng, S.; Scalbert, A.; Monties, B. Insoluble Ellagitannins in Castanea sativa and Quercus petraea Woods. Phytochemistry 1991, 30, 775–777. [Google Scholar] [CrossRef]
- Baas, P. A new multilingual glossary of terms used in wood anatomy. IAWA J. 1983, 6, 83. [Google Scholar] [CrossRef]
- De Micco, V.; Balzano, A.; Wheeler, E.A.; Baas, P. Tyloses and gums: A review of structure, function and occurrence of vessel occlusions. IAWA J. 2016, 37, 186–205. [Google Scholar] [CrossRef]
- Ayadi, N.; Charrier, B.; Irmouli, M.; Charpentier, J.P.; Jay Allemand, C.; Feuillat, F.; Keller, R. Interspecific variability of European oak durability against white rot fungi (Coriolus versicolor): Comparison between sessile oak and peduncle oak (Quercus petraea and Quercus robur). In Proceedings of the 32nd International Conference of IRG, Nara, Japan, 20–25 May 2001; 7p. [Google Scholar]
- Miranda, M.T.; Arranz, J.I.; Rojas, S.; Montero, I. Energetic characterization of densified residues from Pyrenean oak forest. Fuel 2009, 88, 2106–2112. [Google Scholar] [CrossRef]
- Loureiro, T.; Gonçalves, B.; Serra, L.; Martins, Â.; Cortez, I.; Poeta, P. Histological analysis of Xylella fastidiosa infection in Quercus pyrenaica in Northern Portugal. AIMS Agric. Food 2024, 9, 607–627. [Google Scholar] [CrossRef]
- Royer, M.; Rodrigues, A.M.S.; Herbette, G.; Beauchêne, J.; Chevalier, M.; Hérault, B.; Thibaut, B.; Stien, D. Efficacy of Bagassa guianensis Aubl. extract against wood decay and human pathogenic fungi. Int. Biodeter. Biodegrad. 2012, 70, 55–59. [Google Scholar] [CrossRef]
- Brischke, C.; Welzbacher, C.R.; Rapp, A.O.; Augusta, U. Comparative studies on the in-ground and above-ground durability of European oak heartwood (Quercus petraea Liebl. and Quercus robur L.). Eur. J. Wood Wood Prod. 2009, 67, 329–338. [Google Scholar] [CrossRef]
- Militz, H.; Busetto, D.; Hapla, F. Investigation on natural durability and sorption properties of Italian chestnut (Castanea sativa Mill.) from coppice stands. Holz Roh-Werkst. 2003, 61, 133–141. [Google Scholar] [CrossRef]
Durability Class | Description | Percent of Loss in Mass |
---|---|---|
1 | Very durable | x 1 ≤ 5 |
2 | Durable | x 1 > 5 but ≤10 |
3 | Moderately durable | x 1 > 10 but ≤15 |
4 | Slightly durable | x 1 > 15 but ≤30 |
5 | Not durable | x 1 > 30 |
Durability Class | Description | Classification Criteria |
---|---|---|
D | Durable | ≥90% “0, 1”, max. 10% “2” * |
M | Moderately durable | <50% “3, 4” |
S | Susceptible | ≥50% “3, 4” |
Wood Species | Coniophora puteana | Trametes versicolor | |||
---|---|---|---|---|---|
Mass Loss (%) | Durability Class | Mass Loss (%) | Durability Class | ||
Q. pyrenaica | Sapwood | 12.360 | Moderately durable | 29.125 | Slightly durable–Not durable |
Heartwood | 0.027 | Very durable | 0.055 | Very durable | |
Control | P. sylvestris | 39.861 | Not durable | 20.273 | Slightly durable |
F. sylvatica | 35.125 | Not durable | 42.455 | Not durable |
Wood Species | Attack | Survivals (%) | Mass Loss (%) | Durability Class | |
---|---|---|---|---|---|
Q. pyrenaica | Sapwood | 1.9 | 73.60 | 4.76 | Moderately durable |
Heartwood | 0 | 0 | 1.1 | Durable | |
Control | P. sylvestris | 4 | 75.22 | 12.12 | Susceptible |
F. sylvatica | 2.7 | 56.89 | 5.30 | Susceptible |
Mass Loss (%) | Sapwood | Heartwood | ||
---|---|---|---|---|
Mean ± Standard Deviation | 20.71 ± 14.44 | 1.98 ± 1.91 | ||
Kruskal–Wallis Test | H (p) | |||
14.40 (p < 0.01) | ||||
Fungus | C. puteana | T. versicolor | C. puteana | T. versicolor |
Mean ± Standard Deviation | 12.36 ± 10.08 | 29.06 ± 13.35 | 0.52 ± 0.45 | 3.45 ± 1.68 |
Kruskal–Wallis Test | H (p) | H (p) | ||
36.46 (p < 0.01) | 8.11 (p < 0.05) | |||
Termites | Sapwood | Heartwood | ||
Mean ± Standard Deviation | 4.29 ± 5.90 | 1.10 ± 0.29 | ||
Kruskal–Wallis Test | H (p) | |||
2.21 (p = 0.13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.M.; de Troya, M.T.; Robertson, L.; Gutiérrez, S.; Caballé, G.; Villanueva, J.L. Study on the Natural Durability of Quercus pyrenaica Willd. to Wood Decay Fungi and Subterranean Termites. Forests 2025, 16, 1486. https://doi.org/10.3390/f16091486
Santos SM, de Troya MT, Robertson L, Gutiérrez S, Caballé G, Villanueva JL. Study on the Natural Durability of Quercus pyrenaica Willd. to Wood Decay Fungi and Subterranean Termites. Forests. 2025; 16(9):1486. https://doi.org/10.3390/f16091486
Chicago/Turabian StyleSantos, Sara M., María Teresa de Troya, Lee Robertson, Saúl Gutiérrez, Gonzalo Caballé, and José Luis Villanueva. 2025. "Study on the Natural Durability of Quercus pyrenaica Willd. to Wood Decay Fungi and Subterranean Termites" Forests 16, no. 9: 1486. https://doi.org/10.3390/f16091486
APA StyleSantos, S. M., de Troya, M. T., Robertson, L., Gutiérrez, S., Caballé, G., & Villanueva, J. L. (2025). Study on the Natural Durability of Quercus pyrenaica Willd. to Wood Decay Fungi and Subterranean Termites. Forests, 16(9), 1486. https://doi.org/10.3390/f16091486