Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Accumulation of Organic Carbon and Biogenic Organization of Soil During Successional Series
3.2. Kinetics of Organic Matter Input and Transformation in Successional Series
3.3. Effect of Organic Matter on Soil Water Retention: Laboratory Experiment and Modeling
3.3.1. Laboratory Assessment of Soil Hydraulic Properties
3.3.2. HYDRUS-1D Modeling of Hydrological Dynamics at the Soil Profile Level
3.4. Trigger Model of Successional Dynamics of Pine Forests Under the Influence of Soil Organic Matter Accumulation
3.4.1. Theoretical Basis and Formulation of the Model
3.4.2. Validation of the Model Using Experimental Data
3.4.3. Matlab-6 Numerical Modeling of Long-Term Carbon Sequestration During Successional Series of Pine Forests
4. Discussion
4.1. Kinetic Mechanism of Biogenic Self-Organization for Pine Ecosystems on Sandy Alluvium in Relation to Carbon Sequestration
4.2. Is Successional Series a Dynamic or a Spatial Variation?
4.3. Trigger Process Model of Long-Term Carbon Sequestration: Advantages, Disadvantages, and Prospects for Further Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Terminology
ESG | Environment, Social, Governance |
DT | Top of the dune |
DS | Slop of the dune |
ID | Inter-dune depression |
EZ | Ecotone zone |
SPF | Simple pine forest |
CPF | Complex pine forest |
SOM | Soil organic matter |
WRC | Water retention curve |
Trigger model | The model simulating the nonlinear trigger regime (reaction) of an ecosystem to an environmental factor, in particular, the change in forest growth and development to its death with a lack of soil fertility and water supply (see, e.g., [73]). |
Self-organization of ecosystems | The result of the creative activity of living organisms, aimed at forming favorable conditions for their development and reproduction in the immediate environment (see, e.g., [73]). A clear example is soil formation through biogenic accumulation of carbon and other biophilic elements, as well as improving the water-holding, absorption, and ion-exchange capacity of the original parent rock (see, e.g., [17]). |
Bio-pump | The ecological function of absorption by plants of biophilic elements scattered in the environment, with their subsequent concentration in their biomass and the upper soil layer. |
References
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E. Carbon loss and removal due to forest disturbance and regeneration in the Amazon. Sci. Total Environ. 2021, 764, 142839. [Google Scholar] [CrossRef]
- Goldman, E. Forest Extent Indicator. In Global Forest Review, Updated 4 April 2024; World Resources Institute: Washington, DC, USA; Available online: https://research.wri.org/gfr/forest-extent-indicators/forest-extent (accessed on 13 July 2025).
- Baratta, A.; Cimino, A.; Longo, F.; Solina, V.; Verteramo, S. The Impact of ESG Practices in Industry with a Focus on Carbon Emissions: Insights and Future Perspectives. Sustainability 2023, 15, 6685. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Stal, G.; Arnesson-Ceder, L.; Sramek, L.H.; Hoen, H.F.; Svensson, A.; Wernick, I.K.; Hogberg, P.; Lundmark, T.; Nord, A. Managing existing forests can mitigate climate change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M. Forests and Decarbonization–Roles of Natural and Planted Forests. Front. For. Glob. Change 2020, 3, 58. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Tianyu Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon storage through China’s planted forest expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef]
- Saudi and Middle East Green Initiatives. Available online: https://www.sgi.gov.sa/about-mgi/mgi-targets/planting-trees (accessed on 13 July 2025).
- Schoenholtz, S.H.; Van Miegroet, H.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Busse, M.D.; Jurgensen, M.F.; Jokela, E.J. Sustaining forest soil quality and productivity. In Soils and Landscape Restoration; Elsevier: Amsterdam, The Netherlands, 2021; pp. 63–93. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Chen, F.; Cheng, R.; Xiao, W.; Wu, L.; Zeng, L. Correlations between forest soil quality and aboveground vegetation characteristics in Hunan Province, China. Front. Plant Sci. 2022, 13, 1009109. [Google Scholar] [CrossRef]
- Maguzu, J.; Maliondo, S.M.; Ulrik, I.; Katani, J.Z. Identification of Key Soil Quality Indicators for Predicting Mean Annual Increment in Pinus patula Forest Plantations in Tanzania. Forests 2024, 15, 2042. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Niu, L. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecol. Eng. 1998, 10, 75–86. [Google Scholar] [CrossRef]
- Changshun, Z. Advance in Research on Soil Degradation and Soil Improvement of Timber Plantations. World For. Res. 2005, 18, 17–21. [Google Scholar]
- Wang, Q.; Wang, S.; Yu, X. Decline of soil fertility during forest conversion of secondary forest to Chinese fir plantations in Subtropical China. Land Degrad. Dev. 2011, 22, 444–452. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Song, H.; Jia, Y.; Liu, J. Agents Affecting the Productivity of Pine Plantations on the Loess Plateau in China: A Study Based on Structural Equation Modeling. Forests 2020, 11, 1328. [Google Scholar] [CrossRef]
- Smagin, A.V. Soil as a Product of Biogeocenosis Self-Organization. Proc. RAS, Earth Sci. Sec. 1989, 308, 729–731. [Google Scholar]
- Jimenez, J.J.C. Influences of the forest vegetation on the soil and the waters. Horiz. Nat. 2002, 5, 31–36. [Google Scholar]
- Sharma, J.C.; Sharma, Y. Effect of Forest Ecosystems on Soil Properties-A Review. Agric. Rev. 2004, 25, 16–28. [Google Scholar]
- Ayres, E.; Steltzer, H.; Berg, S.; Wallenstein, M.D.; Simmons, B.L.; Wall, D.H. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests. PLoS ONE 2009, 4, e5964. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, X.L.; Li, Z.W.; Liu, M.X.; Xu, C.H.; Zhang, R.F. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Golley, F.B. (Ed.) Ecological Succession. Benchmark Papers in Ecology/5. A Benchmark Books Series; Dowden, Hutchinson&Ross: Stroudsburg, PA, USA, 1977; 373p. [Google Scholar] [CrossRef]
- Smagin, A.V. Level of Aggregate Organization in Sandy Soils of Pine Biogeocenoses. Eur. Soil Sci. 1993, 25, 15–25. [Google Scholar]
- Evstigneev, O.I.; Korotkov, V.N. Pine Forest Succession on Sandy Ridges within Outwash Plain (Sandur) in Nerussa-Desna Polesie. Russ. J. Ecosyst. Ecol. 2016, 1, 1–18. [Google Scholar] [CrossRef][Green Version]
- Belan, L.; Bogdan, E.; Suleymanov, R.; Fedorov, N.; Shirokikh, P.; Suleymanov, A.; Vildanov, I.; Sayfullin, I.; Tuktarova, I.; Bakhtiyarova, R.; et al. Carbon Sequestration at Different Stages of Succession During Pine (Pinus sylvestris) Afforestation of Abandoned Lands. Forests 2024, 15, 2094. [Google Scholar] [CrossRef]
- Safonov, A.V.; Suvorov, S.A.; Krestyanova, M.A.; Anikina, E.V.; Danilov, D.A. Analysis of pine stands productivity in Boxitogorsky forestry unit of the Leningrad region. IOP Conf. Ser. Earth Environ. Sci. 2021, 876, 012076. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Rıo, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Collc, L.; Dirnberger, G.; Drossler, L.; et al. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analyzed along a productivity gradient through Europe. Eur. J. Forest Res. 2015, 134, 927–947. [Google Scholar] [CrossRef]
- Zhao, D.; Bullock, B.; Cristian Montes, C. New findings on loblolly pine plantations from long-term experimental field studies. In Proceedings of the XV World Forestry Congress, Seoul, Republic of Korea, 2–6 May 2022. [Google Scholar]
- Ko, Y.; Song, C.; Fellows, M.; Kim, M.; Hong, M.; Kurz, W.A.; Metsaranta, J.; Son, J.; Lee, W.-K. Generic Carbon Budget Model for Assessing National Carbon Dynamics toward Carbon Neutrality: A Case Study of Republic of Korea. Forests 2024, 15, 877. [Google Scholar] [CrossRef]
- Zech, W.; Schad, P.; Hintermaier-Erhard, G. Soils of the World, 3rd ed.; Springer GmbH: Berlin/Heidelberg, Germany, 2022; 254p. [Google Scholar] [CrossRef]
- Wagai, R.; Kajiura, M.; Asano, M. Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: Organo-metallic glue hypothesis. Soil 2020, 6, 597–627. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A.; Korchagina, K.V.; Krivtsova, V.N. Simulation Modeling and Practical Use of the Hydrological Function of Detritus in Soil-Engineering Technologies. Mosc. Univ. Soil Sci. Bull. 2023, 78, 396–409. [Google Scholar] [CrossRef]
- Grimm, V.; Schmidt, E.; Wissel, C. On the application of stability concepts in ecology. Ecol. Model. 1992, 63, 143–161. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Vasenev, V.I.; Smagina, M.V. Biodegradation of Some Organic Materials in Soils and Soil Constructions: Experiments, Modeling and Prevention. Materials 2018, 11, 1889. [Google Scholar] [CrossRef] [PubMed]
- Vorobyeva, L.A. Chemical Analysis of Soils; Moscow State University Press: Moscow, Russia, 1998; 217p, Available online: https://djvu.online/file/ffK2KVM1b3Ffk?ysclid=mdni500mb9810738221 (accessed on 10 August 2025). (In Russian)
- Harte, J.; Holden, C.; Schneider, R.; Shirely, C. “Toxics A to Z”—a Guide to Every Day Pollution Hazards; University of California Press: Berkley, CA, USA, 1991; 680p. [Google Scholar]
- Saikia, S.K.; Das, D.N. Laboratory Hand Book on Basic Ecology (Soil, Water, Plankton and Feeding Ecology with Special Mention to Periphyton); Science PG: New York, NY, USA, 2014; 121p. [Google Scholar]
- Smagin, A.V. Thermodynamic Concept of Water Retention and Physical Quality of the Soil. Agronomy 2021, 11, 1686. [Google Scholar] [CrossRef]
- Simunek, J.; van Genuchten, M.T.; Sejna, M. Development and Application of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- de Jong, E.; Schappert, H.J.V. Calculation of soil respiration and activity from CO2 profiles in the soil. Soil Sci. 1972, 5, 328–333. [Google Scholar] [CrossRef]
- Atkin, A.S. Phytomass and Metabolism in Pine Forests; Science Press: Krasnoyarsk, Russia, 1984; 134p. (In Russian) [Google Scholar]
- Vaicis, M.V. Forecasting the productivity of pine plantations based on humus and nutrient reserves in the soil. Proc. Lith. Res. Forest. Inst. 1981, 20, 50–56. (In Russian) [Google Scholar]
- Kazimirov, N.I.; Volkov, A.D.; Zyabchenko, S.S. Metabolism and energy in pine forests of the European North; Science Press: Leningrad, Russia, 1977; 204p. (In Russian) [Google Scholar]
- Korsunov, V.M. Research and Modeling of Soil Formation in Forest Biogeocenoses; Science Press: Novosibirsk, Russia, 1979; 160p. (In Russian) [Google Scholar]
- Molchanov, A.A. Hydrological Role of Pine Forests on Sandy Soils; USSR Academy of Sciences Press: Moscow, Russia, 1952; 488p. (In Russian) [Google Scholar]
- Molchanov, A.A. Hydrological Role of the Forest; USSR Academy of Sciences Press: Moscow, Russia, 1960; 488p. (In Russian) [Google Scholar]
- Molchanov, A.A. The Influence of Forests on the Environment; Science Press: Moscow, Russia, 1973; 360p. (In Russian) [Google Scholar]
- Molchanov, A.A. (Ed.) Productivity of Organic Mass in Forests of Different Zones; Science Press: Moscow, Russia, 1971; 276p. (In Russian) [Google Scholar]
- Molchanov, A.A. (Ed.) Productivity of Organic and Biological Mass of Forest; Science Press: Moscow, Russia, 1974; 192p. [Google Scholar]
- Myakushko, V.K. Pine Forests of the Flat Part of the Ukrainian SSR; Naukova Dumka: Kyiv, Ukraine, 1978; 256p. (In Russian) [Google Scholar]
- Pozdnyakov, L.K.; Protopopov, V.V.; Gorbatenko, V.M. Biological Productivity of Forests of Central Siberia and Yakutia; Science Press: Krasnoyarsk, Russia, 1969; 155p. (In Russian) [Google Scholar]
- Osipov, V.V. (Ed.) The Main Types of Biogeocenoses of the Northern Taiga; Science Press: Moscow, Russia, 1977; 282p. (In Russian) [Google Scholar]
- Rysin, L.P. Complex Pine Forests of the Moscow Region; Science Press: Moscow, Russia, 1969; 110p. (In Russian) [Google Scholar]
- Sudnitsyna, T.N. Peculiarities of soil nutrition for stands of complex pine forests in connection with the composition of species. In Spatial Structure of Complex Pine Forests; Science Press: Moscow, Russia, 1987; pp. 42–56. (In Russian) [Google Scholar]
- Yurkevich, I.D.; Yaroshevich, E.P. Biological Productivity of Types and Associations of Pine Forests; Sci. & Technol. Press: Minsk, Belarus, 1974; 294p. (In Russian) [Google Scholar]
- Coleman, D.C.; Cole, C.; Elliot, T. Decomposition, organic matter turnover, and nutrient dynamics in agroecosystems. In Agricultural Ecosystems; WILEY&SONS: New York, NY, USA, 1984; pp. 83–105. [Google Scholar]
- Kavvadias, V.A.; Alifragis, D.; Tsiontsis, A.; Brofas, G.; Stamatelos, G. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol. Manag. 2001, 144, 113–127. [Google Scholar] [CrossRef]
- Martius, C.; Hofer, H.; Garcia, M.V.B.; Rombke, J.; Hanagarth, W. Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr. Cycl. Agroecosystems 2004, 68, 137–154. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Physics with BASIC; Elsevier: Amsterdam, The Netherlands, 1985; 268p. [Google Scholar]
- Lv, L. Linking Montane Soil Moisture Measurements to Evapotranspiration Using Inverse Numerical Modeling; Utah State University Press: Salt Lake City, UT, USA, 2014; 131p. [Google Scholar]
- Jaukainen, E. Age and degree of podzolization of sand soils on coastal plain of Northwest Finland. Comment Biol. 1973, 68, 1–32. [Google Scholar]
- Singleton, G.A.; Lavkulich, L.M. A soil chronosequence on beach sands, Vancouver Island, British Colombia. Can. J. Soil Sci. 1987, 67, 795–810. [Google Scholar] [CrossRef]
- Bornkamm, R.; Faensen-Thiebes, A.; Nino, M. Changes of macroscopic symptoms during the lifetime of pine needles (Pinus sylvestris L.). Forstwiss. Cent. 2003, 122, 376–388. [Google Scholar] [CrossRef]
- Shaw, E. Facts About Pine Needles. Available online: https://www.sciencing.com/pine-needles-6455979/ (accessed on 13 July 2025).
- Kranabetter, J.M.; Marty, J.; de Montigny, L. Contrasting conifer species productivity in relation to soil carbon, nitrogen and phosphorus stoichiometry of British Columbia perhumid rainforests. Biogeosciences 2020, 17, 1247–1260. [Google Scholar] [CrossRef]
- Kuznetsova, A.I.; Lukina, N.V.; Gornov, A.V.; Gornova, M.V.; Tikhonova, E.V.; Smirnov, V.E.; Danilova, M.A.; Tebenkova, D.N.; Braslavskaya, T.Y.; Kuznetsov, V.A.; et al. Carbon Stock in Sandy Soils of Pine Forests in the West of Russia. Eur. Soil Sci. 2020, 53, 1056–1065. [Google Scholar] [CrossRef]
- Protazio, J.M.B.; Souza, M.A.; Hernández-Díaz, J.C.; Escobar-Flores, J.G.; López-Sánchez, C.A.; Carrillo-Parra, A.; Wehenkel, C.A. Dynamical Model Based on the Chapman–Richards Growth Equation for Fitting Growth Curves for Four Pine Species in Northern Mexico. Forests 2022, 13, 1866. [Google Scholar] [CrossRef]
- Hua, W.; Pan, X.; Zhu, D.; Wu, C.; Chi, S.; Zhuang, C.; Jiang, X.; Liu, J.; Wu, J. Developing Growth and Harvest Prediction Models for Mixed Coniferous and Broad-Leaved Forests at Different Ages. Forests 2023, 14, 1416. [Google Scholar] [CrossRef]
- Dumollard, G. Exploring the Potential of Machine Learning for Modeling Growth Dynamics in an Uneven-Aged Forest at the Level of Diameter Classes: A Comparative Analysis of Two Modeling Approaches. Forests 2022, 13, 1432. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, G. Nonlinear Mixed Effect Model Used in a Simulation of the Impact of Climate Change on Height Growth of Cyclobalanopsis glauca. Forests 2022, 13, 463. [Google Scholar] [CrossRef]
- Qin, J.; Ma, M.; Zhu, Y.; Wu, B.; Su, X. 3PG-MT-LSTM: A Hybrid Model under Biomass Compatibility Constraints for the Prediction of Long-Term Forest Growth to Support Sustainable Management. Forests 2023, 14, 1482. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Wang, J.; Meng, J. Development of a Climate-Sensitive Matrix Growth Model for Larix gmelinii Mixed-Species Natural Forests and Its Application for Predicting Forest Dynamics under Different Climate Scenarios. Forests 2022, 13, 574. [Google Scholar] [CrossRef]
- Smagin, A.V. Functioning regimes of bio-abiotic systems. Eur. Soil Sci. 1999, 32, 1277–1290. [Google Scholar]
- Chertov, O.G.; Komarov, A.S.; Nadporozhskaya, M.; Bykhovets, S.S.; Zudin, S.L. ROMUL—A model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling. Ecol. Model. 2001, 138, 289–308. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Marjanovic, H.; Ostrogovic -Sever, M.Z.; Dobor, L.; Gelybo, G.; Fodor, N.; Pinter, K.; Churkina, G.; Running, S.; et al. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: Summary of improvements and new modeling possibilities. Geosci. Model Dev. 2016, 9, 4405–4437. [Google Scholar] [CrossRef]
- Dai, Z.; Johnson, K.D.; Birdsey, R.A.; Hernandez-Stefanoni, J.L.; Dupuy, J.M. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula. Ecol. Complex. 2015, 24, 46–56. [Google Scholar] [CrossRef]
- Fang, M.; Liu, W.; Zhang, J.; Ma, J.; Liang, Z.; Yu, Q. Quantitative Evaluation of the Applicability of Classical Forest Ecosystem Carbon Cycle Models in China: A Case Study of the Biome-BGC Model. Forests 2024, 15, 1609. [Google Scholar] [CrossRef]
Parcels | * Litterfall, Mg/ha | 3 November–29 March Next Year | 3 November–3 November Next Year | Litter Storage, Mg/ha | k, Year−1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Winter | Annual | I | I | II | I | I | II | |||
D% | H% | D% | D% | H% | D% | |||||
SPF | ||||||||||
DT | 0.8 ± 0.1 | 3.4 ± 1.1 | 10.6 ± 0.6 | 0.9 ± 0.1 | 10.8 ± 0.9 | 30.0 ± 2.0 | 3.2 ± 0.2 | 27.8 ± 1.7 | 44.3 ± 16 | 0.08 ± 0.02 |
DS | 1.1 ± 0.4 | 3.6 ± 0.9 | 12.5 ± 0.8 | 1.0 ± 0.1 | nd | 31.0 ± 2.3 | 2.9 ± 0.2 | nd | 61.2 ± 22.8 | 0.06 ± 0.02 |
EZ | ||||||||||
DT | 1.3 ± 0.1 | 5.1 ± 0.8 | 15.5 ± 1.4 | 1.1 ± 0.1 | nd | 40.0 ± 2.7 | 5.2 ± 0.3 | nd | 52 ± 34.4 | 0.10 ± 0.02 |
DS | 1.4 ± 0.2 | 4.4 ± 0.4 | 15.0 ± 1.0 | 1.4 ± 0.2 | 13.6 ± 1.1 | 41.0 ± 3.1 | 3.7 ± 0.3 | 41.4 ± 2.6 | 66.4 ± 49.4 | 0.07 ± 0.01 |
CPF | ||||||||||
DT | 1.8 ± 0.1 | 6.9 ± 0.7 | 16.8 ± 1.2 | 1.1 ± 0.2 | 17.6 ± 1.3 | 39.5 ± 2.8 | 4.0 ± 0.6 | 42.5 ± 3.4 | 17.5 ± 12.4 | 0.39 ± 0.04 |
DS | 2.1 ± 0.2 | 7.4 ± 0.9 | 19.2 ± 1.6 | 1.3 ± 0.1 | 21.5 ± 1.5 | 43.0 ± 4.2 | 6.6 ± 0.8 | 43.9 ± 3.1 | 27.5 ± 19.0 | 0.27 ± 0.03 |
Statistical comparison criteria: | ||||||||||
LSD | 0.46 | 1.60 | 2.69 | 0.33 | 4.55 | 5.78 | 1.62 | 8.10 | 29.3 | 0.08 |
** Tukey p-values for multiply comparisons of means: | ||||||||||
EZ vs. SPF | 0.171 | 0.235 | 0.031 | 0.250 | 0.269 | 0.009 | 0.243 | 0.026 | 0.403 | *** 0.552 |
CPF vs. SPF | 0.002 | 0.002 | 0.001 | 0.153 | 0.024 | 0.006 | 0.049 | 0.020 | 0.039 | *** 0.042 |
CPF vs. EZ | 0.037 | 0.020 | 0.106 | 0.937 | 0.078 | 0.954 | 0.562 | 0.858 | 0.049 | *** 0.044 |
Organic Matter | Indirect Assessment by CO2 Emissions | Direct Assessment by Incubation in Glass Funnels | ||||
---|---|---|---|---|---|---|
k, Year−1 | T0.5, Year | T0.95, Year | k, Year−1 | T0.5, Year | T0.95, Year | |
SPF | ||||||
Litter | 0.177 ± 0.062 | 3.9 ± 1.6 | 17.0 ± 6.9 | 0.349 ± 0.025 | 2.0 ± 0.1 | 8.6 ± 0.6 |
Humus | 0.026 ± 0.005 | 26.3 ± 5.1 | 113.6 ± 22.0 | nd | nd | nd |
CPF | ||||||
Litter | 0.427 ± 0.207 | 1.6 ± 1.1 | 7.0 ± 4.6 | 0.546 ± 0.017 | 1.3 ± 0.1 | 5.5 ± 0.2 |
Humus | 0.021 ± 0.009 | 32.9 ± 17.6 | 142.7 ± 76.2 | nd | nd | nd |
Soil Horizons | Θr, % | Θs, % | α, cm−1 | n | R2 | s, % | * FC, % | ** AWR, % |
---|---|---|---|---|---|---|---|---|
SPF | ||||||||
A1E (5–15 cm) | 1.2 ± 0.8 | 52.6 ± 5.3 | 1.38 ± 0.83 | 1.29 ± 0.04 | 0.9973 | 0.784 | 11.3 ± 6.1 | 6.3 ± 2.7 |
B (15–60 cm) | 2.3 ± 0.5 | 50.2 ± 4.5 | 0.71 ± 0.34 | 1.52 ± 0.05 | 0.9986 | 0.611 | 5.5 ± 2.4 | 2.7 ± 1.5 |
CPF | ||||||||
A1 (2–30 cm) | 7.2 ± 1.7 | 62.1 ± 6.2 | 0.58 ± 0.51 | 1.38 ± 0.06 | 0.9996 | 1.289 | 18.3 ± 10.9 | 8.0 ± 6.2 |
E (30–40 cm) | 2.6 ± 0.3 | 49.4 ± 1.1 | 0.60 ± 0.07 | 1.54 ± 0.03 | 0.9997 | 0.391 | 5.3 ± 0.9 | 2.4 ± 0.5 |
Bhfe (40–70 cm) | 2.7 ± 0.2 | 49.7 ± 0.7 | 0.58 ± 0.04 | 1.56 ± 0.02 | 0.9998 | 0.257 | 5.2 ± 0.6 | 2.2 ± 0.3 |
Common to both ecosystems | ||||||||
L (0–6 cm) | 0.0 ± 1.0 | 89.9 ± 0.88 | 0.05 ± 0.03 | 1.30 ± 0.02 | 0.9981 | 1.435 | 39.9 ± 10.6 | 26.5 ± 5.8 |
C (70–200 cm) | 1.3 ± 0.3 | 46.0 ± 0.8 | 0.44 ± 0.04 | 1.60 ± 0.03 | 0.9997 | 0.390 | 3.6 ± 0.8 | 2.1 ± 0.4 |
Alluvium | 3.2 ± 0.8 | 43.8 ± 2.2 | 0.21 ± 0.04 | 2.37 ± 0.64 | 0.9855 | 2.031 | 3.4 ± 1.6 | 1.7 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smagin, A.; Sadovnikova, N.; Belyaeva, E.; Kacimov, A.; Smagina, M. Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling. Forests 2025, 16, 1482. https://doi.org/10.3390/f16091482
Smagin A, Sadovnikova N, Belyaeva E, Kacimov A, Smagina M. Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling. Forests. 2025; 16(9):1482. https://doi.org/10.3390/f16091482
Chicago/Turabian StyleSmagin, Andrey, Nadezhda Sadovnikova, Elena Belyaeva, Anvar Kacimov, and Marina Smagina. 2025. "Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling" Forests 16, no. 9: 1482. https://doi.org/10.3390/f16091482
APA StyleSmagin, A., Sadovnikova, N., Belyaeva, E., Kacimov, A., & Smagina, M. (2025). Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling. Forests, 16(9), 1482. https://doi.org/10.3390/f16091482