Stem Water Storage Dynamics of Three Boreal Tree Species Under Short-Term Drought †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Environmental and Meteorological Data
2.3. Stem Dendrometer Measurements
2.4. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Drought Impact on Tree Water Deficit
3.3. Effect of Air and Soil Dryness on Tree Water Deficit
4. Discussion
4.1. Species-Specific Stem Water Use Strategies and Effects of Drought
4.2. Conifer Responses on Contrasting Soils
4.3. Implications of the Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMS | Amos sand site |
AUC | Authier clay site |
AUS | Authier sand site |
BEC | Berry clay site |
GAMM | Generalized additive mixed model |
REW | Relative extractable water |
RTWDmax | Relative daily maximum tree water deficit |
RTWDmin | Relative daily minimum tree water deficit |
SPEI | Standardized precipitation-evapotranspiration index |
TWD | Tree water deficit |
TWDmax | Daily maximum tree water deficit |
TWDmin | Daily minimum tree water deficit |
VPD | Vapor pressure deficit |
VWC | Volumetric water content |
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased Climate Change-Type Drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef]
- Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How Ecologists Define Drought, and Why We Should Do Better. Glob. Change Biol. 2019, 25, 3193–3200. [Google Scholar] [CrossRef]
- Ma, Z.; Peng, C.; Zhu, Q.; Liu, J.; Xu, X.; Zhou, X. Long-Term Changes in Tree Basal Area Across the Boreal Zone, Canada. Ecoscience 2014, 21, 232–241. [Google Scholar] [CrossRef]
- Schaphoff, S.; Reyer, C.P.O.; Schepaschenko, D.; Gerten, D.; Shvidenko, A. Tamm Review: Observed and Projected Climate Change Impacts on Russia’s Forests and Its Carbon Balance. For. Ecol. Manag. 2016, 361, 432–444. [Google Scholar] [CrossRef]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.-P.; Viiri, H.; Ikonen, V.-P.; Peltola, H. Climate Change Induces Multiple Risks to Boreal Forests and Forestry in Finland: A Literature Review. Glob. Change Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, C.; Schneider, R.; Cyr, D.; McDowell, N.G.; Kneeshaw, D. Drought-Induced Increase in Tree Mortality and Corresponding Decrease in the Carbon Sink Capacity of Canada’s Boreal Forests from 1970 to 2020. Glob. Change Biol. 2023, 29, 2274–2285. [Google Scholar] [CrossRef]
- Gauthier, S.; Kuuluvainen, T.; Macdonald, S.E.; Shorohova, E.; Shvidenko, A.; Bélisle, A.-C.; Vaillancourt, M.-A.; Leduc, A.; Grosbois, G.; Bergeron, Y.; et al. Ecosystem Management of the Boreal Forest in the Era of Global Change. In Boreal Forests in the Face of Climate Change: Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–49. [Google Scholar]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Dixon, H.H.; Joly, J. XII. On the Ascent of Sap. Philos. Trans. R. Soc. Lond. B 1895, 186, 563–576. [Google Scholar]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate Forest Trees and Stands under Severe Drought: A Review of Ecophysiological Responses, Adaptation Processes and Long-Term Consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Boisvert-Marsh, L.; Royer-Tardif, S.; Nolet, P.; Doyon, F.; Aubin, I. Using a Trait-Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in Eastern Canada and Inform Adaptation Practices. Forests 2020, 11, 989. [Google Scholar] [CrossRef]
- Klein, T. The Variability of Stomatal Sensitivity to Leaf Water Potential across Tree Species Indicates a Continuum between Isohydric and Anisohydric Behaviours. Funct. Ecol. 2014, 28, 1313–1320. [Google Scholar] [CrossRef]
- Joshi, J.; Stocker, B.D.; Hofhansl, F.; Zhou, S.; Dieckmann, U.; Prentice, I.C. Towards a Unified Theory of Plant Photosynthesis and Hydraulics. Nat. Plants 2022, 8, 1304–1316. [Google Scholar] [CrossRef]
- Potkay, A.; Feng, X. Do Stomata Optimize Turgor-Driven Growth? A New Framework for Integrating Stomata Response with Whole-Plant Hydraulics and Carbon Balance. New Phytol. 2023, 238, 506–528. [Google Scholar] [CrossRef]
- Martinez-Vilalta, J.; Garcia-Forner, N. Water Potential Regulation, Stomatal Behaviour and Hydraulic Transport under Drought: Deconstructing the Iso/Anisohydric Concept. Plant Cell Env. 2017, 40, 962–976. [Google Scholar] [CrossRef]
- Peters, R.L.; Steppe, K.; Pappas, C.; Zweifel, R.; Babst, F.; Dietrich, L.; Arx, G.; Poyatos, R.; Fonti, M.; Fonti, P.; et al. Daytime Stomatal Regulation in Mature Temperate Trees Prioritizes Stem Rehydration at Night. New Phytol. 2023, 239, 533–546. [Google Scholar] [CrossRef]
- Zweifel, R.; Item, H.; Häsler, R. Link between Diurnal Stem Radius Changes and Tree Water Relations. Tree Physiol. 2001, 21, 869–877. [Google Scholar] [CrossRef]
- Salomón, R.L.; Peters, R.L.; Zweifel, R.; Sass-Klaassen, U.G.W.; Stegehuis, A.I.; Smiljanic, M.; Poyatos, R.; Babst, F.; Cienciala, E.; Fonti, P.; et al. The 2018 European Heatwave Led to Stem Dehydration but Not to Consistent Growth Reductions in Forests. Nat. Commun. 2022, 13, 28. [Google Scholar] [CrossRef]
- Zweifel, R. Radial Stem Variations–a Source of Tree Physiological Information Not Fully Exploited Yet. Plant Cell Environ. 2016, 39, 231–232. [Google Scholar] [CrossRef]
- Sevanto, S.; Suni, T.; Pumpanen, J.; Grönholm, T.; Kolari, P.; Nikinmaa, E.; Hari, P.; Vesala, T. Wintertime Photosynthesis and Water Uptake in a Boreal Forest. Tree Physiol. 2006, 26, 749–757. [Google Scholar] [CrossRef]
- Kropp, H.; Loranty, M.M.; Natali, S.M.; Kholodov, A.L.; Alexander, H.D.; Zimov, N.S.; Mack, M.C.; Spawn, S.A. Tree Density Influences Ecohydrological Drivers of Plant–Water Relations in a Larch Boreal Forest in Siberia. Ecohydrology 2019, 12, e2132. [Google Scholar] [CrossRef]
- Chavardès, R.D.; Gennaretti, F.; Cavard, X.; Morin, H.; Bergeron, Y. Role of Mixed-Species Stands in Attenuating the Vulnerability of Boreal Forests to Climate Change and Insect Epidemics. Front. Plant Sci. 2021, 12, 658880. [Google Scholar] [CrossRef]
- Chavardès, R.D.; Balducci, L.; Bergeron, Y.; Grondin, P.; Poirier, V.; Morin, H.; Gennaretti, F. Greater Tree Species Diversity and Lower Intraspecific Competition Attenuate Impacts from Temperature Increases and Insect Epidemics in Boreal Forests of Western Quebec, Canada. Can. J. For. Res. 2022, 53, 48–59. [Google Scholar] [CrossRef]
- Hopkins, W.G. Physiologie Végétale; De Boeck Supérieur: Paris, France, 2003. [Google Scholar]
- Olorunfemi, I.; Fasinmirin, J.; Ojo, A. Modeling Cation Exchange Capacity and Soil Water Holding Capacity from Basic Soil Properties. Eurasian J. Soil Sci. 2016, 5, 266–274. [Google Scholar] [CrossRef]
- Aussenac, G. Interactions between Forest Stands and Microclimate: Ecophysiological Aspects and Consequences for Silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Reich, P.B.; Bermudez, R.; Montgomery, R.A.; Rich, R.L.; Rice, K.E.; Hobbie, S.E.; Stefanski, A. Even Modest Climate Change May Lead to Major Transitions in Boreal Forests. Nature 2022, 608, 540–545. [Google Scholar] [CrossRef]
- Zweifel, R.; Zimmermann, L.; Newbery, D.M. Modeling Tree Water Deficit from Microclimate: An Approach to Quantifying Drought Stress. Tree Physiol. 2005, 25, 147–156. [Google Scholar] [CrossRef]
- Martinez-Vilalta, J.; Anderegg, W.R.; Sapes, G.; Sala, A. Greater Focus on Water Pools May Improve Our Ability to Understand and Anticipate Drought-Induced Mortality in Plants. New Phytol. 2019, 223, 22–32. [Google Scholar] [CrossRef]
- Saucier, J.-P.; Robitaille, A.; Grondin, P.; Bergeron, Y.; Gosselin, J. Les régions écologiques du Québec Méridional; Ministère des Ressources naturelles et de la Faune: Québec, QC, Canada, 2011. [Google Scholar]
- Storrar, R.D.; Stokes, C.R.; Evans, D.J.A. Morphometry and Pattern of a Large Sample (>20,000) of Canadian Eskers and Implications for Subglacial Drainage beneath Ice Sheets. Quat. Sci. Rev. 2014, 105, 1–25. [Google Scholar] [CrossRef]
- Dang, Q.-L.; Margolis, H.A.; Coyea, M.R.; Sy, M.; Collatz, G.J. Regulation of Branch-Level Gas Exchange of Boreal Trees: Roles of Shoot Water Potential and Vapor Pressure Difference. Tree Physiol. 1997, 17, 521–535. [Google Scholar] [CrossRef]
- Marchand, W.; Girardin, M.P.; Hartmann, H.; Lévesque, M.; Gauthier, S.; Bergeron, Y. Contrasting Life-History Traits of Black Spruce and Jack Pine Influence Their Physiological Response to Drought and Growth Recovery in Northeastern Boreal Canada. Sci. Total Environ. 2021, 794, 148514. [Google Scholar] [CrossRef]
- Anderegg, L.D.; HilleRisLambers, J. Drought Stress Limits the Geographic Ranges of Two Tree Species via Different Physiological Mechanisms. Glob. Change Biol. 2016, 22, 1029–1045. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire Regimes at the Transition between Mixedwood and Coniferous Boreal Forest in Northwestern Quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- Geological Survey of Canada; Veillette, J.; Thibaudeau, P. 1995A, Géologie des Formations en Surface et Histoire Glaciaire, Rivière Wawagosic, Québec; Commission Géologique du Canada: Ottawa, ON, Canada, 2007. [Google Scholar]
- Duursma, R.A. Plantecophys-an R Package for Analysing and Modelling Leaf Gas Exchange Data. PLoS ONE 2015, 10, e0143346. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A Lumped Water Balance Model to Evaluate Duration and Intensity of Drought Constraints in Forest Stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs. Données du Réseau de surveillance du climat du Québec; Direction de la qualité de l’air et du climat: Québec, QC, Canada, 2020. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Singer, M.B.; Asfaw, D.T.; Rosolem, R.; Cuthbert, M.O.; Miralles, D.G.; MacLeod, D.; Quichimbo, E.A.; Michaelides, K. Hourly Potential Evapotranspiration at 0.1 Resolution for the Global Land Surface from 1981-Present. Sci. Data 2021, 8, 224. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index; IDMP: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Zweifel, R.; Item, H.; Häsler, R. Stem Radius Changes and Their Relation to Stored Water in Stems of Young Norway Spruce Trees. Trees Struct. Funct. 2000, 15, 50–57. [Google Scholar] [CrossRef]
- Dietrich, L.; Zweifel, R.; Kahmen, A. Daily Stem Diameter Variations Can Predict the Canopy Water Status of Mature Temperate Trees. Tree Physiol. 2018, 38, 941–952. [Google Scholar] [CrossRef]
- Deslauriers, A.; Rossi, S.; Turcotte, A.; Morin, H.; Krause, C. A Three-Step Procedure in SAS to Analyze the Time Series from Automatic Dendrometers. Dendrochronologia 2011, 29, 151–161. [Google Scholar] [CrossRef]
- Knüsel, S.; Peters, R.L.; Haeni, M.; Wilhelm, M.; Zweifel, R. Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series. Forests 2021, 12, 765. [Google Scholar] [CrossRef]
- Hurley, A.G.; Peters, R.L.; Pappas, C.; Steger, D.N.; Heinrich, I. Addressing the Need for Interactive, Efficient, and Reproducible Data Processing in Ecology with the Datacleanr R Package. PLoS ONE 2022, 17, e0268426. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Arend, M.; Link, R.M.; Patthey, R.; Hoch, G.; Schuldt, B.; Kahmen, A. Rapid Hydraulic Collapse as Cause of Drought-Induced Mortality in Conifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2025251118. [Google Scholar] [CrossRef]
- Jankowski, P.A.; Calama, R.; Aldea, J.; García, M.; Madrigal, G.; Pardos, M. Improving phenological event identification in trees using manually measured dendrometer data: Conventional approaches vs. the novel two-stage threshold approach. Front. For. Glob. Change 2025, 8, 1589579. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Xu, L.; Zhang, X.; Shi, Z.; Yang, X.; Xiong, W.; Cong, L.; Kwon, S.; Pan, L.; et al. Late spring-early summer drought and soil properties jointly modulate two pine species’ decline and climatic sensitivity in temperate Northern China. For. Ecosyst. 2025, 12, 100273. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Sayer, E.J.; Lam, S.K.; Lai, D.Y.F. Precipitation change affects forest soil carbon inputs and pools: A global meta-analysis. Sci. Total Environ. 2024, 908, 168171. [Google Scholar] [CrossRef]
- Decarsin, R.; Guillemot, J.; le Maire, G.; Blondeel, H.; Meredieu, C.; Achard, E.; Bonal, D.; Cochard, H.; Corso, D.; Delzon, S.; et al. Tree drought–mortality risk depends more on intrinsic species resistance than on stand species diversity. Glob. Change Biol. 2024, 30, e17503. [Google Scholar] [CrossRef]
- Sims, H.P. Root Development of Jack Pine Seedlings on Burned-Over Dry Sites in Southeastern Manitoba; Government of Canada, Department of Forestry, Forest Research Laboratory: Winnipeg, MB, Canada, 1964. [Google Scholar]
- Schultz, J.D. The Vertical Rooting Habit in Black Spruce, White Spruce, and Balsam Fir; University of Michigan: Ann Arbor, MI, USA, 1969; ISBN 9798659568903. [Google Scholar]
- Ghotsa Mekontchou, C.; Houle, D.; Bergeron, Y.; Drobyshev, I. Contrasting Root System Structure and Belowground Interactions between Black Spruce (Picea Mariana (Mill.) B.S.P) and Trembling Aspen (Populus Tremuloides Michx) in Boreal Mixedwoods of Eastern Canada. Forests 2020, 11, 127. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Ferguson, D.E.; Crookston, N.L. Aspen, Climate, and Sudden Decline in Western USA. For. Ecol. Manag. 2009, 258, 2353–2364. [Google Scholar] [CrossRef]
- Michaelian, M.; Hogg, E.H.; Hall, R.J.; Arsenault, E. Massive Mortality of Aspen Following Severe Drought along the Southern Edge of the Canadian Boreal Forest. Glob. Change Biol. 2011, 17, 2084–2094. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Pittermann, J.; Coomes, D.A. Elegance versus Speed: Examining the Competition between Conifer and Angiosperm Trees. Int. J. Plant Sci. 2012, 173, 673–694. [Google Scholar] [CrossRef]
- Zimmermann, U.; Schneider, H.; Wegner, L.H.; Wagner, H.-J.; Szimtenings, M.; Haase, A.; Bentrup, F.-W. What are the driving forces for water lifting in the xylem conduit? Physiol. Plant. 2002, 114, 327–335. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, M.; Shao, T.; Zhang, G.; Duan, Q.; Wang, X.; Cao, Y. Adaptation of plantations to drought events in arid and semi-arid regions: Evidence from tree resilience. For. Ecol. Manag. 2025, 578, 122437. [Google Scholar] [CrossRef]
- Pickles, B.J.; Simard, S.W. Chapter 18—Mycorrhizal Networks and Forest Resilience to Drought. In Mycorrhizal Mediation of Soil; Johnson, N.C., Gehring, C., Jansa, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–339. [Google Scholar] [CrossRef]
- Mencuccini, M. The Ecological Significance of Long-Distance Water Transport: Short-Term Regulation, Long-Term Acclimation and the Hydraulic Costs of Stature across Plant Life Forms. Plant Cell Environ. 2003, 26, 163–182. [Google Scholar] [CrossRef]
- Brodribb, T.J.; McAdam, S.A.M.; Jordan, G.J.; Martins, S.C.V. Conifer Species Adapt to Low-Rainfall Climates by Following One of Two Divergent Pathways. Proc. Natl. Acad. Sci. USA 2014, 111, 14489–14493. [Google Scholar] [CrossRef]
- Ziegler, Y.; Grote, R.; Alongi, F.; Knüver, T.; Ruehr, N.K. Capturing drought stress signals: The potential of dendrometers for monitoring tree water status. Tree Physiol. 2024, 44, tpae140. [Google Scholar] [CrossRef]
- Sevanto, S. Dendrometers—What are they good for? Tree Physiol. 2025, 45, tpaf035. [Google Scholar] [CrossRef]
- Beyer, M.; Hamutoko, J.T.; Wanke, H.; Gaj, M.; Koeniger, P. Examination of deep root water uptake using anomalies of soil water stable isotopes, depth-controlled isotopic labeling and mixing models. J. Hydrol. 2018, 566, 122–136. [Google Scholar] [CrossRef]
Site | Soil Surficial Deposit | Stand Basal Area in m2/ha (Number of Trees) | |||||
---|---|---|---|---|---|---|---|
Black Spruce | Trembling Aspen | Jack Pine | Balsam Fir | White Birch | Total | ||
AMS | Sand esker | 9.57 (196) | 0 (0) | 12.4 (80) | 0 (0) | 0.0615 (1) | 22.1 (277) |
AUC | Clay | 17 (156) | 10.7 (35) | 13.6 (63) | 0.109 (6) | 0 (0) | 41.4 (260) |
AUS | Sand esker | 16.5 (313) | 0 (0) | 16.2 (193) | 0.0655 (1) | 0.141 (3) | 33 (510) |
BEC | Clay | 22.3 (190) | 8.16 (25) | 5.52 (28) | 0.804 (21) | 0.17 (5) | 36.9 (269) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thivierge-Lampron, J.; Girona, M.M.; Pappas, C.; Duchesne, L.; Chavardès, R.D.; Balducci, L.; Lemay, M.-A.; Peters, R.L.; Gennaretti, F. Stem Water Storage Dynamics of Three Boreal Tree Species Under Short-Term Drought. Forests 2025, 16, 1448. https://doi.org/10.3390/f16091448
Thivierge-Lampron J, Girona MM, Pappas C, Duchesne L, Chavardès RD, Balducci L, Lemay M-A, Peters RL, Gennaretti F. Stem Water Storage Dynamics of Three Boreal Tree Species Under Short-Term Drought. Forests. 2025; 16(9):1448. https://doi.org/10.3390/f16091448
Chicago/Turabian StyleThivierge-Lampron, Jeanny, Miguel M. Girona, Christoforos Pappas, Louis Duchesne, Raphaël D. Chavardès, Lorena Balducci, Marc-André Lemay, Richard L. Peters, and Fabio Gennaretti. 2025. "Stem Water Storage Dynamics of Three Boreal Tree Species Under Short-Term Drought" Forests 16, no. 9: 1448. https://doi.org/10.3390/f16091448
APA StyleThivierge-Lampron, J., Girona, M. M., Pappas, C., Duchesne, L., Chavardès, R. D., Balducci, L., Lemay, M.-A., Peters, R. L., & Gennaretti, F. (2025). Stem Water Storage Dynamics of Three Boreal Tree Species Under Short-Term Drought. Forests, 16(9), 1448. https://doi.org/10.3390/f16091448