Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Sampling
2.3. Laboratory Analysis
2.4. The Minimum Dataset
2.5. Data Analysis
3. Results
3.1. Effect of Fertilization on Soil Indicators
3.2. Principal Component Analysis
3.3. Selection of the MDS
3.4. Soil Quality Index
3.5. SQI Evaluation
4. Discussion
4.1. Effects of Fertilization on Soil Indicators
4.2. The Minimum Dataset of the Two Plantations
4.3. P Limitation and Soil Quality in Subtropical Plantations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/ca8283en/CA8283EN.pdf (accessed on 15 June 2024).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- Zong, R.J.; Fang, N.F.; Zeng, Y.; Lu, X.X.; Wang, Z.; Dai, W.; Shi, Z.H. Soil conservation benefits of ecological programs promote sustainable restoration. Earth’s Future 2025, 13, e2024EF005287. [Google Scholar]
- Castro-Díez, P.; Vaz, A.S.; Silva, J.S.; van Loo, M.; Alonso, Á.; Aponte, C.; Bayón, Á.; Bellingham, P.J.; Chiuffo, M.C.; DiManno, N.; et al. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 2019, 94, 1477–1501. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Shen, W.J.; Lu, H.F.; Wen, X.Y.; Jian, S.G. Degraded ecosystems in China: Status, causes, and restoration efforts. Landsc. Ecol. Eng. 2007, 3, 1–13. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R.; Schmidt, S.K. Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short-term laboratory incubations and field studies. Ecosystems 2002, 5, 0680–0691. [Google Scholar] [CrossRef]
- Chen, Y.; Sayer, E.J.; Li, Z.; Mo, Q.; Li, Y.; Ding, Y.; Wang, J.; Lu, X.; Tang, J.; Wang, F. Nutrient limitation of woody debris decomposition in a tropical forest: Contrasting effects of N and P addition. Funct. Ecol. 2016, 30, 295–304. [Google Scholar] [CrossRef]
- Camenzind, T.; Hättenschwiler, S.; Treseder, K.K.; Lehmann, A.; Rillig, M.C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 2018, 88, 4–21. [Google Scholar] [CrossRef]
- Zhu, D.M.; Liu, Y.; Chen, J.H.; Jiang, P.K. Long-term successive rotation affects soil microbial resource limitation and carbon use efficiency in Chinese fir (Cunninghamia lanceolata) monoculture plantations. For. Ecol. Manag. 2023, 540, 121037. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, Nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.C.; Townsend, A.R.; Davidson, E.A.; Cleveland, C.C. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol. 2012, 196, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Du, H.; Zhu, Z.H.; Fang, Y.T.; Li, D.J. Increasing plant species diversity aggravates microbial phosphorus limitation but alleviates microbial carbon limitation in a subtropical forest. J. Plant Ecol. 2024, 17, rtae100. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Harpole, W.S.; Ngai, J.T.; Cleland, E.E.; Seabloom, E.W.; Borer, E.T.; Bracken, M.E.; Elser, J.J.; Gruner, D.S.; Hillebrand, H.; Shurin, J.B.; et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 2011, 14, 852–862. [Google Scholar] [CrossRef]
- Alvarez-Clare, S.; Mack, M.C.; Brooks, M. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 2013, 94, 1540–1551. [Google Scholar] [CrossRef]
- Linger, E.; Long, W.X. Phosphorus limitation constrains global forest productivity directly and indirectly via forest community structural attributes: Meta-analysis. Glob. Ecol. Biogeogr. 2025, 34, e70048. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Q.; He, N.; Smith, M.D.; Elser, J.J.; Du, J.; Yuan, G.; Yu, G.; Yu, Q. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research. J. Geophys. Res. Biogeosci. 2016, 121, 1605–1616. [Google Scholar] [CrossRef]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Mao, Q.; Lu, X.; Mo, H.; Gundersen, P.; Mo, J. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Sci. Total Environ. 2018, 610–611, 555–562. [Google Scholar] [CrossRef]
- Ren, H.; Fan, Y.; Zou, Z.; Hui, D.; Guo, Q.; Huang, Y. Long-term structural and functional changes in Acacia mangium plantations in subtropical China. Landsc. Ecol. Eng. 2021, 17, 11–19. [Google Scholar] [CrossRef]
- Berg, B.; Matzner, E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 1997, 5, 1–25. [Google Scholar] [CrossRef]
- Fox, T.R. Sustained productivity in intensively managed forest plantations. For. Ecol. Manag. 2000, 138, 187–202. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta-analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical Forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Zeng, P.; Zhao, Q.; Hu, J.Y.; Zhang, X.; Mao, B.; Sun, Q.Y.; Wu, W.G. Nitrogen addition has divergent effects on phosphorus fractions in four types of soils. Ecol. Process. 2024, 13, 43. [Google Scholar] [CrossRef]
- Lu, X.; Vitousek, P.M.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Turner, B.L.; Zhou, G.; Mo, J. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2020790118. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.F.; Jin, M.K.; Zhang, W.; Lambers, H.; Hui, D.; Liang, C.; Zhang, J.; Wu, D.; Sardans, J.; et al. Microbial controls over soil priming effects under chronic nitrogen and phosphorus additions in subtropical forests. ISME J. 2023, 17, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xue, Y.; Wu, D.; Xu, M.; Li, A.; Zhang, B.; Mo, J.; Zheng, M. Long-term nitrogen and phosphorus addition have stronger negative effects on microbial residual carbon in subsoils than topsoils in subtropical forests. Glob. Change Biol. 2024, 30, e17210. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality, in: Defining soil quality for a sustainable environment. Def. Soil Qual. Sustain. Environ. 1994, 35, 1–21. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Wienhold, B.J.; Zobeck, T.M. Soil Quality Assessment: Past, Present and Future. J. Integr. Biosci. 2008, 6, 1203. [Google Scholar]
- Celis, R.A.O.; Gamboa, C.H.; Pascual, J.A.; Ros, M. Conceptual and practical challenges of assessing soil quality. Soil Use Manag. 2024, 40, e1317. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mader, P.; Bunemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Gozukara, G.; Acar, M.; Ozlu, E.; Dengiz, O.; Hartemink, A.E.; Zhang, Y. A soil quality index using Vis-NIR and pXRF spectra of a soil profile. Catena 2022, 211, 105954. [Google Scholar] [CrossRef]
- Bayrakli, B.; Dengiz, O.; Kars, N. Soil quality assessment based on MCDA–GIS hybrid approach for sustainable hazelnut farming under humid ecosystem environment. Rend. Lincei-Sci. Fis. 2023, 34, 921–940. [Google Scholar] [CrossRef]
- Andrews, S.S.; Carroll, C.R. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 2001, 11, 1573–1585. [Google Scholar] [CrossRef]
- Bone, J.; Barraclough, D.; Eggleton, P.; Head, M.; Jones, D.T.; Voulvoulis, N. Prioritising soil quality assessment through the screening of sites: The use of publicly collected data. Land Degrad. Dev. 2014, 25, 251–266. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 2018, 616, 564–571. [Google Scholar] [CrossRef]
- Hussain, Z.; Deng, L.M.; Wang, X.; Cui, R.Y.; Li, X.Q.; Liu, G.C.; Hussain, I.; Wali, F.; Ayub, M. Determination of minimum data set for soil health assessment of farmlands under wheat–maize crop system in Yanting county, Sichuan, China. Agriculture 2024, 14, 951. [Google Scholar] [CrossRef]
- Huang, Z.; Selvalakshmi, S.; Vasu, D.; Liu, Q.; Cheng, H.; Guo, F.; Ma, X. Identification of indicators for evaluating and monitoring the effects of Chinese fir monoculture plantations on soil quality. Ecol. Indic. 2018, 93, 547–554. [Google Scholar] [CrossRef]
- Shao, G.; Ai, J.; Sun, Q.; Hou, L.; Dong, Y. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- He, Y.; Han, X.; Wang, X.; Wang, L.; Liang, T. Long-term ecological effects of two artificial forests on soil properties and quality in the eastern Qinghai-Tibet Plateau. Sci. Total. Environ. 2021, 796, 148986. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Diao, M.; Zhu, J.; Lu, D.; Zhang, W. A global meta-analysis of indicators for assessing forest soil quality through comparison between paired plantations versus natural forests. Land Degrad. Dev. 2022, 33, 3603–3616. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.B.; Liu, J.S.; Chen, C.N.; Guo, Y.X. A framework for selecting and assessing soil quality indicators for sustainable soil management in waste dumps. Sci. Rep. 2024, 14, 8491. [Google Scholar] [CrossRef] [PubMed]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Sitters, J.; Edwards, P.J.; Olde Venterink, H. Increases of Soil C, N, and P Pools Along an Acacia Tree Density Gradient and Their Effects on Trees and Grasses. Ecosystems 2013, 16, 347–357. [Google Scholar] [CrossRef]
- Yu, Q.; Hanif, A.; Rao, X.; He, J.; Sun, D.; Liu, S.; He, D.; Shen, W. Long-term restoration altered edaphic properties and soil microbial communities in forests: Evidence from four plantations of southern China. Restor. Ecol. 2021, 29, e13354. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Luo, Y.; Rafique, R.; Chen, H.; Huang, J.; Mo, J. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species. Biogeosciences 2014, 11, 4941–4951. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Zhang, W.; Huang, J.; Fu, S.; Liu, Z.; Mo, J. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant Soil 2016, 399, 61–74. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.M.; Liu, L.; Fu, S.L.; Chen, H.; Huang, J.; Lu, X.K.; Liu, Z.F.; Mo, J.M. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species. J. Geophys. Res. Biogeosci. 2012, 117, JG002094. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Handling and Preparation of Soil Samples for Chemical and Physical Analyses; FAO: Rome, Italy, 2019. [Google Scholar]
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, W.; Li, Y.; Wang, S.; Mao, J.; Mo, J.; Zheng, M. Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations. Environ. Res. Lett. 2021, 16, 114042. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Bell, C.W.; Fricks, B.E.; Rocca, J.D.; Steinweg, J.M.; McMahon, S.K.; Wallenstein, M.D. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. JoVE-J. Vis. Exp. 2013, 81, 50961. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts in Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
- Yu, P.; Han, D.; Liu, S.; Wen, X.; Huang, Y.; Jia, H. Soil quality assessment under different land uses in an alpine grassland. Catena 2018, 171, 280–287. [Google Scholar] [CrossRef]
- Askari, M.S.; Holden, N.M. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230, 131–142. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Chen, H.; Gurmesa, G.A.; Zhang, W.; Zhu, X.; Zheng, M.; Mao, Q.; Zhang, T.; Mo, J. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Funct. Ecol. 2016, 30, 305–313. [Google Scholar] [CrossRef]
- Wang, R.; Bicharanloo, B.; Hou, E.; Jiang, Y.; Dijkstra, F.A. Phosphorus supply increases nitrogen transformation rates and retention in soil: A global meta-analysis. Earth’s Future 2022, 10, e2021EF002479. [Google Scholar] [CrossRef]
- Xia, Y.; Peñuelas, J.; Sardans, J.; Zhong, X.; Xu, L.; Yang, Z.; Yang, Y.; Yang, L.; Yue, K.; Fan, Y. Phosphorus addition accelerates soil organic carbon mineralization by desorbing organic carbon and increasing microbial activity in subtropical forest soils. Appl. Soil Ecol. 2024, 193, 105166. [Google Scholar] [CrossRef]
- Reed, S.C.; Townsend, A.R.; Cleveland, C.C.; Nemergut, D.R. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia 2010, 164, 521–531. [Google Scholar] [CrossRef]
- Matson, A.L.; Corre, M.D.; Burneo, J.I.; Veldkamp, E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 2015, 122, 281–294. [Google Scholar] [CrossRef]
- Zheng, M.; Li, D.; Lu, X.; Zhu, X.; Zhang, W.; Huang, J.; Fu, S.; Lu, X.; Mo, J. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations. Biogeochemistry 2016, 131, 65–76. [Google Scholar] [CrossRef]
- Gundersen, P.; Callesen, I.; de Vries, W. Nitrate leaching in forest ecosystems is related to forest floor CN ratios. Environ. Pollut. 1998, 102, 403–407. [Google Scholar] [CrossRef]
- Fine, A.K.; Van Es, H.M.; Schindelbeck, R.R. Statistics, scoring Functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 2017, 81, 589–601. [Google Scholar] [CrossRef]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Levi, M.R.; Shaw, J.N.; Wood, C.W.; Hermann, S.M.; Carter, E.A.; Feng, Y. Land Management Effects on Near-Surface Soil Properties of Southeastern U.S. Coastal Plain Kandiudults. Soil Sci. Soc. Am. J. 2010, 74, 258–271. [Google Scholar] [CrossRef]
- Kiani, M.; Hernandez-Ramirez, G.; Quideau, S.; Smith, E.; Janzen, H.; Larney, F.J.; Puurveen, D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric. Ecosyst. Environ. 2017, 248, 123–135. [Google Scholar] [CrossRef]
- Liu, T.; Wu, X.; Li, H.; Ning, C.; Li, Y.; Zhang, X.; He, J.; Filimonenko, E.; Chen, S.; Chen, X.; et al. Soil quality and r − K fungal communities in plantations after conversion from subtropical forest. Catena 2022, 219, 106584. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Remy de Courcelles, V.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Hargreaves, P.R.; Brookes, P.C.; Ross, G.J.S.; Poulton, P.R. Evaluating soil microbial biomass carbon as an indicator of long-term environmental change. Soil Biol. Biochem. 2003, 35, 401–407. [Google Scholar] [CrossRef]
- Lepcha, N.T.; Devi, N.B. Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecol. Process. 2020, 9, 65. [Google Scholar] [CrossRef]
- Patoine, G.; Eisenhauer, N.; Cesarz, S.; Phillips, H.R.; Xu, X.; Zhang, L.; Guerra, C.A. Drivers and trends of global soil microbial carbon over two decades. Nat. Commun. 2022, 13, 4195. [Google Scholar] [CrossRef]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Alvarez-Clare, S.; Castle, S.C.; Porder, S.; Reed, S.C.; Schreeg, L.; Townsend, A.R.; Cleveland, C.C. Assessing nutrient limitation in complex forested ecosystems: Alternatives to large-scale fertilization experiments. Ecology 2014, 95, 668–681. [Google Scholar] [CrossRef]
- Yokoyama, D.; Imai, N.; Kitayama, K. Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests. Plant Soil 2017, 416, 463–476. [Google Scholar] [CrossRef]
- Marchante, E.; Kjøller, A.; Struwe, S.; Freitas, H. Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 2008, 40, 210–217. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.J.R.; Alves, B.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, L.; Li, Z.; Zhao, D.; Song, L.; Shao, G.; Ai, J.; Sun, Q. Leguminous supplementation increases the resilience of soil microbial community and nutrients in Chinese fir plantations. Sci. Total Environ. 2020, 703, 134917. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Chapin III, F.S.; Ciais, P.; Malhi, Y.; Obersteiner, M.; et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 2014, 4, 471–476. [Google Scholar] [CrossRef]
- Wieder, W.R.; Cleveland, C.C.; Smith, W.K.; Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 2015, 8, 441–444. [Google Scholar] [CrossRef]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, S.; Yu, G. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Glob. Change Biol. 2016, 22, 934–943. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Périé, C.; Munson, A.D. Ten-year responses of soil quality and conifer growth to silvicultural treatments. Soil Sci. Soc. Am. J. 2000, 64, 1815–1826. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, S.; Zhao, Q. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 2003, 115, 85–99. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, P.; Xu, Z. Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J. Soils Sediments 2008, 8, 177–183. [Google Scholar] [CrossRef]
- Ge, G.F.; Li, Z.J.; Zhang, J.; Wang, L.G.; Xu, M.G.; Zhang, J.B.; Wang, J.K.; Xie, X.L.; Liang, Y.C. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex. 2009, 6, 421–431. [Google Scholar] [CrossRef]
- Ross, C.W.; Watt, M.S.; Parfitt, R.L.; Simcock, R.; Dando, J.; Coker, G.; Clinton, P.W.; Davis, M.R. Soil quality relationships with tree growth in exotic forests in New Zealand. For. Ecol. Manag. 2009, 258, 2326–2334. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain. Plant Soil 2009, 314, 67–76. [Google Scholar] [CrossRef]
- Butnor, J.R.; Johnsen, K.H.; Sanchez, F.G.; Nelson, C.D. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting. Can. J. For. Res. 2012, 42, 675–685. [Google Scholar] [CrossRef]
- Couto, R.d.R.; Comin, J.J.; Soares, C.R.F.S.; Belli Filho, P.; Benedet, L.; Moraes, M.P.d.; Brunetto, G.; Beber, C.L. Microbiological and chemical attributes of a Hapludalf soil with swine manure fertilization. Pesq. Agropec. Bras. 2013, 48, 774–782. [Google Scholar] [CrossRef]
- Assmann, J.M.; Anghinoni, I.; Martins, A.P.; Costa, S.E.V.G.d.A.; Cecagno, D.; Carlos, F.S.; Carvalho, P.C.d.F. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop–livestock system under no-tillage in southern Brazil. Agric. Ecosyst. Environ. 2014, 190, 52–59. [Google Scholar] [CrossRef]
- Carron, M.P.; Auriac, Q.; Snoeck, D.; Villenave, C.; Blanchart, E.; Ribeyre, F.; Marichal, R.; Darminto, M.; Caliman, J.P. Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. Eur. J. Soil. Biol. 2015, 66, 24–31. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, H.; Chen, F.L.; Ouyang, Z.Y.; Wang, Y.; Wu, Y.F.; Lan, J.; Fu, M.; Xiang, X.W. Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China. Solid Earth 2015, 6, 115–123. [Google Scholar] [CrossRef]
- Vanhove, W.; Vanhoudt, N.; Van Damme, P. Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agric. Ecosyst. Environ. 2016, 219, 14–25. [Google Scholar] [CrossRef]
- Tu, J.; Wang, B.; McGrouther, K.; Wang, H.; Ma, T.; Qiao, J.; Wu, L. Soil quality assessment under different Paulownia fortunei plantations in mid-subtropical China. J. Soils Sediments 2017, 17, 2371–2382. [Google Scholar] [CrossRef]
- Adeniyi, S.A.; de Clercq, W.P.; van Niekerk, A. Assessing the relationship between soil quality parameters of Nigerian alfisols and cocoa yield. Agroforest. Syst. 2019, 93, 1235–1250. [Google Scholar] [CrossRef]
- Borges, S.R.; Santos, R.S.; Oliveira, D.M.S.; Souza, I.F.; Verburg, E.E.J.; Pimentel, L.G.; Cruz, R.S.; Silva, I.R. Practices for rehabilitating bauxite-mined areas and an integrative approach to monitor soil quality. Land. Degrad. Dev. 2019, 30, 866–877. [Google Scholar] [CrossRef]
- de Andrade Barbosa, M.; de Sousa Ferraz, R.L.; Coutinho, E.L.M.; Coutinho Neto, A.M.; da Silva, M.S.; Fernandes, C.; Rigobelo, E.C. Multivariate analysis and modeling of soil quality indicators in long-term management systems. Sci. Total Environ. 2019, 657, 457–465. [Google Scholar] [CrossRef]
- Mazzon, M.; Cavani, L.; Ciavatta, C.; Campanelli, G.; Burgio, G.; Marzadori, C. Conventional versus organic management: Application of simple and complex indexes to assess soil quality. Agric. Ecosyst. Environ. 2021, 322, 107673. [Google Scholar] [CrossRef]
- Ren, H.; Lv, C.; Fernández-García, V.; Huang, B.; Yao, J.; Ding, W. Biochar and PGPR amendments influence soil enzyme activities and nutrient concentrations in a eucalyptus seedling plantation. Biomass Conv. Bioref. 2021, 11, 1865–1874. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.; Ren, X.; Ma, X.; Zhou, M.; Ge, X.; Liu, H.; Fu, S. Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set. Sustainability 2022, 14, 10665. [Google Scholar] [CrossRef]
- Wei, L.; Li, Y.; Zhu, Z.; Wang, F.; Liu, X.; Zhang, W.; Xiao, M.; Li, G.; Ding, J.; Chen, J.; et al. Soil health evaluation approaches along a reclamation consequence in Hangzhou Bay, China. Agric. Ecosyst. Environ. 2022, 337, 108045. [Google Scholar] [CrossRef]
- Joseph, R.; Diochon, A.; Morris, D.; Venier, L.; Emilson, C.E.; Basiliko, N.; Bélanger, N.; Jones, T.; Markham, J.; Rutherford, M.P.; et al. Limited effect of wood ash application on soil quality as indicated by a multisite assessment of soil organic matter attributes. GCB Bioenergy 2022, 14, 500–521. [Google Scholar] [CrossRef]
- Zhou, Z.; Yrjälä, K.; Chen, J.; Yu, C.; Shi, W.; Qin, H.; Yu, W.; Dai, W.; Hu, Y.; Wu, J. Organic amendments combined with biochar for improving soil and plant quality in a Torreya grandis plantation. J. Soils. Sediments 2022, 22, 1080–1094. [Google Scholar] [CrossRef]
- Karthika, K.S.; Anil Kumar, K.S.; Nair, K.P.M.; D’Souza, V.M.; Nagaraja, J.S.; Lalitha, M.; Koyal, A.; Jayaramaiah, M.; Parvathy, S.; Sujatha, K.; et al. Sustainability of coffee land use upon conversion from natural forest in Western Ghats of South India: An evaluation. Soil Use Manage. 2022, 38, 873–889. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, L. Fertilization and Residue Management Improved Soil Quality of Eucalyptus Plantations. Forests 2023, 14, 1570. [Google Scholar] [CrossRef]
- Si, L.; Xu, J.; Cao, K.; Zhang, X.; Han, K.; Wang, J. Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China. Agronomy 2023, 13, 1361. [Google Scholar] [CrossRef]
- Yang, R.; Yang, Z.; Yang, S.; Chen, L.; Xin, J.; Xu, L.; Zhang, X.; Zhai, B.; Wang, Z.; Zheng, W.; et al. Nitrogen inhibitors improve soil ecosystem multifunctionality by enhancing soil quality and alleviating microbial nitrogen limitation. Sci. Total Environ. 2023, 880, 163238. [Google Scholar] [CrossRef]
- Huang, C.; Fu, S.; Ma, X.M.; Ma, X.X.; Ren, X.; Tian, X.; Tong, Y.; Yuan, F.; Liu, H. Long-term intensive management reduced the soil quality of a Carya dabieshanensis forest. Sci. Rep. 2023, 13, 5058. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Deng, J.; Fu, L.; Chen, H.; Li, C.; Xu, L.; Jiao, J.; Zhang, S.; Wang, J.; et al. Cover crop by irrigation and fertilization improves soil health and maize yield: Establishing a soil health index. Appl. Soil Ecol. 2023, 182, 104727. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Li, B.; Gao, W.; Ruan, Y.; Christie, P.; Zhang, J.; Zhang, Y. Bacteria not fungi drive soil chemical quality index in banana plantations with increasing years of organic fertilizer application. J. Sci. Food Agric. 2023, 103, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. Brit. Med. J. 2021, 372, n160. [Google Scholar] [CrossRef]
Plantation | NH4+-N (mg/kg) | NO3−-N (mg/kg) | SOC (g/kg) | TN (g/kg) | TP (g/kg) | C/N | AP (mg/kg) | pH |
---|---|---|---|---|---|---|---|---|
AA | 6.3 (0.3) | 8.0 (0.4) | 24 (2) | 2.0 (0.1) | 0.29 (0.02) | 13 (1) | 2.5(0.2) | 3.7 (0.0) |
EU | 4.9 (0.4) | 6.9 (0.5) | 19 (0) | 1.5 (0.2) | 0.29 (0.31) | 13 (1) | 2.1 (0.1) | 3.8 (0.0) |
Indices | AA Plantation | EU Plantation | ||||
---|---|---|---|---|---|---|
Acacia | Others | Total | Eucalyptus | Others | Total | |
Stem density (tree ha−1) | 357 | 1719 | 2076 | 1186 | 776 | 1961 |
Mean height (m) | 12.2 | 5.6 | 11.5 | 4 | ||
Diameter at breast height (cm) | 15 | 4.8 | 11.1 | 3.9 | ||
Basal area (m2 ha−1) | 7.3 | 5.2 | 12.5 | 14.7 | 2 | 16.7 |
Percentage of basal area (%) | 59 | 41 | 100 | 88 | 12 | 100 |
Soil Indicator | Season | Acacia auriculiformis Plantation | ANOVA | Eucalyptus urophylla Plantation | ANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | P | NP | F | p | C | N | P | NP | F | p | ||
WC (%) | Wet | 21.75 ± 2.31a | 16.91 ± 1.09a | 17.28 ± 0.61a | 17.59 ± 1.58a | 2.21 | 0.17 | 21.80 ± 0.67a | 19.88 ± 0.52a | 17.63 ± 1.29a | 19.01 ± 0.40a | 1.40 | 0.31 |
Dry | 18.33 ± 1.97a | 14.88 ± 1.04ab | 13.43 ± 1.23b | 15.21 ± 1.06ab | 4.87 | 0.03 | 17.11 ± 0.63a | 17.93 ± 1.30a | 15.27 ± 0.91a | 17.88 ± 1.15a | 1.47 | 0.30 | |
Clay (%) | Wet | 18.27 ± 1.56a | 20.34 ± 2.03a | 20.84 ± 0.51a | 21.89 ± 0.11a | 1.36 | 0.32 | 18.45 ± 0.87a | 17.92 ± 1.91a | 20.32 ± 0.95a | 15.42 ± 0.57a | 2.89 | 0.1 |
Dry | 19.71 ± 1.58a | 21.03 ± 1.11a | 20.56 ± 4.90a | 20.78 ± 1.02a | 0.16 | 0.92 | 22.79 ± 0.90a | 23.89 ± 1.02a | 21.73 ± 1.93a | 21.26 ± 0.60a | 0.93 | 0.47 | |
Silt (%) | Wet | 43.54 ± 1.53a | 42.28 ± 1.94a | 42.32 ± 2.00a | 48.14 ± 0.76a | 2.88 | 0.1 | 42.00 ± 2.11a | 42.52 ± 0.82a | 44.81 ± 2.29a | 48.55 ± 3.46a | 1.58 | 0.27 |
Dry | 41.42 ± 1.24ab | 37.83 ± 0.76b | 39.21 ± 1.35ab | 42.72 ± 0.15a | 4.85 | 0.03 | 39.15 ± 3.40a | 41.09 ± 2.05a | 37.86 ± 1.17a | 39.77 ± 2.26a | 0.33 | 0.81 | |
Sand (%) | Wet | 38.19 ± 2.04a | 37.38 ± 3.93a | 36.85 ± 2.18a | 29.97 ± 0.84a | 2.29 | 0.15 | 39.55 ± 1.27a | 39.57 ± 1.85a | 34.86 ± 1.45a | 36.03 ± 3.08a | 1.41 | 0.31 |
Dry | 38.87 ± 2.82a | 41.14 ± 1.12a | 40.23 ± 2.62a | 36.49 ± 1.11a | 0.95 | 0.46 | 38.06 ± 3.54a | 35.03 ± 2.75a | 40.41 ± 1.80a | 38.96 ± 1.92a | 0.76 | 0.54 | |
pH | Wet | 3.88 ± 0.05a | 3.74 ± 0.07a | 3.81 ± 0.07a | 3.90 ± 0.03a | 1.49 | 0.29 | 3.91 ± 0.04a | 3.74 ± 0.05a | 3.98 ± 0.12a | 3.75 ± 0.08a | 2.21 | 0.17 |
Dry | 3.90 ± 0.04a | 3.90 ± 0.10a | 3.95 ± 0.08a | 4.03 ± 0.04a | 0.71 | 0.57 | 4.01 ± 0.09a | 3.89 ± 0.03a | 4.10 ± 0.13a | 4.05 ± 0.11a | 0.87 | 0.49 | |
SOC (g/kg) | Wet | 36.85 ± 3.87a | 23.66 ± 1.22b | 24.82 ± 2.66b | 25.12 ± 2.08b | 5.48 | 0.02 | 24.20 ± 1.65a | 19.07 ± 2.12a | 18.66 ± 3.92a | 26.38 ± 0.76a | 2.51 | 0.13 |
Dry | 27.54 ± 1.93a | 22.84 ± 2.34a | 27.27 ± 2.71a | 22.99 ± 0.87a | 1.56 | 0.27 | 23.88 ± 2.21a | 19.99 ± 1.29ab | 15.86 ± 0.31b | 24.47 ± 1.75a | 6.54 | 0.02 | |
TN (g/kg) | Wet | 2.30 ± 0.24a | 1.64 ± 0.06a | 1.72 ± 0.14a | 1.77 ± 0.21a | 2.74 | 0.11 | 1.51 ± 0.03ab | 1.17 ± 0.11b | 1.18 ± 0.18b | 1.69 ± 0.09a | 5.22 | 0.03 |
Dry | 1.92 ± 0.12a | 1.69 ± 0.17a | 1.91 ± 0.25a | 1.70 ± 0.09a | 0.57 | 0.65 | 1.54 ± 0.10a | 1.33 ± 0.12ab | 1.03 ± 0.11b | 1.62 ± 0.17a | 7.06 | 0.01 | |
TP (g/kg) | Wet | 0.36 ± 0.02a | 0.34 ± 0.03a | 0.63 ± 0.03b | 0.67 ± 0.02b | 43.53 | <0.01 | 0.36 ± 0.01a | 0.34 ± 0.02a | 0.55 ± 0.04b | 0.59 ± 0.04b | 20.67 | <0.01 |
Dry | 0.35 ± 0.03a | 0.32 ± 0.04a | 0.80 ± 0.08b | 0.76 ± 0.07b | 15.24 | <0.01 | 0.35 ± 0.03a | 0.32 ± 0.02a | 0.62 ± 0.05b | 0.78 ± 0.03c | 44.71 | <0.01 | |
IN (mg/kg) | Wet | 12.76 ± 0.98a | 11.06 ± 0.86ab | 8.54 ± 0.58bc | 7.18 ± 0.60c | 10.41 | <0.01 | 11.01 ± 0.25a | 8.76 ± 0.37ab | 8.03 ± 0.93b | 10.92 ± 0.42ab | 7.45 | 0.01 |
Dry | 8.88 ± 0.17ab | 11.53 ± 0.34a | 7.33 ± 0.72b | 7.80 ± 0.53ab | 4.98 | 0.03 | 9.82 ± 0.50a | 10.78 ± 0.31a | 5.86 ± 0.39b | 7.73 ± 0.43b | 28.12 | <0.01 | |
CEC (mmol/kg) | Wet | 23.14 ± 0.95a | 23.98 ± 2.42a | 23.63 ± 1.95a | 25.05 ± 1.80a | 0.19 | 0.90 | 17.70 ± 0.53a | 21.11 ± 1.14a | 18.23 ± 1.55a | 23.65 ± 2.70a | 2.69 | 0.12 |
Dry | 19.40 ± 1.64a | 22.85 ± 0.67a | 21.22 ± 2.40a | 23.01 ± 0.95a | 1.16 | 0.38 | 21.22 ± 0.43a | 20.39 ± 1.81a | 19.29 ± 1.46a | 23.20 ± 2.61a | 0.88 | 0.49 | |
MBC (mg/kg) | Wet | 235.92 ± 9.88a | 218.21 ± 8.62a | 214.82 ± 14.93a | 190.05 ± 11.01a | 2.76 | 0.11 | 224.37 ± 11.88a | 218.46 ± 9.31a | 195.98 ± 12.08a | 207.36 ± 9.43a | 1.36 | 0.32 |
Dry | 145.32 ± 12.06a | 137.19 ± 10.75a | 124.40 ± 5.14a | 110.57 ± 13.88a | 1.93 | 0.2 | 109.06 ± 3.00a | 96.70 ± 6.82a | 108.3 ± 11.30a | 97.60 ± 1.39a | 0.96 | 0.45 | |
MBN (mg/kg) | Wet | 25.31 ± 0.99a | 20.43 ± 1.19ab | 23.13 ± 1.55ab | 17.86 ± 2.20b | 4.32 | 0.04 | 21.60 ± 0.37a | 22.35 ± 0.93a | 21.08 ± 1.92a | 20.98 ± 1.23a | 0.25 | 0.85 |
Dry | 18.46 ± 1.51a | 20.90 ± 1.82a | 18.89 ± 1.56a | 15.25 ± 0.51a | 2.64 | 0.12 | 14.42 ± 2.15a | 11.01 ± 1.41a | 16.04 ± 1.54a | 15.15 ± 0.38a | 2.10 | 0.18 | |
BG (nmol/h·g dry soil) | Wet | 54.75 ± 2.79a | 58.30 ± 8.95a | 50.64 ± 5.08a | 43.80 ± 4.09a | 1.18 | 0.37 | 87.39 ± 6.75a | 60.09 ± 8.16bc | 47.29 ± 3.55c | 77.46 ± 4.19ab | 8.95 | <0.01 |
Dry | 30.83 ± 2.79a | 37.80 ± 1.59a | 26.54 ± 4.63a | 33.00 ± 5.59a | 1.39 | 0.31 | 46.51 ± 2.70a | 30.20 ± 5.36ab | 16.92 ± 1.69b | 44.80 ± 6.97a | 8.81 | <0.01 | |
CBH (nmol/h·g dry soil) | Wet | 18.49 ± 1.21ab | 23.85 ± 3.40a | 13.26 ± 1.36b | 21.02 ± 1.82ab | 4.44 | 0.04 | 21.36 ± 1.51ab | 18.06 ± 1.04ab | 13.85 ± 0.45b | 25.76 ± 2.48a | 10.39 | <0.01 |
Dry | 13.10 ± 1.38a | 13.06 ± 1.12a | 4.62 ± 1.23b | 8.83 ± 2.40ab | 6.30 | 0.01 | 13.38 ± 1.41a | 6.08 ± 2.78ab | 3.51 ± 0.87b | 12.35 ± 1.81a | 6.68 | 0.01 | |
XYL (nmol/h·g dry soil) | Wet | 50.07 ± 4.30a | 54.73 ± 2.57a | 42.55 ± 2.14a | 43.29 ± 3.85a | 3.02 | 0.09 | 99.92 ± 7.27a | 74.49 ± 4.54b | 29.12 ± 3.91c | 87.21 ± 3.48ab | 37.68 | <0.01 |
Dry | 26.45 ± 1.67a | 25.19 ± 3.25a | 28.90 ± 4.51a | 19.60 ± 3.79a | 1.29 | 0.34 | 41.39 ± 5.94a | 20.56 ± 2.76b | 5.02 ± 0.80b | 40.09 ± 2.68a | 23.73 | <0.01 | |
NAG (nmol/h·g dry soil) | Wet | 39.00 ± 0.88a | 37.32 ± 5.27a | 27.74 ± 2.05a | 40.17 ± 5.76a | 1.94 | 0.20 | 65.44 ± 7.49a | 41.97 ± 4.09a | 37.90 ± 3.38b | 68.96 ± 5.87a | 8.5 | <0.01 |
Dry | 20.95 ± 1.68a | 24.35 ± 1.60a | 17.17 ± 1.55a | 18.45 ± 1.58a | 3.90 | 0.05 | 18.01 ± 2.93a | 15.51 ± 2.11a | 13.94 ± 1.34a | 17.72 ± 3.80a | 0.51 | 0.68 | |
PDE (nmol/h·g dry soil) | Wet | 74.26 ± 5.94a | 61.78 ± 1.68a | 18.00 ± 1.81b | 23.65 ± 1.00b | 72.85 | <0.01 | 42.17 ± 1.41a | 33.22 ± 0.85b | 14.55 ± 2.50c | 23.53 ± 3.07c | 30.95 | <0.01 |
Dry | 47.35 ± 3.70a | 44.89 ± 1.60a | 9.37 ± 0.70b | 11.35 ± 0.92b | 97.39 | <0.01 | 31.17 ± 1.33a | 28.82 ± 2.34a | 6.44 ± 0.65b | 11.88 ± 1.32b | 64.00 | <0.01 | |
PME (nmol/h·g dry soil) | Wet | 672.69 ± 33.90a | 604.18 ± 8.90a | 249.61 ± 7.43b | 289.44 ± 11.21b | 131.60 | <0.01 | 601.28 ± 7.86a | 523.24 ± 11.05b | 264.86 ± 18.54c | 307.73 ± 7.90c | 180.90 | <0.01 |
Dry | 353.28 ± 13.52a | 358.16 ± 10.71a | 244.50 ± 17.73b | 279.53 ± 4.37b | 19.88 | <0.01 | 324.98 ± 6.34a | 310.06 ± 3.83a | 141.52 ± 11.06c | 261.59 ± 4.90b | 137.60 | <0.01 |
Soil Indicators | Total Dataset | Physical | Chemical | Biological | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | COM | PC1 | PC2 | COM | PC1 | PC2 | COM | PC1 | PC2 | COM | |
SWC | 0.66 | −0.022 | 0.138 | −0.266 | 0.183 | 0.559 | 0.590 | 0.420 | 0.525 | ||||||
Clay | −0.5 | 0.22 | 0.373 | −0.465 | −0.381 | 0.799 | −0.060 | −0.950 | 0.906 | ||||||
Silt | 0.434 | −0.628 | 0.391 | −0.312 | 0.214 | 0.879 | 0.940 | 0.120 | 0.898 | ||||||
Sand | −0.099 | 0.465 | −0.614 | 0.596 | 0.036 | 0.960 | −0.870 | 0.480 | 0.987 | ||||||
pH | −0.509 | −0.213 | −0.033 | −0.01 | 0.677 | 0.764 | −0.525 | 0.328 | 0.383 | ||||||
SOC | 0.514 | 0.454 | 0.589 | 0.244 | 0.244 | 0.936 | 0.900 | 0.262 | 0.879 | ||||||
TN | 0.403 | 0.444 | 0.675 | 0.254 | 0.249 | 0.942 | 0.865 | 0.360 | 0.878 | ||||||
TP | −0.438 | −0.454 | 0.448 | 0.509 | 0.07 | 0.863 | −0.273 | 0.881 | 0.851 | ||||||
IN | 0.714 | 0.441 | 0.042 | −0.259 | 0.131 | 0.790 | 0.750 | −0.512 | 0.825 | ||||||
CEC | 0.218 | 0.071 | 0.627 | 0.267 | −0.436 | 0.707 | 0.520 | 0.480 | 0.501 | ||||||
MBC | 0.829 | −0.214 | −0.083 | 0.096 | −0.165 | 0.776 | 0.870 | 0.042 | 0.759 | ||||||
MBN | 0.657 | 0.007 | −0.064 | 0.425 | −0.083 | 0.623 | 0.683 | 0.151 | 0.489 | ||||||
BG | 0.84 | −0.302 | −0.138 | 0.07 | −0.063 | 0.825 | 0.899 | −0.312 | 0.906 | ||||||
CBH | 0.864 | −0.242 | 0.02 | 0.017 | −0.147 | 0.827 | 0.894 | −0.138 | 0.818 | ||||||
XYL | 0.831 | −0.295 | −0.169 | 0.087 | −0.017 | 0.814 | 0.882 | −0.305 | 0.871 | ||||||
NAG | 0.806 | −0.485 | −0.115 | 0.047 | 0.05 | 0.903 | 0.875 | −0.374 | 0.906 | ||||||
PDE | 0.696 | 0.564 | −0.127 | −0.237 | 0.082 | 0.882 | 0.609 | 0.740 | 0.918 | ||||||
PME | 0.813 | 0.335 | −0.207 | −0.152 | 0.049 | 0.842 | 0.779 | 0.526 | 0.884 | ||||||
Eigenvalue | 7.37 | 2.46 | 2.22 | 1.54 | 1.09 | 1.99 | 1.32 | 2.74 | 1.57 | 5.35 | 1.2 | ||||
Variance (%) | 40.97 | 13.68 | 12.32 | 8.58 | 6.05 | 49.78 | 33.08 | 45.68 | 26.23 | 66.89 | 14.97 | ||||
Cumulative variance (%) | 40.97 | 54.65 | 66.97 | 75.55 | 81.60 | 49.78 | 82.86 | 45.68 | 71.91 | 66.89 | 81.86 |
Treatment | ||||
---|---|---|---|---|
C | N | NP | P | |
Acacia auriculiformis | 0.72 ± 0.04 | 0.67 ± 0.03 | 0.64 ± 0.03 | 0.67 ± 0.04 |
Eucalyptus urophylla | 0.66 ± 0.03 | 0.63 ± 0.03 | 0.65 ± 0.02 | 0.60 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Mao, Q.; Wang, S.; Mao, S.; Zhang, B.; Zheng, M.; Huang, J.; Mo, J.; Tan, X.; Zhang, W. Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China. Forests 2025, 16, 1435. https://doi.org/10.3390/f16091435
Peng J, Mao Q, Wang S, Mao S, Zhang B, Zheng M, Huang J, Mo J, Tan X, Zhang W. Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China. Forests. 2025; 16(9):1435. https://doi.org/10.3390/f16091435
Chicago/Turabian StylePeng, Jiani, Qinggong Mao, Senhao Wang, Sichen Mao, Baixin Zhang, Mianhai Zheng, Juan Huang, Jiangming Mo, Xiangping Tan, and Wei Zhang. 2025. "Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China" Forests 16, no. 9: 1435. https://doi.org/10.3390/f16091435
APA StylePeng, J., Mao, Q., Wang, S., Mao, S., Zhang, B., Zheng, M., Huang, J., Mo, J., Tan, X., & Zhang, W. (2025). Soil Quality Assessment for Sustainable Management: A Minimum Dataset for Long-Term Fertilization in Subtropical Plantations in South China. Forests, 16(9), 1435. https://doi.org/10.3390/f16091435