Evaluating the Effects of Glutathione and Controlled-Release Fertilizer on the Height Growth of Cryptomeria japonica D. Don Seedlings Accounting for Topography and Vegetation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Seedling Growth and Vegetation Surveys
2.3. Calculation of Topographic Variables
2.4. Statistical Analyses
2.4.1. Generalized Linear Mixed Models for Treatment Effects on Seedling and Vegetation Growth
2.4.2. Topographic and Treatment Effects on Seedling Height: Random Forest Regression
2.4.3. Topographic Influence Assessment on the Effects of Fertilizer and GSSG: Generalized Additive Models
2.4.4. Vegetation Influence Assessment of the Effects of Fertilizer and GSSG: Structural Equation Modeling
2.5. Use of Generative AI Tools
3. Results
3.1. Seedling and Vegetation Growth
3.2. Analysis of Seedling Growth Considering Topographic Parameters and Planting Treatments
3.3. Analysis of Seedling Growth Considering Competing Vegetation and Planting Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%IncMSE | Percentage increase in mean squared error |
DEM | Digital elevation model |
GAM | Generalized additive model |
GLMM | Generalized linear mixed model |
GSSG | Glutathione disulfide |
H:D ratio | Height-to-RCD ratio |
LSF | LS factor |
RCD | Root collar diameter |
SD | Standard deviation |
SEM | Structural equation model |
TPI | Topographic position index |
TRI | Terrain ruggedness index |
TWI | Topographic wetness index |
UAV | Unmanned aerial vehicle |
References
- Grossnickle, S.C.; MacDonald, J.E. Seedling quality: History, application, and plant attributes. Forests 2018, 9, 283. [Google Scholar] [CrossRef]
- Davis, A.S.; Pinto, J.R. The scientific basis of the target plant concept: An overview. Forests 2021, 12, 1293. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Salifu, K.F.; Seifert, J.R. Growth and nutritional response of hardwood seedlings to controlled-release fertilization at outplanting. For. Ecol. Manag. 2005, 214, 28–39. [Google Scholar] [CrossRef]
- Rose, R.; Scott Ketchum, J. Interaction of initial seedling diameter, fertilization and weed control on Douglas-fir growth over the first four years after planting. Ann. For. Sci. 2003, 60, 625–635. [Google Scholar] [CrossRef]
- Smethurst, P.J. Forest fertilization: Trends in knowledge and practice compared to agriculture. Plant Soil 2010, 335, 83–100. [Google Scholar] [CrossRef]
- Hedwall, P.-O.; Gong, P.; Ingerslev, M.; Bergh, J. Fertilization in northern forests—Biological, economic and environmental constraints and possibilities. Scand. J. For. Res. 2014, 29, 301–311. [Google Scholar] [CrossRef]
- Jucker, T.; Bongalov, B.; Burslem, D.; Nilus, R.; Dalponte, M.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Coomes, D.A. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018, 21, 989–1000. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Villa, P.M.; Ferreira-Júnior, W.G.; Schaefer, C.E.R.G.; Neri, A.V. Effects of topographic variability and forest attributes on fine-scale soil fertility in late-secondary succession of Atlantic Forest. Ecol. Process. 2021, 10, 62. [Google Scholar] [CrossRef]
- Enoki, T.; Kawaguchi, H.; Iwatsubo, G. Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecol. Res. 1996, 11, 299–309. [Google Scholar] [CrossRef]
- Scholten, T.; Goebes, P.; Kühn, P.; Seitz, S.; Assmann, T.; Bauhus, J.; Bruelheide, H.; Buscot, F.; Erfmeier, A.; Fischer, M.; et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China. J. Plant Ecol. 2017, 10, 111–127. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Fertilization modifies forest stand growth but not stand density: Consequences for modelling stand dynamics in a changing climate. Forestry 2022, 95, 187–200. [Google Scholar] [CrossRef]
- South, D.B.; Zwolinski, J.B.; Lee Allen, H. Economic returns from enhancing loblolly pine establishment on two upland sites: Effects of seedling grade, fertilization, hexazinone, and intensive soil cultivation. New For. 1995, 10, 239–256. [Google Scholar] [CrossRef]
- Eyles, A.; Worledge, D.; Sands, P.; Ottenschlaeger, M.L.; Paterson, S.C.; Mendham, D.; O’Grady, A.P. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control. Tree Physiol. 2012, 32, 1008–1020. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Campoe, O.; Mendes, J.C.T.; Noel, C.; Moreira, G.G.; van Melis, J.; Stape, J.L.; Guillemot, J. Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecol. Appl. 2020, 29, 118325. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; Oguro, M.; Yamashita, N.; Otani, T.; Utsugi, H. Reforestation following harvesting of conifer plantations in Japan: Current issues from silvicultural and ecological perspectives. Reforesta 2017, 3, 125–141. [Google Scholar] [CrossRef]
- Fukumoto, K.; Ota, T.; Mizoue, N.; Yoshida, S.; Teraoka, Y.; Kajisa, T. The effect of weeding frequency and schedule on weeding operation time: A simulation study on a sugi (Cryptomeria japonica) plantation in Japan. J. For. Res. 2020, 31, 2129–2135. [Google Scholar] [CrossRef]
- Fukumoto, K.; Ota, T.; Mizoue, N.; Yoshida, S.; Teraoka, Y.; Kajisa, T. The effect of weeding frequency and timing on the height growth of young sugi (Cryptomeria japonica) in southwestern Japan. J. For. Res. 2017, 22, 204–207. [Google Scholar] [CrossRef]
- Koh, Y.S.; Wong, S.K.; Ismail, N.H.; Zengin, G.; Duangjai, A.; Saokaew, S.; Phisalprapa, P.; Tan, K.W.; Goh, B.H.; Tang, S.Y. Mitigation of environmental stress-impacts in plants: Role of sole and combinatory exogenous application of glutathione. Front. Plant Sci. 2021, 12, 791205. [Google Scholar] [CrossRef]
- Mohri, T.; Uekita, K.; Saito, H.; Shiraiwa, T.; Nojiri, M.; Degola, F. Exogenous application of oxidized glutathione during the seedling stage promotes root growth after transplantation and potentially increases panicles in rice. Int. J. Agron. 2024, 2024, 1884599. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, S.; Yasin, N.A.; Wahid, A.; Sardar, R. Exogenous application of glutathione enhanced growth, nutritional orchestration and physiochemical characteristics of Brassica oleracea L. under lead stress. Physiol. Mol. Biol. Plants 2023, 29, 1103–1116. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Mahmud, J.A.; Alharby, H.F.; Fujita, M. Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J. Plant Interact. 2018, 13, 203–212. [Google Scholar] [CrossRef]
- Tobita, H.; Okuda, S.; Harayama, H.; Uemura, A.; Ogawa, K.i. Effect of glutathione disulfide application at planting time on growth of cedar container seedlings. Kanto J. For. Res. 2023, 74, 53–56, (In Japanese with English Summary). [Google Scholar]
- Nakao, K.; Kabeya, D.; Awaya, Y.; Yamasaki, S.; Tsuyama, I.; Yamagawa, H.; Miyamoto, K.; Araki, M.G. Assessing the regional-scale distribution of height growth of Cryptomeria japonica stands using airborne LiDAR, forest GIS database and machine learning. For. Ecol. Manag. 2022, 506, 119953. [Google Scholar] [CrossRef]
- Tsuyama, I.; Ishizuka, W.; Kitamura, K.; Taneda, H.; Goto, S. Ten years of provenance trials and application of multivariate random forests predicted the most preferable seed source for silviculture of Abies sachalinensis in Hokkaido, Japan. Forests 2020, 11, 1058. [Google Scholar] [CrossRef]
- Augusto, L.; Borelle, R.; Boca, A.; Bon, L.; Orazio, C.; Arias-Gonzalez, A.; Bakker, M.R.; Gartzia-Bengoetxea, N.; Auge, H.; Bernier, F.; et al. Widespread slow growth of acquisitive tree species. Nature 2025, 640, 395–401. [Google Scholar] [CrossRef]
- Harayama, H.; Yamada, T.; Kitao, M.; Tsuyama, I. Analysis of height and diameter growth patterns in Sakhalin fir seedlings competing with evergreen dwarf bamboo and deciduous vegetation using generalized additive models. J. For. Res. 2025, 36, 63. [Google Scholar] [CrossRef]
- Parada-Díaz, J.; Kluge, J.; Bello-Rodríguez, V.; Del Arco Aguilar, M.J.; González-Mancebo, J.M. To what extent does the species composition of Macaronesian laurel forests depend on their human disturbance history and environmental drivers? For. Ecol. Manag. 2021, 497, 119468. [Google Scholar] [CrossRef]
- Rowland, L.; Oliveira, R.S.; Bittencourt, P.R.L.; Giles, A.L.; Coughlin, I.; Costa, P.B.; Domingues, T.; Ferreira, L.V.; Vasconcelos, S.S.; Junior, J.A.S.; et al. Plant traits controlling growth change in response to a drier climate. New Phytol. 2021, 229, 1363–1374. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Japan Meteorological Agency Website. Available online: https://www.jma.go.jp/jma/index.html (accessed on 22 May 2025).
- Ogawa, K.; Hatano-Iwasaki, A.; Hayashi, K.; Awano, T.; Okubo, Y.; Hayakawa, T.; Takabe, K.; Kawaoka, A. Glutathione feeding promotes photosynthetic electron transfer rate and biomass productivity in Blue Gum (Eucalyptus globulus). In Proceedings of the 16th International Congress on Photosynthesis Research, St. Louis, MO, USA, 11–16 August 2013. [Google Scholar]
- Hatano-Iwasaki, A.; Hayashi, K.; Awano, T.; Takabe, K.; Kawaoka, A.; Ogawa, K. Effects of oxidized glutathione feeding on photosynthesis and biomass production in Eucalyptus globulus. In Tree and Crop Technology for Improving Quality and Productivity of Food and Biomaterials: Toward Achieving Another Green Revolution; Bunkyo: Tokyo, Japan, 2015. [Google Scholar]
- Harayama, H.; Tsuyama, I.; Uemura, A.; Kitao, M.; Han, Q.; Kuramoto, S.; Utsugi, H. Growth and survival of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) and Japanese larch under various intensities of competition. New For. 2023, 54, 945–961. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 76, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2019; p. 608. [Google Scholar]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means, R package version 1.11.0; R Foundation for Statistical Computing: Vienna, Austria, 2025. [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–22. [Google Scholar]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Statist. Soc. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Rosseel, Y. {lavaan}: An {R} package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar]
- Farhadur Rahman, M.; Onoda, Y.; Kitajima, K. Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. For. Ecol. Manag. 2022, 503, 119792. [Google Scholar] [CrossRef]
- Tange, T.; Ge, F. Topographic factors and tree heights of aged Cryptomeria japonica plantations in the Boso peninsula, Japan. Forests 2020, 11, 771. [Google Scholar] [CrossRef]
- Osone, Y.; Hashimoto, S.; Kenzo, T. Verification of our empirical understanding of the physiology and ecology of two contrasting plantation species using a trait database. PLoS ONE 2021, 16, e0254599. [Google Scholar] [CrossRef]
- Haywood, J.D. Small topographic differences affect slash pine response to site preparation and fertilization. South. J. Appl. For. 1983, 7, 145–148. [Google Scholar] [CrossRef]
- Otani, T.; Yoneda, R.; Fukumoto, K.; Yamagawa, H. Enhancing weed management in a young cedar plantation by leveraging high-performing cedar varieties and soil topographical conditions. J. Jpn. For. Soc. 2023, 105, 329–337, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Firmino, P.N.; Paulo, J.A.; Lourenço, A.; Tomé, M.; Campagnolo, M. How do soil and topographic drivers determine tree diameter spatial distribution in even aged cork oak stands installed in average to high productivity areas. New For. 2024, 55, 1475–1496. [Google Scholar] [CrossRef]
- Nakaji, T.; Fukami, M.; Dokiya, Y.; Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 2001, 15, 453–461. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hutson, M.A.; Evans, F.C.; Tiedje, J.M. Spatial variability in a successional plant community: Patterns of nitrogen availability. Ecology 1988, 69, 1517–1524. [Google Scholar] [CrossRef]
- Wallerman, J.; Joyce, S.; Vencatasawmy, C.P.; Olsson, H. Prediction of forest stem volume using kriging adapted to detected edges. Can. J. For. Res. 2002, 32, 509–518. [Google Scholar] [CrossRef]
- Yamagawa, H.; Shigenaga, H.; Araki, M.G.; Nomiya, H. Effects of initial size and surrounding weed trees on height growth of planted sugi (Cryptomeria japonica) trees in Kyushu, Japan. J. Jpn. For. Soc. 2016, 98, 241–246, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Dey, D.C.; Jacobs, D.; McNabb, K.; Miller, G.; Baldwin, V.; Foster, G. Artificial regeneration of major oak (Quercus) species in the eastern United States—A review of the literature. For. Sci. 2008, 54, 77–106. [Google Scholar] [CrossRef]
- Nilsson, U.; Örlander, G. Vegetation management on grass-dominated clearcuts planted with Norway spruce in southern Sweden. Can. J. For. Res. 1999, 29, 1015–1026. [Google Scholar] [CrossRef]
- Utsugi, H.; Sakai, T.; Yamagawa, H. Harnessing Plant Growth Power! Omitting Undergrowth Weeding with Elite Trees; Forestry and Forest Products Institute: Tsukuba, Japan, 2024; p. 52. (In Japanese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harayama, H.; Okuda, S.; Yamagawa, H.; Saito, T.; Kabeya, D.; Tobita, H. Evaluating the Effects of Glutathione and Controlled-Release Fertilizer on the Height Growth of Cryptomeria japonica D. Don Seedlings Accounting for Topography and Vegetation. Forests 2025, 16, 1407. https://doi.org/10.3390/f16091407
Harayama H, Okuda S, Yamagawa H, Saito T, Kabeya D, Tobita H. Evaluating the Effects of Glutathione and Controlled-Release Fertilizer on the Height Growth of Cryptomeria japonica D. Don Seedlings Accounting for Topography and Vegetation. Forests. 2025; 16(9):1407. https://doi.org/10.3390/f16091407
Chicago/Turabian StyleHarayama, Hisanori, Shiro Okuda, Hiromi Yamagawa, Takami Saito, Daisuke Kabeya, and Hiroyuki Tobita. 2025. "Evaluating the Effects of Glutathione and Controlled-Release Fertilizer on the Height Growth of Cryptomeria japonica D. Don Seedlings Accounting for Topography and Vegetation" Forests 16, no. 9: 1407. https://doi.org/10.3390/f16091407
APA StyleHarayama, H., Okuda, S., Yamagawa, H., Saito, T., Kabeya, D., & Tobita, H. (2025). Evaluating the Effects of Glutathione and Controlled-Release Fertilizer on the Height Growth of Cryptomeria japonica D. Don Seedlings Accounting for Topography and Vegetation. Forests, 16(9), 1407. https://doi.org/10.3390/f16091407