Species- and Provenance-Specific Leaf Phenological Responses to Drought and Elevated Phosphorus in Fagus sylvatica and Quercus petraea
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Provenance Sites
2.2. Experimental Design
- +PW: elevated phosphorus + regular watering (40 L every 4 days).
- Control: no phosphorus + regular watering.
- +PD: elevated Phosphorus + drought (minimal watering triggered by visible wilting).
- −PD: no phosphorus + drought.
2.3. Leaf Phenology Scoring
2.4. Statistical Analyses
3. Results
3.1. Autumn Phenology
3.1.1. The Treatment Effects on Autumn Phenology in European Beech
3.1.2. The Treatment Effects on Autumn Phenology in Sessile Oak
3.2. Spring Phenology
3.2.1. The Treatment Effects on Spring Phenology in European Beech
3.2.2. The Treatment Effects on Spring Phenology in Sessile Oak
4. Discussion
4.1. Autumn Phenology: Negligible Effects of Drought
4.2. Dominant Influence of Elevated Phosphorus on Autumn Senescence
4.3. Spring Phenology: Contrasting Species Responses to Drought
4.4. Interactive Effects of Drought and Phosphorus: Physiological Compensation
4.5. Provenance Differences: Role of Local Adaptation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. The Role of Plants in the Effects of Global Change on Nutrient Availability and Stoichiometry in the Plant-Soil System. Plant Physiol. 2012, 160, 1741–1761. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J. Human-Induced Nitrogen–Phosphorus Imbalances Alter Natural and Managed Ecosystems across the Globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Delpierre, N.; Vitasse, Y.; Chuine, I.; Guillemot, J.; Bazot, S.; Rathgeber, C.B. Temperate and Boreal Forest Tree Phenology: From Organ-Scale Processes to Terrestrial Ecosystem Models. Ann. For. Sci. 2016, 73, 5–25. [Google Scholar] [CrossRef]
- Basler, D.; Körner, C. Photoperiod Sensitivity of Bud Burst in 14 Temperate Forest Tree Species. Agric. For. Meteorol. 2012, 165, 73–81. [Google Scholar] [CrossRef]
- Bačurin, M.; Bogdan, S.; Katičić Bogdan, I.; Sever, K. Leaf Phenological Responses of Juvenile Beech and Oak Provenances to Elevated Phosphorus. Forests 2023, 14, 834. [Google Scholar] [CrossRef]
- Bačurin, M.; Katičić Bogdan, I.; Sever, K.; Bogdan, S. The Effects of Drought Timing on Height Growth and Leaf Phenology in Pedunculate Oak (Quercus robur L.). Forests 2025, 16, 397. [Google Scholar] [CrossRef]
- Chiou, T.-J.; Lin, S.-I. Signaling Network in Sensing Phosphate Availability in Plants. Annu. Rev. Plant Biol. 2011, 62, 185–206. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Wu, W. Potassium and Phosphorus Transport and Signaling in Plants. J. Integr. Plant Biol. 2021, 63, 34–52. [Google Scholar] [CrossRef]
- Vukmirović, A.; Škvorc, Ž.; Bogdan, S.; Krstonošić, D.; Bogdan, I.K.; Karažija, T.; Bačurin, M.; Brener, M.; Sever, K. The Role of Phosphorus Fertilization in Antioxidant Responses of Drought-Stressed Common Beech and Sessile Oak Provenances. Int. J. Mol. Sci. 2025, 26, 3053. [Google Scholar] [CrossRef] [PubMed]
- Dox, I.; Skrøppa, T.; Decoster, M.; Prislan, P.; Gascó, A.; Gričar, J.; Lange, H.; Campioli, M. Severe Drought Can Delay Autumn Senescence of Silver Birch in the Current Year but Advance It in the next Year. Agric. For. Meteorol. 2022, 316, 108879. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate Forest Trees and Stands under Severe Drought: A Review of Ecophysiological Responses, Adaptation Processes and Long-Term Consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Manzoni, S.; Vico, G.; Thompson, S.; Beyer, F.; Weih, M. Contrasting Leaf Phenological Strategies Optimize Carbon Gain under Droughts of Different Duration. Adv. Water Resour. 2015, 84, 37–51. [Google Scholar] [CrossRef]
- Müller, L.M.; Bahn, M. Drought Legacies and Ecosystem Responses to Subsequent Drought. Glob. Change Biol. 2022, 28, 5086–5103. [Google Scholar] [CrossRef] [PubMed]
- Gallinat, A.S.; Primack, R.B.; Wagner, D.L. Autumn, the Neglected Season in Climate Change Research. Trends Ecol. Evol. 2015, 30, 169–176. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Gárate-Escamilla, H.; Hampe, A.; Vizcaíno-Palomar, N.; Robson, T.M.; Benito Garzón, M. Range-wide Variation in Local Adaptation and Phenotypic Plasticity of Fitness-related Traits in Fagus sylvatica and Their Implications under Climate Change. Glob. Ecol. Biogeogr. 2019, 28, 1336–1350. [Google Scholar] [CrossRef]
- Müller, M.; Kempen, T.; Finkeldey, R.; Gailing, O. Low Population Differentiation but High Phenotypic Plasticity of European Beech in Germany. Forests 2020, 11, 1354. [Google Scholar] [CrossRef]
- Sever, K.; Bogdan, S.; Škvorc, Ž. Response of Photosynthesis, Growth, and Acorn Mass of Pedunculate Oak to Different Levels of Nitrogen in Wet and Dry Growing Seasons. J. For. Res. 2023, 34, 167–176. [Google Scholar] [CrossRef]
- Vander Mijnsbrugge, K.; Bollen, M.; Moreels, S.; Notivol Paino, E.; Vandekerkhove, K.; De Keersmaeker, L.; Thomaes, A.; Verdonck, S.; Vanhellemont, M. Timing of Drought and Severity of Induced Leaf Desiccation Affect Recovery, Growth and Autumnal Leaf Senescence in Fagus sylvatica L. Saplings. Forests 2024, 16, 5. [Google Scholar] [CrossRef]
- Vander Mijnsbrugge, K.; Turcsán, A.; Maes, J.; Duchêne, N.; Meeus, S.; Steppe, K.; Steenackers, M. Repeated Summer Drought and Re-Watering during the First Growing Year of Oak (Quercus Petraea) Delay Autumn Senescence and Bud Burst in the Following Spring. Front. Plant Sci. 2016, 7, 419. [Google Scholar] [CrossRef] [PubMed]
- Naschitz, S.; Naor, A.; Wolf, S.; Goldschmidt, E.E. The Effects of Temperature and Drought on Autumnal Senescence and Leaf Shed in Apple under Warm, East Mediterranean Climate. Trees 2014, 28, 879–890. [Google Scholar] [CrossRef]
- Puchałka, R.; Prislan, P.; Klisz, M.; Koprowski, M.; Gričar, J. Tree-ring formation dynamics in Fagus sylvatica and Quercus petraea in a dry and a wet year. Dendrobiology 2024, 91, 1–15. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The Vegetation N: P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Campioli, M.; Marchand, L.J.; Zahnd, C.; Zuccarini, P.; McCormack, M.L.; Landuyt, D.; Lorer, E.; Delpierre, N.; Gričar, J.; Vitasse, Y. Environmental Sensitivity and Impact of Climate Change on Leaf-, Wood- and Root Phenology for the Overstory and Understory of Temperate Deciduous Forests. Curr. For. Rep. 2024, 11, 1. [Google Scholar] [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P. Climate Sensitivity and Drought Seasonality Determine Post-Drought Growth Recovery of Quercus Petraea and Quercus Robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the Effects of Climate Change on the Phenology of European Temperate Trees. Agric. For. Meteorol. 2011, 151, 969–980. [Google Scholar] [CrossRef]
- van der Schoot, C.; Rinne, P.L. Dormancy Cycling at the Shoot Apical Meristem: Transitioning between Self-Organization and Self-Arrest. Plant Sci. 2011, 180, 120–131. [Google Scholar] [CrossRef]
- Körner, C.; Basler, D. Phenology Under Global Warming. Science 2010, 327, 1461–1462. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Dijkstra, F.A. Drought Effect on Plant Nitrogen and Phosphorus: A Meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Raza, A. Eco-Physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J. Plant Growth Regul. 2021, 40, 1368–1388. [Google Scholar] [CrossRef]
- Tardieu, F. Any Trait or Trait-Related Allele Can Confer Drought Tolerance: Just Design the Right Drought Scenario. J. Exp. Bot. 2012, 63, 25–31. [Google Scholar] [CrossRef]
- Valladares, F.; Gianoli, E.; Gómez, J.M. Ecological Limits to Plant Phenotypic Plasticity. New Phytol. 2007, 176, 749–763. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The Dilemma of Plants: To Grow or Defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
Effect | Df | Sum of Squares | R2 | F | p-Value |
---|---|---|---|---|---|
Species | 1 | 0.5983 | 0.06291 | 15.4033 | 0.001 |
Provenance | 1 | 0.1058 | 0.01112 | 2.7238 | 0.069 |
Treatment | 3 | 1.1115 | 0.11687 | 9.5392 | 0.001 |
Species × Provenance | 1 | 0.0050 | 0.00053 | 0.1294 | 0.921 |
Species × Treatment | 3 | 0.0766 | 0.00805 | 0.6570 | 0.617 |
Provenance × Treatment | 3 | 0.1884 | 0.01981 | 1.6170 | 0.160 |
Species × Provenance × Treatment | 3 | 0.2008 | 0.02111 | 1.7232 | 0.117 |
Residual | 186 | 7.2242 | 0.75960 | ||
Total | 201 | 9.5105 | 1.00000 |
Effect | Df | Sum of Squares | R2 | F | p-Value |
---|---|---|---|---|---|
Species | 1 | 0.88437 | 0.33749 | 110.3181 | 0.001 |
Provenance | 1 | 0.00420 | 0.00160 | 0.5245 | 0.489 |
Treatment | 3 | 0.09735 | 0.03715 | 4.0479 | 0.005 |
Species × Provenance | 1 | 0.00373 | 0.00143 | 0.4658 | 0.519 |
Species × Treatment | 3 | 0.01985 | 0.00757 | 0.8253 | 0.527 |
Provenance × Treatment | 3 | 0.02154 | 0.00822 | 0.8956 | 0.435 |
Species × Provenance × Treatment | 3 | 0.05020 | 0.01916 | 2.0875 | 0.099 |
Residual | 192 | 1.53918 | 0.58738 | ||
Total | 207 | 2.62043 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bačurin, M.; Sever, K.; Katičić Bogdan, I.; Bogdan, S. Species- and Provenance-Specific Leaf Phenological Responses to Drought and Elevated Phosphorus in Fagus sylvatica and Quercus petraea. Forests 2025, 16, 1402. https://doi.org/10.3390/f16091402
Bačurin M, Sever K, Katičić Bogdan I, Bogdan S. Species- and Provenance-Specific Leaf Phenological Responses to Drought and Elevated Phosphorus in Fagus sylvatica and Quercus petraea. Forests. 2025; 16(9):1402. https://doi.org/10.3390/f16091402
Chicago/Turabian StyleBačurin, Marko, Krunoslav Sever, Ida Katičić Bogdan, and Saša Bogdan. 2025. "Species- and Provenance-Specific Leaf Phenological Responses to Drought and Elevated Phosphorus in Fagus sylvatica and Quercus petraea" Forests 16, no. 9: 1402. https://doi.org/10.3390/f16091402
APA StyleBačurin, M., Sever, K., Katičić Bogdan, I., & Bogdan, S. (2025). Species- and Provenance-Specific Leaf Phenological Responses to Drought and Elevated Phosphorus in Fagus sylvatica and Quercus petraea. Forests, 16(9), 1402. https://doi.org/10.3390/f16091402