Simulation of Carbon Sinks and Sources in China’s Forests from 2013 to 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Area Description
2.2. Data Sources and Processing
2.3. Research Methods
2.3.1. 3-PGS Model Description
2.3.2. Estimation of Soil Heterotrophic Respiration (Rh)
2.3.3. NEP Estimation
2.3.4. The Geographical Detector Model
Factor Detector
Interaction Detector
3. Results
3.1. Accuracy Assessment of NPP and
3.2. NEP Spatiotemporal Variation in China’s Forests
3.3. Climatic Factors Contribution to NEP Variation
4. Discussion
Limitation
5. Conclusions
- This study provides a comprehensive assessment of China’s forest carbon sequestration potential from 2013 to 2023, with a focus on Net Ecosystem Production (NEP). The findings indicate that China’s forests accumulated 1.71 ± 0.09 PgC over the study period, with an annual average NEP of 0.156 ± 0.0071 PgC (155.86 TgC/year). These results highlight significant variability in NEP across different forest types, with southern China contributing over 45% of the total sequestration. This underscores the influence of regional climate and ecological conditions on forest productivity. The findings also demonstrate the growing role of China’s forests as carbon sinks, emphasizing their capacity to mitigate carbon emissions. While the increase in NEP over time highlights the effectiveness of China’s forest ecosystems in carbon sequestration, the study also reveals that forest-based sequestration alone cannot fully offset the country’s total emissions. This highlights the necessity of a comprehensive, integrated approach to achieving China’s carbon neutrality goals by 2060. Forest management must be combined with other ecosystem-based solutions, including afforestation, sustainable agriculture, and advancements in carbon capture technologies.
- The study further identifies solar radiation, precipitation, and vapor pressure deficit (VPD) as the primary climatic drivers of NEP variations in China’s forests, with temperature and frost days playing a secondary role. The interaction between these climatic factors underscores the importance of region-specific strategies for climate-resilient forest management. Given the variability in forest productivity across China, targeted interventions should prioritize areas with low carbon sequestration potential, aiming to enhance carbon storage in these regions while also optimizing carbon sequestration in areas with high potential, particularly in tropical and subtropical zones.
- This study’s findings not only contribute to China’s carbon neutrality strategies but also enhance global understanding of forest carbon dynamics. The insights provided will be valuable for policymakers seeking to optimize forest management practices, inform regional climate strategies, and contribute to global carbon cycle models. As such, this research lays the foundation for future efforts aimed at maximizing the role of forests in mitigating climate change and achieving long-term environmental sustainability.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Rosado, P.; Roser, M. Greenhouse Gas Emissions. Our World Data 2020. Available online: https://ourworldindata.org/greenhouse-gas-emissions (accessed on 26 August 2025).
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s Terrestrial Ecosystem Carbon Sink: Methods, Progress and Prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Tian, H.; Melillo, J.; Lu, C.; Kicklighter, D.; Liu, M.; Ren, W.; Xu, X.; Chen, G.; Zhang, C.; Pan, S. China’s Terrestrial Carbon Balance: Contributions from Multiple Global Change Factors. Glob. Biogeochem. Cycles 2011, 25, GB1007. [Google Scholar] [CrossRef]
- The Chinese Foreign Ministry (TCFM). Statement by Xi Jinping, President of the People’s Republic of China, at the General Debate of the 75th Session of the United Nations General Assembly; The Chinese Foreign Ministry (TCFM): Beijing, China, 2021.
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; ISBN 1009157949. [Google Scholar]
- Xu, D.-F.; Wang, R.-H.; Li, Y.-X.; Hui, Z. Review on Carbon Cycle in Terrestrial Ecosystem and Its Influenced Factors. Chin. J. Agrometeorol. 2009, 30, 519. [Google Scholar]
- Zhang, P.; He, J.; Hong, X.; Zhang, W.; Qin, C.; Pang, B.; Li, Y.; Liu, Y. Carbon Sources/Sinks Analysis of Land Use Changes in China Based on Data Envelopment Analysis. J. Clean. Prod. 2018, 204, 702–711. [Google Scholar] [CrossRef]
- Lü, F.C.; Ma, J.Y.; Cao, Y. Carbon Fluxes Simulation of China′ s Typical Forest Ecosystem Based on FORCCHN Model. Acta Ecol. Sin. 2022, 42, 2810–2821. [Google Scholar]
- Zhang, C.; Huang, N.; Wang, L.; Song, W.; Zhang, Y.; Niu, Z. Spatial and Temporal Pattern of Net Ecosystem Productivity in China and Its Response to Climate Change in the Past 40 Years. Int. J. Environ. Res. Public Health 2022, 20, 92. [Google Scholar] [CrossRef]
- Woodwell, G.M.; Whittaker, R.H.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; Botkin, D.B. The Biota and the World Carbon Budget: The Terrestrial Biomass Appears to Be a Net Source of Carbon Dioxide for the Atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef]
- Pathak, K.; Malhi, Y.; Sileshi, G.W.; Das, A.K.; Nath, A.J. Net Ecosystem Productivity and Carbon Dynamics of the Traditionally Managed Imperata Grasslands of North East India. Sci. Total Environ. 2018, 635, 1124–1131. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, H.; Zhang, M. Net Primary Productivity Estimation of Terrestrial Ecosystems in China with Regard to Saturation Effects and Its Spatiotemporal Evolutionary Impact Factors. Remote Sens. 2023, 15, 2871. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wang, X.; Zhang, X. A New Algorithm for the Estimation of Leaf Unfolding Date Using MODIS Data over China’s Terrestrial Ecosystems. ISPRS J. Photogramm. Remote Sens. 2019, 149, 77–90. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Prince, S.; Wright, R. Terrestrial Net Primary Production Estimates for 0.5 Grid Cells from Field Observations—A Contribution to Global Biogeochemical Modeling. Glob. Change Biol. 2003, 9, 46–64. [Google Scholar] [CrossRef]
- Chen, P.F. Monthly NPP Dataset Covering China’s Terrestrial Ecosystems at North of 18° N (1985–2015). J. Glob. Change Data Discov. 2019, 3, 34–41. [Google Scholar]
- Chen, Y.; Xu, Y.; Chen, T.; Zhang, F.; Zhu, S. Exploring the Spatiotemporal Dynamics and Driving Factors of Net Ecosystem Productivity in China from 1982 to 2020. Remote Sens. 2023, 16, 60. [Google Scholar] [CrossRef]
- Ma, X.; Wu, L.; Zhu, Y.; Wu, J.; Qin, Y. Simulation of Vegetation Carbon Sink of Arbor Forest and Carbon Mitigation of Forestry Bioenergy in China. Int. J. Environ. Res. Public Health 2022, 19, 13507. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, S.; Zhang, L.; Wang, J.; Ren, X.; Zhou, L.; Piao, S.; Yan, H.; Ju, W.; Gu, F. Altered Trends in Carbon Uptake in China’s Terrestrial Ecosystems under the Enhanced Summer Monsoon and Warming Hiatus. Natl. Sci. Rev. 2019, 6, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, T.; Wei, L.; Shu, Y. The Spatial Distribution of Forest Carbon Sinks and Sources in China. Chin. Sci. Bull. 2012, 57, 1699–1707. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land Use Change and Driving Factors in Rural China during the Period 1995–2015. Land. Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Extreme Climate Events and Agricultural Climate Indices in China: CMIP5 Model Evaluation and Projections. Int. J. Climatol. 2016, 36, 43–61. [Google Scholar] [CrossRef]
- Qin, H.; Jin, X.; Guo, K. An Overview of China’s Vegetation and Plant Diversity. In Conservation and Reintroduction of Rare and Endangered Plants in China; Springer: Singapore, 2020; pp. 3–19. [Google Scholar]
- National Forestry and Grassland Administration. China Forest Resources Report 2014–2018; China Forestry Publishing House: Beijing, China, 2019; pp. 357–469. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices Monthly L3 Global 0.05 Deg CMG V061. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod13c2-061 (accessed on 26 August 2025).
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Chen, J.; Wang, C.; Shen, M.; Yang, W.; Tan, X.; Xu, S.; Li, Z. Improving the Accuracy of Spring Phenology Detection by Optimally Smoothing Satellite Vegetation Index Time Series Based on Local Cloud Frequency. ISPRS J. Photogramm. Remote Sens. 2021, 180, 29–44. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 0.05 Deg CMG V061. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mcd12c1-061 (accessed on 26 August 2025).
- Zeng, T.; Zhang, Z.; Zhao, X.; Wang, X.; Zuo, L. Evaluation of the 2010 MODIS Collection 5.1 Land Cover Type Product over China. Remote Sens. 2015, 7, 1981–2006. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, H.; Lei, X. Application of the 3-PG Model to Predict Growth of Larix Olgensis Plantations in Northeastern China. Ecol. Manag. 2017, 406, 208–218. [Google Scholar] [CrossRef]
- Feng, X.; Liu, G.; Chen, J.M.; Chen, M.; Liu, J.; Ju, W.M.; Sun, R.; Zhou, W. Net Primary Productivity of China’s Terrestrial Ecosystems from a Process Model Driven by Remote Sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar] [CrossRef]
- Running, S.; Zhao, M. MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod17a3hgf-006 (accessed on 26 August 2025).
- Sun, H.; Xu, Z.; Jia, B. A Compiled Soil Respiration Dataset at Different Time Scales for Forest Ecosystems across China from 2000 to 2018. Earth Syst. Sci. Data 2022, 14, 2951–2961. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Zhao, Z.; Zhang, Z.; Guo, B.; Wang, W.; Jiang, H.; Zhu, Q. Quantification of Soil Respiration in Forest Ecosystems across China. Atmos. Environ. 2014, 94, 546–551. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Landsberg, J.J. Assessing Forest Productivity in Australia and New Zealand Using a Physiologically-Based Model Driven with Averaged Monthly Weather Data and Satellite-Derived Estimates of Canopy Photosynthetic Capacity. For. Ecol. Manag. 1998, 104, 113–127. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A Generalised Model of Forest Productivity Using Simplified Concepts of Radiation-Use Efficiency, Carbon Balance and Partitioning. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H. Estimating Forest Productivity in the Eastern Siskiyou Mountains of Southwestern Oregon Using a Satellite Driven Process Model, 3-PGS. Can. J. Res. 2001, 31, 143–154. [Google Scholar] [CrossRef]
- McMurtrie, R.E.; Gholz, H.L.; Linder, S.; Gower, S.T. Climatic Factors Controlling the Productivity of Pine Stands: A Model-Based Analysis. Ecol. Bull. 1994, 43, 173–188. [Google Scholar]
- Sellers, P.J. Canopy Reflectance, Photosynthesis, and Transpiration, II. The Role of Biophysics in the Linearity of Their Interdependence. Remote Sens. Environ. 1987, 21, 143–183. [Google Scholar] [CrossRef]
- Kumar, M.; Monteith, J.L. Remote Sensing of Plant Growth. In Plants and the Daylight Spectrum; Smith, H., Ed.; Academic Press: London, UK, 1982. [Google Scholar]
- Landsberg, J.J.; Waring, R.H.; Williams, M. The Assessment of NPP/GPP Ratio. Tree Physiol. 2020, 40, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, G.; Yang, J.; Wimberly, C.; Zhang, X.; Tao, J.; Jiang, Y.; Zhu, J. Climate-Driven Global Changes in Carbon Use Efficiency. Glob. Ecol. Biogeogr. 2014, 23, 144–155. [Google Scholar] [CrossRef]
- Ryan, M.G.; Law, B.E. Interpreting, Measuring, and Modeling Soil Respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Xie, W.; Chen, S.-T.; Hu, Z.-H. Factors Influencing the Variability in Soil Heterotrophic Respiration from Terrestrial Ecosystem in China. Huan Jing Ke Xue 2014, 35, 334–340. [Google Scholar]
- Shi, Z. Spatial-Temporal Simulation of Vegetation Carbon Sink and Its Influential Factors Based on CASA and GSMSR Model in Shaanxi Province. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2015. [Google Scholar]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. A Global Relationship between the Heterotrophic and Autotrophic Components of Soil Respiration? Glob. Change Biol. 2004, 10, 1756–1766. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shi, Y.; Lu, Y.; Zhang, W.; Hu, Z. Interannual Variability in Soil Respiration from Terrestrial Ecosystems in China and Its Response to Climate Change. Sci. China Earth Sci. 2012, 55, 2091–2098. [Google Scholar] [CrossRef]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Estimation and Spatial Distribution Analysis of Soil Organic Carbon Density and Storage in China. Acta Pedol. Sin. 2004, 1, 35–43. [Google Scholar]
- Zhang, M.; Huang, X.J.; Chuai, X.; Xie, X.; Zhu, Z.; Wang, Y. Spatial Distribution and Changing Trends of Net Ecosystem Productivity in China. Geogr. Geo-Inf. Sci. 2020, 36, 69–74. [Google Scholar]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental Health Risk Detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Liu, Y.S.; Yang, R. The Spatial Characteristics and Formation Mechanism of the County Urbanization in China. Acta Geogr. Sin. 2012, 67, 1011–1020. [Google Scholar]
- Chen, G.S.; Yang, Y.S.; Lv, P.P.; Zhang, Y.P.; Qian, X.L. Regional Patterns of Soil Respiration in China’s Forests. Acta Ecol. Sin. 2008, 28, 1748–1761. [Google Scholar]
- Zhuang, Q.; Zhang, T.; Xiao, J.; Luo, T. Quantification of Net Primary Production of Chinese Forest Ecosystems with Spatial Statistical Approaches. Mitig. Adapt. Strat. Glob. Change 2009, 14, 85–99. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Luo, T.; Dan, Y.; Zhou, L.; Lv, X. Variation of Net Primary Productivity and Its Drivers in China’s Forests during 2000–2018. Ecosystems 2020, 7, 15. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Guo, R.; Yan, C. Effects of Climate Warming on Net Primary Productivity in China during 1961–2010. Ecol. Evol. 2017, 7, 6736–6746. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Xu, J.; Wu, Z. Effects of Climatic Factors on the Net Primary Productivity in the Source Region of Yangtze River, China. Sci. Rep. 2021, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Dan, L.; Wang, B.; Dai, Y. Simulation and Evaluation of Terrestrial Ecosystem NPP with M-SDGVM over Continental China. Adv. Atmos. Sci. 2010, 27, 427–442. [Google Scholar] [CrossRef]
- Zhu, W.-Q.; Pan, Y.-Z.; Zhang, J.-S. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Chin. J. Plant Ecol. 2007, 31, 413. [Google Scholar]
- Liang, L.; Wang, Q.; Qiu, S.; Geng, D.; Wang, S. NEP Estimation of Terrestrial Ecosystems in China Using an Improved CASA Model and Soil Respiration Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 10203–10215. [Google Scholar] [CrossRef]
- Aubinet, M.; Hurdebise, Q.; Chopin, H.; Debacq, A.; De Ligne, A.; Heinesch, B.; Manise, T.; Vincke, C. Inter-Annual Variability of Net Ecosystem Productivity for a Temperate Mixed Forest: A Predominance of Carry-over Effects? Agric. Meteorol. 2018, 262, 340–353. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Zhu, Y. Evaluating Impacts of Climate Change on Net Ecosystem Productivity (NEP) of Global Different Forest Types Based on an Individual Tree-Based Model FORCCHN and Remote Sensing. Glob. Planet. Change 2019, 182, 103010. [Google Scholar] [CrossRef]
- Bloom, A.A.; Exbrayat, J.-F.; Van Der Velde, I.R.; Feng, L.; Williams, M. The Decadal State of the Terrestrial Carbon Cycle: Global Retrievals of Terrestrial Carbon Allocation, Pools, and Residence Times. Proc. Natl. Acad. Sci. USA 2016, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hao, X.; Hao, H.; Fan, X.; Li, Y. Climate Change Decreased Net Ecosystem Productivity in the Arid Region of Central Asia. Remote Sens. 2021, 13, 4449. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, Y.; Jiang, H.; Zhu, Q.; Liu, J.; Peng, C. Evaluating the Carbon Budget Pattern of Chinese Terrestrial Ecosystem from 1960 to 2006 Using Integrated Biosphere Simulator. Acta Ecol. Sin. 2016, 36, 3911–3922. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Wang, Q.; Xu, Y.; Lin, Q.; Zhang, Y.; Wu, X.; Zhang, J.; Liu, X. Spatial Patterns of China’s Carbon Sinks Estimated from the Fusion of Remote Sensing and Field-Observed Net Primary Productivity and Heterotrophic Respiration. Ecol. Inf. 2023, 76, 102152. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Shen, H.; Hu, H.; Zhao, X.; Li, H.; Liu, T.; Fang, J. No Significant Changes in Topsoil Carbon in the Grasslands of Northern China between the 1980s and 2000s. Sci. Total Environ. 2018, 624, 1478–1487. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B.; Liang, L.; Wang, S.; Zhang, H.; Sun, H.; Han, X. Unfolding the Effectiveness of Ecological Restoration Programs in Enhancing Vegetation Carbon Sinks across Different Climate Zones in China. Resour. Conserv. Recycl. 2025, 212, 107974. [Google Scholar] [CrossRef]
- Yue, C.; Xu, M.; Ciais, P.; Tao, S.; Shen, H.; Chang, J.; Li, W.; Deng, L.; He, J.; Leng, Y.; et al. Contributions of Ecological Restoration Policies to China’s Land Carbon Balance. Nat. Commun. 2024, 15, 9708. [Google Scholar] [CrossRef]
- Li, J. A Simulation Approach to Optimizing the Vegetation Covers under the Water Constraint in the Yellow River Basin. Policy Econ. 2021, 123, 102377. [Google Scholar] [CrossRef]
- Zhang, X.M.; Brandt, M.; Yue, Y.M.; Tong, X.W.; Wang, K.L.; Fensholt, R. The Carbon Sink Potential of Southern China after Two Decades of Afforestation. Earths Future 2022, 10, e2022EF002674. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Chen, Q.; Zhu, Y.; Liu, B.; Zhang, X.; Yin, X. Capacity of Forests and Grasslands to Achieve Carbon Neutrality in China. Forests 2024, 15, 1060. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; He, J. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Change 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Rap, A.; Scott, C.E.; Reddington, C.L.; Mercado, L.; Ellis, R.J.; Garraway, S.; Evans, M.J.; Beerling, D.J.; MacKenzie, A.R.; Hewitt, C.N.; et al. Enhanced Global Primary Production by Biogenic Aerosol via Diffuse Radiation Fertilization. Nat. Geosci. 2018, 11, 640–644. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; He, W.; Ju, W.; Liu, Y.; Bi, W.; Cheng, N.; Wei, X. Land Cover Change Instead of Solar Radiation Change Dominates the Forest GPP Increase during the Recent Phase of the Shelterbelt Program for Pearl River. Ecol. Indic. 2022, 136, 108664. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Yamamoto, H.; Tani, H.; Zhong, G.; Yin, S.; Guo, E. Spatial Pattern of GPP Variations in Terrestrial Ecosystems and Its Drivers: Climatic Factors, CO2 Concentration and Land-Cover Change, 1982–2015. Ecol. Inf. 2018, 46, 156–165. [Google Scholar] [CrossRef]
- Ye, X.; Liu, F.; Zhang, Z.; Xu, C.; Liu, J. Spatio-Temporal Variations of Vegetation Carbon Use Efficiency and Potential Driving Meteorological Factors in the Yangtze River Basin. J. Mt. Sci. 2020, 17, 1959–1973. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of Climate Change, Elevated Atmospheric CO2 and Human Activities to ET and GPP Trends in the Three-North Region of China. Agric. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net Carbon Uptake Has Increased through Warming-Induced Changes in Temperate Forest Phenology. Nat. Clim. Change 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N. Evaluation of Terrestrial Carbon Cycle Models for Their Response to Climate Variability and to CO2 Trends. Glob. Change Biol. 2013, 19, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fan, G.; Zhang, H.; Shen, X. Temporal and Spatial Variability of Ground Frost Indices in Northeast China. Atmosphere 2024, 15, 817. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, X.; Wang, Y.; He, W.; Dong, Z.; Zhang, X.; Liu, Y.; Nguyen, N.T.; Ju, W. Solar Radiation Variation Weakened the Boost of Gross Primary Production by Vegetation Restoration in China’s Most Forestry Engineering Areas during 2001–2020. Environ. Res. Lett. 2024, 19, 014082. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.; Chen, X.; Jia, L.; Guo, X.; Chen, R.; Zhang, M.; Chen, Z.; Wang, H. Carbon Peak and Carbon Neutrality in China: Goals, Implementation Path and Prospects. China Geol. 2021, 4, 720–746. [Google Scholar] [CrossRef]
Forest Type | |||||
---|---|---|---|---|---|
EBF | ENF | Mixed | DBF | DNF | |
This study | 1114.22 (256.74–1518.63) | 863.92 (176.20–1304.74) | 837.92 (6.82–1417.33) | 733.07 (340.69–1368.23) | 448.08 (287.06–491.58) |
MOD17A3HGF.061 [34] | 1087.83 (211.86–1913.64) | 813.84 (48.19–1860.58) | 752.49 (60.6–1846.42) | 631.08 (117.56–1509.74) | 508.23 (354.73–613.15) |
Ji et al., 2020 [64] | 1058 (942–1211) | 934 (851–1053) | 860 (790–960) | 759 (699–810) | 590 (568–618) |
Zhu et al., 2007 [68] | 986 (407–1913) | 367 (179–806) | 257–1098 | 643 (114–1669) | 439 (179–824) |
Liang et al., 2023 [69] | 893.00 | 948.90 | 530.10 | 495.70 | 352.70 |
Mao et al., 2010 [67] | 891 | 510 | - | 743 | 546 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamedi, F.J.; Yu, Y.; Yang, X.; Fan, W. Simulation of Carbon Sinks and Sources in China’s Forests from 2013 to 2023. Forests 2025, 16, 1398. https://doi.org/10.3390/f16091398
Mohamedi FJ, Yu Y, Yang X, Fan W. Simulation of Carbon Sinks and Sources in China’s Forests from 2013 to 2023. Forests. 2025; 16(9):1398. https://doi.org/10.3390/f16091398
Chicago/Turabian StyleMohamedi, Faris Jamal, Ying Yu, Xiguang Yang, and Wenyi Fan. 2025. "Simulation of Carbon Sinks and Sources in China’s Forests from 2013 to 2023" Forests 16, no. 9: 1398. https://doi.org/10.3390/f16091398
APA StyleMohamedi, F. J., Yu, Y., Yang, X., & Fan, W. (2025). Simulation of Carbon Sinks and Sources in China’s Forests from 2013 to 2023. Forests, 16(9), 1398. https://doi.org/10.3390/f16091398