Recruitment of Dry Tropical Woody Species After Fire: Germination Phase and Seedling Establishment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites
2.3. Species Selected and Seed Collection
2.4. Seed Water Content (Cw) and Viability
2.5. Characterization of Experimental Burn
2.6. Experimental Evaluation of Fire Effects on Seed Germination at Two Soil Depths
2.7. Field Assessment Recruitment
2.8. Data Analysis
3. Results
3.1. Seed Water Content and Viability
3.2. Experimental Burns
3.3. Field Recruitment Two Years After an Experimental Burn
3.4. Tree Canopy in Forest and Regeneration
4. Discussion
Field Recruitment Two Years After an Experimental Burn
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Carbonized Seeds (%) | Predated Seeds (%) |
---|---|---|
Aspidosperma quebracho-blanco | 100 ± 0 | 0 ± 0 |
Schinopsis lorentzii | 33.0 ± 27.3 | 25.0 ± 6.8 |
Sarcomphalus mistol | 56.0 ± 30.4 | 13.0 ± 17.7 |
Neltuma nigra with endocarp | 32.0 ± 26.0 | 34.0 ± 13.2 |
Neltuma nigra seed | 59.0 ± 6.8 | 30.0 ± 20.0 |
Vachellia aroma | 28.0 ± 24.8 | 32.0 ± 11.3 |
Senegalia gilliessi | 45.0 ± 34.0 | 26.0 ± 36.5 |
Appendix B
Species | Basal Area | f | p | |
---|---|---|---|---|
CF | DF | |||
Aspidosperma quebracho-blanco | 5.89 ± 0.93 | 4.62 ± 0.58 | 1.34 | 0.2549 |
Schinopsis lorentzii | 3.18 ± 0.76 | 2.55 ± 0.63 | 0.41 | 0.52 |
Neltuma nigra | 0.47 ± 0.26 | 1.11 ± 0.53 | 1.16 | 0.28 |
Sarcomphalus mistol | 2.71 ± 1.04 | 2.07 ± 0.81 | 0.23 | 0.63 |
Opuntia sp. | 0.31 ± 0.21 | 0 | 2.11 | 0.15 |
Parkinsonia praecox | 0.15 ± 0.15 | 0 | 1 | 0.32 |
total | 12.75 ± 1.24 | 10.36 ± 1.26 | 1.82 | 0.1859 |
References
- Rivas, C.A.; Navarro-Cerrillo, R.M. Forest fragmentation and connectivity in South American dry forests. Biodivers. Conserv. 2024, 33, 3015–3037. [Google Scholar] [CrossRef]
- San Martin, R.; Ottlé, C.; Sörensson, A. Fires in the South American Chaco, from dry forests to wetlands: Response to climate depends on land cover. Fire Ecol. 2023, 19, 57. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Currey, B.; McWethy, D.B.; Bieng, M.A.N.; Souza-Alonso, P. Spatiotemporal analysis of wildfires and their relationship with climate and land use in the Gran Chaco and Pantanal ecoregions. Sci. Total Environ. 2024, 955, 176823. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Salgado, J.C.; Pizano, C. Effect of temperatures that simulate fire on seed germination in a tropical dry forest. Colomb. For. 2019, 22, 55–66. [Google Scholar]
- Ocampo-Zuleta, K.; Bravo, S. Recruitment of woody species in tropical forests exposed to wildland fires: An overview. Ecosistemas 2019, 28, 106–117. [Google Scholar] [CrossRef]
- Ribeiro, L.; Borghetti, F. Comparative effects of desiccation, heat shock and high temperaturas on seed germination of savanna and forest tree species. Austral. Ecol. 2013, 39, 267–278. [Google Scholar] [CrossRef]
- Silveira, F.A.O.; Fernandes, G.W. Effect of light, temperature and scarification on the germination of Mimosa foliolosa (Leguminosae) seeds. Seed Sci. Technol. 2006, 34, 585–592. [Google Scholar] [CrossRef]
- Ghebrehiwot, H.M.; Kulkarni, M.G.; Light, M.E.; Kirkman, K.P.; Van Staden, J. Germination activity of smoke residues in soils following a fire. South Afr. J. Bot. 2011, 77, 718–724. [Google Scholar] [CrossRef]
- Macedo, M.A.; Pinhate, S.B.; Bowen, E.C.; Musso, C.; Miranda, H.S. Constraints on tree seedling establishment after fires: Passing the germination bottlenecks. Plant Biol. 2021, 24, 176–184. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Elsevier/Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Ibañez Moro, A.V.; Borghetti, F.; Galetto, L.; Cellini, J.M.; Bravo, S.J. The influence of seed functional traits and anthropogenic disturbances on persistence and size of the soil seed bank from dry subtropical forest species. For. Ecol. Manag. 2024, 551, 121524. [Google Scholar]
- Ghorbani, J.; Le Duc, M.G.; Mcallister, H.A.; Pakeman, R.J.; Marrs, R.H. Effects of the litter layer of Pteridium aquilinum on seed banks under experimental restoration. Appl. Veg. Sci. 2006, 9, 127–136. [Google Scholar] [CrossRef]
- Fortunato, V. Retención de Semillas en la Broza y Reclutamiento de Especies Leñosas Dominantes, en Distintas Intensidades de Uso del Suelo Actual e Histórico del Bosque Chaqueño del Oeste de Córdoba. Bachelor’s Thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina, 2017. [Google Scholar]
- Ooi, M.K.; Tangney, R.; Auld, T.D. Fire and regeneration from seeds in a warming world, with emphasis on Australia. In Plant Regeneration from Seeds; Academic Press: Cambridge, MA, USA, 2022; pp. 229–242. [Google Scholar]
- Díaz, S.; Cabido, M.; Zak, M.; Martínez Carretero, E.; Araníbar, J. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J. Veg. Sci. 1999, 10, 651–660. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Díaz, S. Post-burning regeneration of the Chaco seasonally dry forest: Germination response of dominant species to experimental heat shock. Oecologia 2015, 177, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Daibes, L.F.; Zupo, T.; Silveira, F.A.; Fidelis, A. A field perspective on effects of fire and temperature fluctuation on Cerrado legume seeds. Seed Sci. Res. 2017, 27, 74–83. [Google Scholar] [CrossRef]
- Ibañez Moro, A.V.; Bravo, S.J.; Abdala, N.R.; Borghetti, F.; Chaib, A.M.; Galetto, L. Heat shock effects on germination and seed survival of five woody species from the Chaco region. Flora 2021, 275, 151751. [Google Scholar] [CrossRef]
- Rodrigo, A.; Arnan, X.; Retana, J. Relevance of soil seed bank and seed rain to immediate seed supply after a large wildfire. Int. J. Wildland Fire 2012, 21, 449–458. [Google Scholar] [CrossRef]
- Pausas, J.G. Incendios Forestales; Catarata-CSIC: Madrid, Spain, 2012; 119p. [Google Scholar]
- Lipoma, M.L.; Cuchietti, C.D.A.; Enrico, L.; Gorné, L.D.; Díaz, S. Low resilience at the early stage of recovery of the semi-arid Chaco Forest—Evidence from a field experiment. J. Ecol. 2021, 109, 3246–3259. [Google Scholar] [CrossRef]
- Bravo, S.; Abdala, R.; Ibañez Moro, A.V. Soil seed banks of dry tropical forests under different land management. Forests 2023, 14, 3. [Google Scholar] [CrossRef]
- Fajardo-Cantos, Á.; Peña, E.; Plaza-Álvarez, P.; González-Romero, J.; Moya, D.; González-Camuñas, H.; Díaz, A.; Botella, R.; Lucas-Borja, M.E.; De Las Heras, J. Soil response in a Mediterranean forest ecosystem of Southeast Spain following early prescribed burning. Heliyon 2024, 10, e37948. [Google Scholar] [CrossRef]
- Soares, V.C.; Scremin-Dias, E.; Daibes, L.F.; Damasceno-Junior, G.A.; Pott, A.; de Lima, L.B. Fire has little to no effect on the enhancement of germination, but buried seeds may survive in a Neotropical wetland. Flora 2021, 278, 151801. [Google Scholar] [CrossRef]
- Torres, R.C.; Giorgis, M.A.; Trillo, C.; Volkmann, L.; Demaio, P.; Heredia, J.; Renison, D. Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina. Austral Ecol. 2014, 39, 346–354. [Google Scholar] [CrossRef]
- Lipoma, M.L.; Funes, G.; Díaz, S. Fire effects on the soil seed bank and post-fire resilience of a semi-arid shrubland in central Argentina. Austral Ecol. 2017, 43, 46–55. [Google Scholar] [CrossRef]
- Abdala, N.R. Banco de Semillas del Suelo de Especies Leñosas de un Bosque Nativo del Chaco Semiárido. Master’s Thesis, Maestría en Desarrollo de Zonas Áridas y Semiáridas Facultad de Agronomía y Agroindustrias. Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina, 2016. [Google Scholar]
- Tessema, Z.K.; Ejigu, B.; Nigatu, L. Tree species determine soil seed bank composition and its similarity with understory vegetation in a semi-arid African savanna. Ecol. Process. 2017, 6, 9. [Google Scholar] [CrossRef]
- Lipoma, M.L.; Cuchietti, A.; Gorne, L.D.; Díaz, S. Not gone with the wind: Vegetation complexity increases seed retention during windy periods in the Argentine Semiarid Chaco. J. Veg. Sci. 2019, 30, 542–552. [Google Scholar] [CrossRef]
- Kwiatkowska-Falińska, A.; Jankowska-Błaszczuk, M.; Jaroszewicz, B. Post-fire changes of soil seed banks in the early successional stage of pine forest. Pol. J. Ecol. 2014, 62, 455–466. [Google Scholar] [CrossRef]
- Brasil Mendes, L.; Andrade da Silva, K.; Melo dos Santos, D.; Falcao Fraga dos Santos, J.M.; Albuquerque, U.P.; Lima Araújo, E. What happens to the soil seed bank 17 years after clear cutting of vegetations? Rev. Biol. Trop. 2015, 63, 321–332. [Google Scholar] [CrossRef]
- Paula, S.; Pausas, J.G. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. J. Ecol. 2008, 96, 543–552. [Google Scholar] [CrossRef]
- Kunst, C.; Bravo, S. Ecología y régimen de fuego en la región chaqueña argentina. In El Fuego en los Ecosistemas Argentinos; Kunst, C., Bravo, S., Panigatti, J.L., Eds.; Ediciones INTA; Sociedad Argentina de Botánica: Buenos Aires, Argentina, 2003; Chapter 10; pp. 109–118. [Google Scholar]
- Santacruz García, A.C.; Bravo, S.; Del Corro, F.; Ojeda, F. A comparative assessment of plant flammability through a functional approach: The case of woody species from Argentine Chaco region. Austral Ecol. 2019, 44, 1416–1429. [Google Scholar] [CrossRef]
- Silberman, J.E.; Anriquez, A.L.; Dominguez Nuñez, J.A.; Kunst, C.G.; Albanesi, A.S. La cobertura arbórea en un sistema silvopastoril del Chaco y su contribución diferencial al suelo. Cienc. Suelo 2015, 33, 19–29. [Google Scholar]
- Navall, M. Aporte de hojarasca en un quebrachal semiárido santiagueño bajo manejo silvopastoril. In Proceedings of the Actas del II Congreso Nacional de Sistemas Silvopastoriles, Santiago del Estero, Argentina, 9–11 May 2012; pp. 1–6. [Google Scholar]
- Araujo, P.; Iturre, M.C.; Acosta, V.H.; Renolfi, R.F. Estructura del bosque de La María EEA INTA Santiago del Estero. Rev. Quebracho 2008, 16, 5–19. [Google Scholar]
- Tangney, R.; Merritt, D.J.; Callow, J.N.; Fontaine, J.B.; Miller, B.P.; Seymour, C. Seed traits determine species’ responses to fire under varying soil heating scenarios. Funct. Ecol. 2020, 34, 1967–1978. [Google Scholar] [CrossRef]
- Cornelissen, J.H.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; Van Der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Pérez Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- de Noir, A.; Bravo, S. Frutos de Leñosas Nativas de Especies Leñosas Nativas de Argentina, 1st ed.; Editorial Universidad Nacional de Santiago del Estero—UNSE Facultad de Ciencias Forestales: Santiago del Estero, Argentina, 2014. [Google Scholar]
- ISTA. International Rules for Seed Testing; ISTA: Bassersdorf, Switzerland, 2015; ISSN 2310-3655. [Google Scholar]
- Souza, M.T.; Souza, M.T.; Panobianco, M. Morphological characterization of fruit, seed and seedling, and seed germination test of Campomanesia guazumifolia. J. Seed Sci. 2018, 40, 75–81. [Google Scholar] [CrossRef]
- Craviotto, R.M.; Arango, M.R.; Gallo, C. Prueba Topografica por Tetrazolio en Soja. In Revista Análisis de Semillas; Suplemento Especial: Santa Fe, Argentina, 2008; 96p, ISSN 1851-9615. N°1. [Google Scholar]
- Alzugaray, C.; Carnevale, N.J.; Salinas, A.R.; Pioli, R. Quality of Aspidosperma quebracho-blanco Schlecht, Seeds. Rev. Quebracho 2006, 13, 26–35. [Google Scholar]
- Ledesma, R.; Kunst, C.; Bravo, S.; Leiva, M.; Lorea, L.; Godoy, J.; Navarrete, V. Developing a prescription for brush control in the Chaco region, effects of combined treatments on the canopy of three native shrub species. Arid Land Res. Manage. 2018, 32, 351–366. [Google Scholar] [CrossRef]
- Alexander, M.E. Calculating and interpreting forest fire intensities. Can. J. Bot. 1982, 60, 349–357. [Google Scholar] [CrossRef]
- Stoof, C.; Moore, D.; Fernandes, P.; Stoorvogel, J. Hot fire, cool soil. Geophys. Lett. 2013, 40, 1534–1539. [Google Scholar] [CrossRef]
- Marino, G.D.; Mas, M.V.; Orlandoni, M.J. Morfología and reconocimiento de las principales especies leñosas nativas de la provincia de Santa Fe, Argentina, en el estado de plántula. Boletín Soc. Argent. Botánica 2008, 43, 67–81. [Google Scholar]
- Ferreras, A.E.; Funes, G.; Galetto, L. The role of seed germination in the invasión process of Honey locust (Gleditsia triacanthos L., Fabaceae): Comparison with a native confamilial. Plant Species Biol. 2015, 30, 126–136. [Google Scholar] [CrossRef]
- Barchuk, A.H.; Campos, E.B.; Oviedo, C.; Díaz, M.D.P. Supervivencia y crecimiento de plántulas de especies leñosas del Chaco Árido sometidas a remoción de la biomasa aérea. Ecol. Austral 2006, 16, 47–61. [Google Scholar]
- Bitterlich, W. The Relascope Idea; Relative Measurements in Forestry; Commonwealth Agricultural Bureaux: Slough, UK, 1984; 242p. [Google Scholar]
- Arturi, M. Evaluación del muestreo por recuento angular de Bitterlich en distintas distribuciones espaciales y diamétricas generadas por simulación. Bosque 2016, 37, 431–437. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, Version 2017; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2017. Available online: http://www.infostat.com.ar (accessed on 14 February 2022).
- Alzugaray, C.; Carnevale, N.J.; Salinas, A.R. Crecimiento en plántulas de Schinopsis balansae Engl. Ecotrópica 2008, 14, 27–35. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef]
- Giorgis, M.A.; Zeballos, S.R.; Carbone, L.; Zimmermann, H.; von Wehrden, H.; Aguilar, R.; Ferreras, A.E.; Tecco, P.A.; Kowaljow, E.; Barri, F.; et al. A review of fire effects across South American ecosystems: The role of climate and time since fire. Fire Ecol. 2021, 17, 11. [Google Scholar]
- Venier, P.; Cabido, M.; Funes, G. Germination characteristics of five coexisting neotropical species of Acacia in seasonally dry Chaco forests in Argentina. Plant Species Biol. 2017, 32, 134–146. [Google Scholar] [CrossRef]
- Miranda, A.C.; Miranda, H.S.; Dias, I.F.O.; Dias, B.F.S. Soil and air temperatures during prescribed Cerrado fires in Central Brazil. J. Trop. Ecol. 1993, 9, 313–320. [Google Scholar] [CrossRef]
- Moreira, B.; Pausas, J.G. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 2012, 7, e51523. [Google Scholar] [CrossRef] [PubMed]
- Auld, T.D.; Denham, A.J. How much seed remains in the soil after a fire? Plant Ecol. 2006, 187, 15–24. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Plaza-Álvarez, P.A.; Gonzalez-Romero, J.; Sagra, J.; Alfaro-Sánchez, R.; Zema, D.A.; Moya, D.; de las Heras, J. Short-term effects of prescribed burning in Mediterranean pine plantations on surface runoff, soil erosion and water quality of runoff. Sci. Total Environ. 2019, 674, 615–622. [Google Scholar] [CrossRef]
- Trucco, C.E.; Caziani, S.M. Remoción de semillas en un borde inducido por un incendio forestal en el Chaco semiárido argentino. Ecosistemas 2008, 17, 123–133. [Google Scholar]
- Tálamo, A.; Barchuk, A.H.; Garibaldi, L.A.; Trucco, C.E.; Cardozo, S.; Mohr, F. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina). Oecologia 2015, 178, 847–854. [Google Scholar] [CrossRef]
- Trigo, C.B. Efecto de la Exclusión de Ganado Doméstico Sobre la Estructura y Funcionalidad de Una Comunidad Vegetal en el Bosque Chaqueño Semiárido. Ph.D. Thesis, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina, 2018. [Google Scholar]
- Barchuk, A.H.; del Pilar Díaz, M. Regeneration and structure of Aspidosperma quebracho-blanco Schl. in the Arid Chaco (Córdoba, Argentina). For. Ecol. Manag. 1999, 118, 31–36. [Google Scholar] [CrossRef]
- Araoz, S.D.; Del Longo, O.; Karlin, O. Seed Germination of Zizyphus Mistol Grisebach. Parametric Correlations of Size and Weight of Drupes, Endocarps and Seeds With Germination and Vigor. Multequina 2004, 13, 45–50. [Google Scholar]
- Araoz, S.D.; Del Longo, O. Pregerminative treatments to break the physical dormancy imposed for the endocarps in Ziziphus mistol Grisebach. Quebracho Rev. Cienc. For. 2006, 13, 56–65. [Google Scholar]
- Bertuzzi, T. Conservación Ex Situ de Especies Leñosas Con Valor de Uso del Chaco Catamarqueño. Ph.D. Thesis, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, 2024. [Google Scholar]
- Daibes, L.F.; Pausas, J.G.; Bonani, N.; Nunes, J.; Silveira, F.A.O.; Fidelis, A. Fire and legume germination in a tropical savanna: Ecological and historical factors. Ann. Bot. 2019, 123, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Casillo, J.; Kunst, C.; Semmartin, M. Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Austral Ecol. 2012, 37, 452–459. [Google Scholar] [CrossRef]
- Carbone, L.M.; Aguirre-Acosta, N.; Tavella, J.; Aguilar, R. Cambios florísticos inducidos por la frecuencia de fuego en el Chaco Serrano. Boletín Soc. Argent. Botánica 2017, 52, 753–778. [Google Scholar] [CrossRef]
Species | Cw (%) | Viability (%) | |
---|---|---|---|
2017 | 2019 | ||
Aspidosperma quebracho-blanco | 6.3 ± 0.4 | 21.0 ± 9.4 | - |
Schinopsis lorentzii | 5.8 ± 5.3 | 33.0 ± 12.3 a | 44.0 ± 8.6 a |
Sarcomphalus mistol | 9.5 ± 0.1 | 28.0 ± 3.2 a | 64.0 ± 8.6 b |
Neltuma nigra | 7.4 ± 2.8 | 86.2 ± 4.0 b | 74.0 ± 20.7 a |
Senegalia gilliesii | 11.2 ± 0.1 | 37.0 ± 14 a | 49.0 ± 15.7 a |
Vachellia aroma | 8.5 ± 0.3 | 80.0 ± 3.2 a | 89.0 ±5.0 a |
Year of the Burns | Date and Hour of Burns | Air Temperature (°C) | Air Relative Humidity (%) | Wind Speed (Km h−1) | Wind Direction | Mean Flame Length (m) | Intensity (kW m−1) |
---|---|---|---|---|---|---|---|
2017 | 10 October (between 8:15 and 10:35) | 19.5–27 | 51–69 | 2–4.5 | east-northwest | 1.51 ± 0.30 | 612.32 ± 336.19 |
2019 | 14 November (between 9:30 and 11:50) | 32 | 40 | 4.5 | east-northwest | 1.6 | 721.88 |
Species | Average Germination Percentage (G2) (±SD) | |||||||
---|---|---|---|---|---|---|---|---|
2017 | 2019 | |||||||
PL-F | PL-C | PI-F | PI-C | |||||
n | n | n | n | |||||
Aspidosperma quebracho- blanco | 0 ± 0 | 0 | 0 ± 0 | 0 | - | - | - | - |
Schinopsis lorentzii | 0.50 ± 1.00 | 2 | 0 ± 0 | 0 | 0 ± 0 | 0 | 0 ± 0 | 0 |
Sarcomphalus mistol | 0 ± 0 | 0 | 0 ± 0 | 0 | 0 ± 0 | 0 | 0 ± 0 | 0 |
Neltuma nigra with endocarp | 1.75 ± 2.06 | 7 | 0 ± 0 | 0 | 10.50 ± 10.13 | 42 | 9.00 ± 2.94 | 36 |
Neltuma nigra seed | 0 ± 0 | 0 | 7 ± 0 | 7 | 2.00 ± 0.82 | 8 | 3.50 ± 1.29 | 14 |
Senegalia gilliesii | 0 ± 0 | 0 | 0 ± 0 | 0 | 0 ± 0 | 0 ± 0 | ||
Vachellia aroma | 0 ± 0 | 0 | 4.00 ± 0.00 | 4 | 14.75 ± 3.20 | 59 | 11.25 ± 3.40 | 45 |
Species | Family | Relative Abundance % | |
---|---|---|---|
CF | DF | ||
Senegallia gilliesii *,** | Fabaceae | 34 | 4 |
Atamisquea emarginata ** | Capparaceae | 9 | 5 |
Condalia microphylla ** | Rhamnaceae | 2 | 10 |
Monteverdia spinosa | Celastraceae | 13 | - |
Schinus fasciculatus ** | Anacardiaceae | 4 | 6 |
Celtis ehrenbergiana ** | Cannabaceae | 9 | 6 |
Aspidosperma quebracho-blanco *,** | Apocynaceae | 26 | 63 |
Neltuma nigra * | Fabaceae | - | 6 |
Ximenia americana | Olacaceae | 1 | - |
Schinopsis lorentzii * | Anacardiaceae | 2 | - |
Species | Treatment | F | p | ||
---|---|---|---|---|---|
CF (n = 20) | DF (n = 20) | ||||
Aspidosperma quebracho-blanco | H | 9.9 ± 1.2 b | 5.6 ± 0.9 a | 7.07 | 0.0012 |
ABD | 2.4 ± 0.2 b | 1.7 ± 0.1 a | 7.6 | 0.0094 | |
SD | 1351 ± 243 a | 6899 ± 1565 b | 12.2 | 0.0012 | |
Schinopsis lorentzii | H | 3.8 ± 1.6 | . | . | . |
ABD | 0.7 ± 0.2 | . | . | . | |
SD | 83 ± 33 | . | . | . | |
Neltuma nigra | H | . | 3.7 ± 1.5 | . | . |
ABD | . | 0.4 ± 0.2 | . | . | |
SD | . | 735 ± 302 | . | . | |
Senegalia gilliesii | H | 23.3 ± 3.0 a | 21.0 ± 10.4 a | 0.12 | 0.7375 |
ABD | 4.3 ± 0.3 a | 4.5 ± 2.1 a | 0.03 | 0.8668 | |
SD | 1715± 366 b | 473 ± 255 a | 8.33 | 0.0064 | |
H | 6.89 ± 0.99 b | 3.30 ± 0.99 a | 5.73 | 0.0178 | |
Total | ABD | 1.41 ± 0.18 b | 0.74 ± 0.21 a | 5.96 | 0.0157 |
SD | 787.50 ± 264.4 a | 2027.28 ± 264.4 b | 10.99 | 0.0010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibañez Moro, A.V.; Borghetti, F.; Galetto, L.; Cellini, J.M.; Bravo, S.J. Recruitment of Dry Tropical Woody Species After Fire: Germination Phase and Seedling Establishment. Forests 2025, 16, 1390. https://doi.org/10.3390/f16091390
Ibañez Moro AV, Borghetti F, Galetto L, Cellini JM, Bravo SJ. Recruitment of Dry Tropical Woody Species After Fire: Germination Phase and Seedling Establishment. Forests. 2025; 16(9):1390. https://doi.org/10.3390/f16091390
Chicago/Turabian StyleIbañez Moro, Amalia Valeria, Fabian Borghetti, Leonardo Galetto, Juan Manuel Cellini, and Sandra Josefina Bravo. 2025. "Recruitment of Dry Tropical Woody Species After Fire: Germination Phase and Seedling Establishment" Forests 16, no. 9: 1390. https://doi.org/10.3390/f16091390
APA StyleIbañez Moro, A. V., Borghetti, F., Galetto, L., Cellini, J. M., & Bravo, S. J. (2025). Recruitment of Dry Tropical Woody Species After Fire: Germination Phase and Seedling Establishment. Forests, 16(9), 1390. https://doi.org/10.3390/f16091390